
Math 223 Number Theory, Spring ’07
Homework 4 Solutions

(1) Prove that all powers in the prime factorization of an integer n are even if and only if n is a perfect
square.

Solution: Let n have prime factorization
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If all ai are even, then
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where bi = ai/2 for all i, and so n is a perfect square of an integer m = pb1
1 pb2

2 pb3
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argument can be reversed to prove the other direction of the equivalence.

(2) Prove that 30|(n5−n) for all positive integers n. (Hint: Show that both 5 and 6 divide n5−n and
then use the fact that if a and b divide a number and gcd(a, b) = 1, then ab divides it as well.)

Solution: For n ∈ N,

n5 − n = n(n4 − 1) = (n− 1)n(n + 1)(n2 + 1).

Now either n − 1 or n is divisible by 2 and either n − 1, n, or n + 1 is divisible by 3. Thus the
product (n− 1)n(n + 1) is divisible by 2 · 3 = 6 and so is n5 − n.

To show n5 − n is divisible by 5, suppose neither of n − 1, n, or n + 1 is. Then n must be of
the form 5k + 2 or 5k + 3 for some k ∈ Z. If n = 5k + 2, then n2 + 1 = 25k2 + 20k + 5, which is
divisible by 5. If n = 5k + 3, then n2 + 1 = 25k2 + 30k + 10, which is also divisible by 5.

Since n5−n is divisible both by 5 and 6, and since gcd(5, 6) = 1, n5−n is divisible by 5 · 6 = 30.

(3) Prove that the sum of three consecutive cubes is always divisible by 9. (Hint: Let the three
consecutive cubes be (n− 1)3, n3, and (n + 1)3 for some n ∈ Z.)

Solution: For n ∈ Z, consider (n− 1)3, n3, and (n + 1)3. Then

(n− 1)3 + n3 + (n + 1)3 = 3n(n2 + 2).

If n is divisible by 3, then 3n is divisible by 9, so we are done. Otherwise, n = 3k +1 or n = 3k +2
for some k ∈ Z. If n = 3k + 1, then n2 + 2 = 9k2 + 6k + 3, which is divisible by 3. If n = 3k + 2,
then n2 + 2 = 9k2 + 12k + 6, which is also divisible by 3. Either way, the product 3n(n2 + 2) is
divisible by 9.

(4) (7.5) Define the M-world to be the set of positive integers that leave a remainder of 1 when divided
by 4. In other words, the only M-numbers that exist are

{1, 5, 9, 13, 17, 21, ...}.

(Another description is that these are the numbers of the form 4t + 1 for t = {0, 1, 2, ...}.) In
the M-world, we cannot add numbers, but we can multiply them, since if a and b both leave a
remainder of 1 when divided by 4 then so does their product. (Do you see why this is true? You
are actually proving this in another exercise on this homework.) We say that m M-divides n if
n = mk for some M-number k. And we say that n is an M-prime if its only M-divisors are 1 and
itself. (Of course, we don’t consider 1 itself to be an M-prime.)
(a) Find the first 6 M-primes.
(b) Find an M-number n that has two different factorizations as a product of M-primes.



Solution:
(a) The first 6 M-primes are 5, 9, 13, 17, 21, and 29 (5, 13, 17, and 29 are M-prime because they

are prime, and 9 = 32 and 21 = 3 · 7 are prime because 3 and 7 are not M-numbers).
(b) An example is 441 = 9 · 49 = 21 · 21.

(5) Determine whether each of the following pairs is congruent modulo 7.
(a) (1,15) (b) (-1,8) (c) (0,42) (d) (-9,5) (e) (-1,699)

Solution:
(a) Yes, since 7|(1 − 15) (b) No, since 7 6 |(−1 − 8) (c) Yes, since 7|(0 − 42) (d) Yes, since

7|(−9− 5) (e) Yes, since 7|(−1− 699).

(6) For which positive integers m is each of the following statements true?
(a) 27 ≡ 5 (mod m) (b) 1000 ≡ 1 (mod m)

Solution:
(a) Equivalently, we are looking for those integers m such that m|(27−5) = 22, i.e. we are looking

for divisors of 22. They are 1, 2, 11, and 22.
(b) Here we are looking for divisors of 999, which are 1, 3, 9, 27, 37, 111, 333, and 999.

(7) (8.1) Suppose that a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m). Verify that
(a) a1 ± a2 ≡ b1 ± b2 (mod m)
(b) a1a2 ≡ b1b2 (mod m)

Solution:
(a) Since a1 ≡ b1 (mod m) and a2 ≡ b2 (mod m), we have that there exist k, l ∈ Z such that

a1 − b1 = km and a2 − b2 = lm.

Then adding or subtracting these equations gives

(a1 ± a2)− (b1 ± b2) = (k ± l)m ⇐⇒ a1 ± a2 ≡ b1 ± b2 (mod m).

(b) Using the notation from (a), we have

a1a2 − b1b2 = a1a2 − b1a2 + b1a2 − b1b2

= a2(a1 − b1) + b1(a2 − b2)
= a2km + b1lm

= (a2k + b1l)m

from which the desired result follows.

(8) Suppose that ac ≡ bc (mod m) and that gcd(c,m) = 1.
(a) (8.2) Prove that a ≡ b (mod m).
(b) Provide a counterexample showing that part (a) is false when the assumption that gcd(c,m) =

1 is dropped.

Solution:
(a) By definition, ac ≡ bc (mod m) means m|(ac− bc) or m|c(a− b). Thus either m|c or m|(a− b).

Since gcd(c,m) = 1, it must be that m|(a−b). In other words, it must be that a ≡ b (mod m).
(b) For example, 8 ≡ 12 (mod 4) but 4 6≡ 6 (mod 4) (here c = 2).

(9) (parts of 8.3) Find all incongruent solutions to each of the following congruences.
(a) 7x ≡ 3 (mod 15)
(b) 6x ≡ 5 (mod 15)



(c) x2 ≡ 1 (mod 8)

Solution:
(a) Since gcd(7, 15) = 1 and 1|3, by Linear Congruence Theorem there is exactly one incongruent

solution to 7x ≡ 3 (mod 15). To find it, we first solve the equation 7u + 15v = 1. By
Euclidan Algorithm (or by inspection), it is easy to see that a solution is (u0, v0) = (−2, 1).
Then cu0/g = −6 (where c = 3 and g = 1) and so the solution to 7x ≡ 3 (mod 15) is
x ≡ −6 (mod 15) ≡ 9 (mod 15) (we choose 9 as the representative of the solution set since
that is the least residue of x modulo 15).

(b) Here gcd(6, 15) = 3 which does not divide 5, so this equation has no solutions.
(c) We have

02 6≡ 1 (mod 8), 12 ≡ 1 (mod 8), 22 6≡ 1 (mod 8), 32 ≡ 1 (mod 8),

42 6≡ 1 (mod 8), 52 ≡ 1 (mod 8), 62 6≡ 1 (mod 8), 72 ≡ 1 (mod 8).

Thus by inspection, the incongruent solutions to x2 ≡ 1 (mod 8) are x = 1, 3, 5, and 7.

(10) Prove that the last digit of a perfect square is never 2, 3, 7, or 8. (Hint: Every integer n can be
written as n = 10k + r where k, r ∈ Z and 0 ≤ r < 10. Then consider n2 (mod 10).)

Solution: Given n ∈ Z, we want to compute the least residue of n2 (mod 10) and show it cannot
be 2, 3, 7, or 8. Write n as 10k + r where k, r ∈ Z and 0 ≤ r < 10 (so that r is the last digit of n).
Then

n2 = (10k + r)2 = 100k2 + 20kr + r2 ≡ r2 (mod 10).
The possible values of r2 (mod 10) are

02 ≡ 0 (mod 10), 12 ≡ 1 (mod 10), 22 ≡ 4 (mod 10), 32 ≡ 9 (mod 10), 42 ≡ 6 (mod 10),

52 ≡ 5 (mod 10), 62 ≡ 6 (mod 10), 72 ≡ 9 (mod 10), 82 ≡ 4 (mod 10), 92 ≡ 1 (mod 10).

Neither of these values is 2, 3, 7, 8, so n2 cannot be one of those.


