Math 223 Number Theory, Spring '07 Homework 4 Solutions

(1) Prove that all powers in the prime factorization of an integer n are even if and only if n is a perfect square.

Solution: Let n have prime factorization

$$
n=p_{1}^{a_{1}} p_{2}^{a_{2}} p_{3}^{a_{3}} \cdots p_{n}^{a_{n}}
$$

If all a_{i} are even, then

$$
n=p_{1}^{2 b_{1}} p_{2}^{2 b_{2}} p_{3}^{2 b_{3}} \cdots p_{n}^{2 b_{n}}=\left(p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}} \cdots p_{n}^{b_{n}}\right)^{2}
$$

where $b_{i}=a_{i} / 2$ for all i, and so n is a perfect square of an integer $m=p_{1}^{b_{1}} p_{2}^{b_{2}} p_{3}^{b_{3}} \cdots p_{n}^{b_{n}}$. This argument can be reversed to prove the other direction of the equivalence.
(2) Prove that $30 \mid\left(n^{5}-n\right)$ for all positive integers n. (Hint: Show that both 5 and 6 divide $n^{5}-n$ and then use the fact that if a and b divide a number and $\operatorname{gcd}(a, b)=1$, then $a b$ divides it as well.)

Solution: For $n \in \mathbb{N}$,

$$
n^{5}-n=n\left(n^{4}-1\right)=(n-1) n(n+1)\left(n^{2}+1\right) .
$$

Now either $n-1$ or n is divisible by 2 and either $n-1$, n, or $n+1$ is divisible by 3 . Thus the product $(n-1) n(n+1)$ is divisible by $2 \cdot 3=6$ and so is $n^{5}-n$.

To show $n^{5}-n$ is divisible by 5 , suppose neither of $n-1, n$, or $n+1$ is. Then n must be of the form $5 k+2$ or $5 k+3$ for some $k \in \mathbb{Z}$. If $n=5 k+2$, then $n^{2}+1=25 k^{2}+20 k+5$, which is divisible by 5 . If $n=5 k+3$, then $n^{2}+1=25 k^{2}+30 k+10$, which is also divisible by 5 .

Since $n^{5}-n$ is divisible both by 5 and 6 , and since $\operatorname{gcd}(5,6)=1, n^{5}-n$ is divisible by $5 \cdot 6=30$.
(3) Prove that the sum of three consecutive cubes is always divisible by 9. (Hint: Let the three consecutive cubes be $(n-1)^{3}, n^{3}$, and $(n+1)^{3}$ for some $n \in \mathbb{Z}$.)
Solution: For $n \in \mathbb{Z}$, consider $(n-1)^{3}, n^{3}$, and $(n+1)^{3}$. Then

$$
(n-1)^{3}+n^{3}+(n+1)^{3}=3 n\left(n^{2}+2\right)
$$

If n is divisible by 3 , then $3 n$ is divisible by 9 , so we are done. Otherwise, $n=3 k+1$ or $n=3 k+2$ for some $k \in \mathbb{Z}$. If $n=3 k+1$, then $n^{2}+2=9 k^{2}+6 k+3$, which is divisible by 3 . If $n=3 k+2$, then $n^{2}+2=9 k^{2}+12 k+6$, which is also divisible by 3 . Either way, the product $3 n\left(n^{2}+2\right)$ is divisible by 9 .
(4) (7.5) Define the \mathbb{M}-world to be the set of positive integers that leave a remainder of 1 when divided by 4 . In other words, the only \mathbb{M}-numbers that exist are

$$
\{1,5,9,13,17,21, \ldots\} .
$$

(Another description is that these are the numbers of the form $4 t+1$ for $t=\{0,1,2, \ldots\}$. .) In the \mathbb{M}-world, we cannot add numbers, but we can multiply them, since if a and b both leave a remainder of 1 when divided by 4 then so does their product. (Do you see why this is true? You are actually proving this in another exercise on this homework.) We say that $m \mathbb{M}$-divides n if $n=m k$ for some \mathbb{M}-number k. And we say that n is an \mathbb{M}-prime if its only \mathbb{M}-divisors are 1 and itself. (Of course, we don't consider 1 itself to be an \mathbb{M}-prime.)
(a) Find the first $6 \mathbb{M}$-primes.
(b) Find an \mathbb{M}-number n that has two different factorizations as a product of \mathbb{M}-primes.

Solution:
(a) The first $6 \mathbb{M}$-primes are $5,9,13,17,21$, and $29(5,13,17$, and 29 are \mathbb{M}-prime because they are prime, and $9=3^{2}$ and $21=3 \cdot 7$ are prime because 3 and 7 are not \mathbb{M}-numbers).
(b) An example is $441=9 \cdot 49=21 \cdot 21$.
(5) Determine whether each of the following pairs is congruent modulo 7 .
(a) $(1,15)$
(b) $(-1,8)$
(c) $(0,42)$
(d) $(-9,5)$
(e) $(-1,699)$

Solution:
(a) Yes, since $7 \mid(1-15) \quad$ (b) No, since $7 \times(-1-8) \quad$ (c) Yes, since $7 \mid(0-42) \quad$ (d) Yes, since $7 \mid(-9-5) \quad$ (e) Yes, since $7 \mid(-1-699)$.
(6) For which positive integers m is each of the following statements true?
(a) $27 \equiv 5(\bmod m)$
(b) $1000 \equiv 1(\bmod m)$

Solution:
(a) Equivalently, we are looking for those integers m such that $m \mid(27-5)=22$, i.e. we are looking for divisors of 22 . They are $1,2,11$, and 22 .
(b) Here we are looking for divisors of 999 , which are $1,3,9,27,37,111,333$, and 999.
(7) (8.1) Suppose that $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$. Verify that
(a) $a_{1} \pm a_{2} \equiv b_{1} \pm b_{2}(\bmod m)$
(b) $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod m)$

Solution:
(a) Since $a_{1} \equiv b_{1}(\bmod m)$ and $a_{2} \equiv b_{2}(\bmod m)$, we have that there exist $k, l \in \mathbb{Z}$ such that

$$
a_{1}-b_{1}=k m \quad \text { and } \quad a_{2}-b_{2}=l m .
$$

Then adding or subtracting these equations gives

$$
\left(a_{1} \pm a_{2}\right)-\left(b_{1} \pm b_{2}\right)=(k \pm l) m \quad \Longleftrightarrow \quad a_{1} \pm a_{2} \equiv b_{1} \pm b_{2}(\bmod m)
$$

(b) Using the notation from (a), we have

$$
\begin{aligned}
a_{1} a_{2}-b_{1} b_{2} & =a_{1} a_{2}-b_{1} a_{2}+b_{1} a_{2}-b_{1} b_{2} \\
& =a_{2}\left(a_{1}-b_{1}\right)+b_{1}\left(a_{2}-b_{2}\right) \\
& =a_{2} k m+b_{1} l m \\
& =\left(a_{2} k+b_{1} l\right) m
\end{aligned}
$$

from which the desired result follows.
(8) Suppose that $a c \equiv b c(\bmod m)$ and that $g c d(c, m)=1$.
(a) (8.2) Prove that $a \equiv b(\bmod m)$.
(b) Provide a counterexample showing that part (a) is false when the assumption that $g c d(c, m)=$ 1 is dropped.

Solution:
(a) By definition, $a c \equiv b c(\bmod m)$ means $m \mid(a c-b c)$ or $m \mid c(a-b)$. Thus either $m \mid c$ or $m \mid(a-b)$. Since $g c d(c, m)=1$, it must be that $m \mid(a-b)$. In other words, it must be that $a \equiv b(\bmod m)$.
(b) For example, $8 \equiv 12(\bmod 4)$ but $4 \not \equiv 6(\bmod 4)($ here $c=2)$.
(9) (parts of 8.3) Find all incongruent solutions to each of the following congruences.
(a) $7 x \equiv 3(\bmod 15)$
(b) $6 x \equiv 5(\bmod 15)$
(c) $x^{2} \equiv 1(\bmod 8)$

Solution:

(a) Since $\operatorname{gcd}(7,15)=1$ and $1 \mid 3$, by Linear Congruence Theorem there is exactly one incongruent solution to $7 x \equiv 3(\bmod 15)$. To find it, we first solve the equation $7 u+15 v=1$. By Euclidan Algorithm (or by inspection), it is easy to see that a solution is $\left(u_{0}, v_{0}\right)=(-2,1)$. Then $c u_{0} / g=-6$ (where $c=3$ and $g=1$) and so the solution to $7 x \equiv 3(\bmod 15)$ is $x \equiv-6(\bmod 15) \equiv 9(\bmod 15)($ we choose 9 as the representative of the solution set since that is the least residue of x modulo 15).
(b) Here $\operatorname{gcd}(6,15)=3$ which does not divide 5 , so this equation has no solutions.
(c) We have

$$
\begin{array}{llll}
0^{2} \not \equiv 1(\bmod 8), & 1^{2} \equiv 1(\bmod 8), & 2^{2} \not \equiv 1(\bmod 8), & 3^{2} \equiv 1(\bmod 8), \\
4^{2} \not \equiv 1(\bmod 8), & 5^{2} \equiv 1(\bmod 8), & 6^{2} \not \equiv 1(\bmod 8), & 7^{2} \equiv 1(\bmod 8) .
\end{array}
$$

Thus by inspection, the incongruent solutions to $x^{2} \equiv 1(\bmod 8)$ are $x=1,3,5$, and 7 .
(10) Prove that the last digit of a perfect square is never 2, 3, 7, or 8. (Hint: Every integer n can be written as $n=10 k+r$ where $k, r \in \mathbb{Z}$ and $0 \leq r<10$. Then consider $n^{2}(\bmod 10)$.)
Solution: Given $n \in \mathbb{Z}$, we want to compute the least residue of $n^{2}(\bmod 10)$ and show it cannot be $2,3,7$, or 8 . Write n as $10 k+r$ where $k, r \in \mathbb{Z}$ and $0 \leq r<10$ (so that r is the last digit of n). Then

$$
n^{2}=(10 k+r)^{2}=100 k^{2}+20 k r+r^{2} \equiv r^{2}(\bmod 10) .
$$

The possible values of $r^{2}(\bmod 10)$ are
$0^{2} \equiv 0(\bmod 10), 1^{2} \equiv 1(\bmod 10), 2^{2} \equiv 4(\bmod 10), 3^{2} \equiv 9(\bmod 10), 4^{2} \equiv 6(\bmod 10)$,
$5^{2} \equiv 5(\bmod 10), 6^{2} \equiv 6(\bmod 10), 7^{2} \equiv 9(\bmod 10), 8^{2} \equiv 4(\bmod 10), \quad 9^{2} \equiv 1(\bmod 10)$.
Neither of these values is $2,3,7,8$, so n^{2} cannot be one of those.

