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A Short Answers

1. (3 points) RPC tries to make remote procedure calls look the same as local procedure calls. But the
illusion isn’t perfect. Circle all of the options that correctly describe differences between a local function
call and an RPC:

A. RPC calls require an extra parameter to identify the server.

B. RPC calls may have higher or variable latency.

C. RPC calls are limited to call-by-value.

D. RPC calls have different (more) failure modes.

E. Local function calls require a malloc of a heap object to represent the return pointer.

Solution: A,B,D

2. (3 points) Why does the condition variable call to wait take a mutex as an argument?

Solution: The call to wait accepts a mutex so that it can atomically lock the mutex and put the
thread to sleep, because otherwise we could have a lost wakeup.

3. (3 points) Recall that NFS uses a timeout-based mechanism to provide weak consistency, where AFS
uses a callback mechanism to provide close-to-open consistency. Assume a file server has 100 clients.
These clients have all opened the same file read-only. They have no other open files. In this scenario,
would an NFS server or an AFS server experience lower request load? Why (briefly)?

Solution: In AFS, clients that write to the file cause the server to initiate a callback to all clients.
If most clients are opening the file as read-only, only writes to the file cause the server to have to
do work. NFS in comparison would require all clients, even those that are only reading a file, to
periodically check the server for updated status.

4. (4 points) Using the 5 year-old single-disk computer in his office, Prof. Evil von Ahn repeatedly measured
the read throughput of a 1 GB file on two systems: an unknown remote file server in the SCS machine
room, and the local disk in Prof. Evil’s computer itself. The throughput from the remote server was 12
times higher than Prof. Evil’s local disk.

Of the possible differences between the unknown remote server and Prof. Evil’s computer and the trends
in computing hardware, what factors alone could likely account for this performance difference? (Circle
all correct answers.)

A. The remote server disk(s) spin 12 times faster than the disk in Prof. Evil’s computer.

B. The remote server uses RAID 0 and has many disks.

C. The network bandwidth is 12 times higher than the disk bus in Prof. Evil’s computer.

D. The remote server uses RAID 5 and has many disks.

E. The remote server serves the file from a memory cache while Prof. Evil’s computer repeatedly
serves the file from disk.

F. Prof. Evil runs Windows.

G. The remote server is an AFS server.

H. The remote server is a Sun NFS server.
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Solution: B, D, and E are correct. A and C are technologically infeasible: no commercial server
disks spin 12 times faster than even the slowest commercial disks five years ago, and modern deployed
networking systems do not approach 12 times the speed of modern computer data buses. (Also, the
network traffic in a typical computer also must use the same data bus as disk traffic.) Windows,
AFS, and NFS alone do not significantly affect disk performance without other major architectural
differences (such as RAID).
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5. (3 points) Name 3 reasons why you would use threads instead of processes for a problem requiring
concurrency (doing multiple tasks in parallel).

Solution: 1. Switching between processes is much more expensive than switching between threads.
2. Threads share memory, so they can coordinate more effectively regarding their tasks. 3. Threads
are easy to create and destroy.

6. (3 points) List and describe the three characteristics that a solution to a synchronization (mutual ex-
clusion) problem must have.

Solution: 1. mutual exclusion - only one process in critical section at a time 2. progress - don’t
wait for an available resource 3. bounded waiting - can’t wait forever

7. (2 points) Describe two disadvantages of a ring-based algorithm (one that passes a token around a ring)
for implementing a distributed mutex?

Solution: There could be a very long delay for a large ring. Also quite unreliable because a process
could die and it would take a very long time to generate another token. Not necessarily fair.

8. (3 points) For which of the following applications would UDP be preferable over TCP, ignoring annoying
concerns such as firewalls that might block some protocols?

A. Streaming a live video over the internet TCP / UDP

B. Instant messaging/email TCP / UDP

C. Logging in to your bank website TCP / UDP

D. Voice over IP TCP / UDP

E. Large file transfers TCP / UDP

F. Looking up a very small value from a directory service TCP / UDP

Solution: UDP, TCP, TCP, UDP, TCP, UDP
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B Going RAIDing

9. The growth of disk capacity has been outpacing the growth in speed, both for seek latency and transfer
rate. A few years ago, you built a RAID array to reliably store your collection of course notes (you
take very detailed notes – many hundreds of gigabytes of them). At the time, you built the system
as a RAID5 (rotating parity) array using six drives. You picked a bunch of cheap 120GB drives off of
newegg.com. The parameters of the drives are:

Capacity 120GB
Seek latency 7ms
Rotational delay 3ms
Transfer speed 60MB/sec
MTTF 1,000,000 hours

Assume where it matters that the disks are full—your data occupies all of the available capacity on the
array—and that the parameters are given in SI units.

(a) (4 points) Using RAID5, and ignoring filesystem overhead, etc., what is the usable capacity of your
RAID array?

Solution: There are six disks; one is for parity. Therefore, the array can hold: 120GB ∗ 5 =
600GB

(b) (3 points) How long will it take to write one byte of data to this RAID, assuming you write it to a
randomly chosen location in the filesystem?

Solution:
The transfer time for one byte is roughly negligible (it’s 1 byte / 6 ∗ 107 bytes/sec, which is
0.016 µs. The dominating factor, then, is the write latency.
With RAID5, to update one byte, we either have to read the byte and the parity block and
then write both, OR we have to write all blocks. It probably makes more sense to do the read
and the write. Therefore, the answer is approx 20ms.
(We don’t want this question to be tricky, so we’ll accept any variant of ”2 * 10ms”, or ”one
seek plus two rotational delays” == 13ms, or even an expected half rotational delay the first
time, etc. All of these are acceptable assumptions depending on how smart the RAID is.)

(c) (4 points) Pittsburgh goes to the superbowl again. You live near Atwood, and you worry that in
the ensuing riots, your computer may be destroyed, so you decide to copy all of the data off of your
computer to a remote server on the Internet. How quickly can you read all of the data off of the
raid in huge sequential blocks to make a copy of it?

Solution:
RAID5 lets you read all of the data disks in parallel. Therefore, using this RAID, you could get
60MB/sec * 5 = 300MB/sec of big sequential read throughput. 600GB

300MB/sec = 2000seconds =
33.3minutes
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(d) (4 points) Disaster strikes! While you were copying your data, a power surge blew up one of the
disks in the array. Your array is now “degraded.” You have a spare disk, and you put it in the
array in place of the dead one. How long will the rebuild process take? State any assumptions you
make.

Solution: To restore, we can read from all five working disks in parallel and recompute the
disk blocks for the 6th disk. Therefore, we can write as fast as the one disk will allow – in
other words, the answer to this question is the same as to the previous question: 120GB

60MB/s =
2000seconds = 33.3minutes.

(e) (3 points) It’s now 2009, and you have a lot more course notes. You decide to build a new RAID
array using modern disks:

Capacity 1000GB
Seek latency 5ms
Rotational delay 2ms
Transfer speed 80MB/sec
MTTF: 1,000,000 hours

You’ve once again filled up your array of six disks. How long would it take to do a RAID rebuild
using this new array?

Solution: 1000GB
80MB/sec = 12, 500sec = 208.3min = 3.47hours

(f) (4 points) Assume that disk failure probabilities are completely independent. What is the proba-
bility of your RAID array experiencing a second disk failure during the rebuild? (Hint: Use the
MTTF, and state any assumptions you make.)

Solution: Assume that the disks are operating in the ”good” part of the bathtub curve (e.g.,
they aren’t all starting to die together). The MTTF is 1 million hours, so the probability of a
failure in 3.47 hours per disk is approximately 3.47 / 1,000,000. But the array will die if any of
the five disks dies. Because the numbers are small, we can approximate the failure probability
as: 5∗3.47

1,000,000 = .00001735 or about a 1 in ten-thousand chance of having the entire array die
and lose its data permanently during the rebuild. That’s not an astoundingly good failure
probability.

(g) (2 points) Do you expect that probability to be higher or lower in reality? Explain your answer
briefly (1–2 sentences).

Solution: In reality, the failure probability will be higher. The failure of the first disk may
indicate some source of correlated failures – perhaps power or environmental, or perhaps the
disks are starting to age, or came from a bad batch, etc. It doesn’t have to indicate this, but
in practice, the likelihood of a second disk failure given a first is often much higher.
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C The Rowing Cartographers

10. Adam, Becky, and Cartman decide to try out rowing crew. Unfortunately, there’s only one boat left
that can seat three people (it leaks a bit), and there are only four oars. A rower must have two oars in
order to row, or else the boat will go in circles.

Adam proposes that to arbitrate access to the oars, they should be placed in the center of the boat, and
every rower will follow a simple protocol:

while (!at destination) {
recover_strength();
grab_one_oar(); /* may block */
grab_one_oar(); /* may block */
row();
row();
row_your_boat();
drop_one_oar(); /* will not block */
drop_one_oar(); /* will not block */

}

(a) (5 points) Explain clearly why this plan will not lead to deadlock. Note that a one sentence
answer probably isn’t enough, but six sentences starts to look like too long an answer. Refer to the
characteristics of deadlock and mutual exclusion.

Solution: Deadlock can occur if all rowers have grabbed one oar and are all blocked trying
to grab another oar. With 3 rowers (each with two arms) and 4 oars, one rower will always be
able to grab the 4th oar, make progress, and release oars for the others to make progress.
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(b) (5 points) After rowing down the river, an octopus jumps into the boat in a spare seat. The octopus
wants to row too – but it has eight arms. Let’s generalize the solution a bit to handle an arbitrary
number of rowers, R, where each rower needs a particular number of oars in order to row.
Let’s characterize the scenarios by:

• R - the number of rowers
• A - the total number of arms summed across all rowers

For example, the boat with Adam, Becky, Cartman, and Ozzy the Octopus, would have A = 14
arms and R = 4 rowers. The generalized rowers use this protocol:

int n_oars = my_number_of_arms();

while (!at destination) {
recover_strength();
for (int i = 0; i < n_oars; i++)
grab_one_oar(); /* may block */

row(); row(); row_your_boat();

for (int i = 0; i < n_oars; i++)
drop_one_oar(); /* will not block */

}

Phrased in terms of A and R, what is the smallest number of oars you need to put in the boat to
ensure that deadlock cannot occur? Explain. Your answer must be organized and convincing.

Solution: Deadlock possible when all rowers have 1 oar left to grab and there are no more
oars.
A = total arms, R = number of rowers. A − R is the max that would lead to deadlock (each
waiting for the last oar), so A−R+ 1 is the number needed to prevent deadlock.
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(c) (10 points) Let’s build this code. Provide code for three functions:
typedef struct boat { ... } *boat_p;
void boat_init(boat_p b, int n_rowers, int n_oars);
void grab_one_oar(boat_p b);
void drop_one_oar(boat_p b);

You may use only mutexes and/or condition variables, NOT semaphores or lower level atomic
primitives. Assume that the environment is “error-free” (allocations always succeed, etc.). The
mutex and cond var operations are:
mutex_init(mutex_t *mp);
mutex_lock(mutex_t *mp);
mutex_unlock(mutex_t *mp);

cond_init(cond_t *cp);
cond_wait(cond_t *cp);
cond_signal(cond_t *cp);
cond_broadcast(cond_t *cp);

Declare the struct boat here, and write the init function (on the next page). Assume that n oars
has been set appropriately for the needs of the rowers:

typedef struct boat {

} *boat_p;
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void boat_init(boat_p b, int n_rowers, int n_oars) {

}

(d) (8 points) Write grab one oar(boat p) and drop one oar(boat p):

Solution:
typedef struct boat {
mutex_t lock;
cond_t cond;
int num_oars;

} *boat_p;

void boat_init(boat_p b, int n_rowers, int n_oars) {
mutex_init(&(b->lock))
cond_init(&(b->cond));
num_oars = n_oars;

}

void grab_one_oar(boat_p b) {
mutex_lock(&(b->lock));
while (b->num_oars == 0) {
cond_wait(&(b->cond));

}
b->num_oars--;
mutex_unlock(&(b->lock));

}

void drop_one_oar(boat_p b) {
mutex_lock(&(b->lock));
b->num_oars++;
cond_signal(&(b->cond));
mutex_unlock(&(b->lock));

}
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D Shamport Clocks

11. Suppose each computer in a distributed system keeps an approximate real-time clock Ri in addition to a
Lamport-like clock Li. A computer’s real-time clock Ri is an always-increasing integer (i.e., for any two
reads r1, r2 of Ri such that r1 →i r2, we have r2 > r1), but the real-time clocks at different computers
may drift relative to each other (i.e., Rj −Ri is non-constant for j 6= i).

Consider the following modification, Shamport, to Lamport’s partial-ordering algorithm:

Rule 1: Before each event at computer i, set Li = min(Li + 1, Ri).

Rule 2: When sending a message m, apply Rule 1 and include the time Li as part of the message (i.e.
send (m,Li) instead of just m).

Rule 3: When receiving a message (m, t) at computer j, set Lj = max(Lj , t) and then apply Rule 1
before timestamping the message-arrival event.

Let the Shamport global time of an event e at computer i be S(e) = Li(e).

(a) (2 points) In the algorithm above, underline the difference between Shamport and Lamport’s algo-
rithm. (Underline as little as possible).

Solution: Shamport’s algorithm uses Li = min(Li + 1, Ri) in Rule 1 instead of Li = Li + 1.
Otherwise the two algorithms are the same.

(b) (8 points) Let e, e′ be two events at computer i such that e→i e
′. Prove that S(e′) > S(e).

Solution: The key observation is that any new event advances the logical clock. There are
a couple common pitfalls to avoid: (1) e and e′ are not necessarily consecutive events; other
intervening events can affect the Shamport clock. (2) Events at computer i include the local
side of send and receive events, so you need to include possible applications of Rule 2 and
Rule 3 in your proof. And (3), reading the problem correctly to understand that the logical
clocks Li here are not Lamport clocks, and thus you cannot blindly apply the rules for Lamport
clocks from class. One proof is:
Consider the sequence of all events e . . . e′ at computer i. If S(e′) ≤ S(e) then there must exist
at least one pair of consecutive events f, f ′ (WLOG f →i f

′) such that S(f ′) ≤ S(f); otherwise
each new event would advance the logical clock Li, which would yield Li(e′) > Li(e′) and thus
S(e′) > S(e). To show S(e′) > S(e), therefore, it suffices to show that Li(f ′) > Li(f) for any
two consecutive events f →i f

′.
Let (t, r) be the logical and real-time clock times for event f and (t′, r′) be the times for f ′.
We must show that t′ > t for any events f and f ′. We break this into three cases based on
whether f ′ is a normal local event, a send event, or a receive event. (In each of these cases
we allow f to be any type of event.) Notice that in every case we have r′ > r because Ri is
always-increasing and f →i f

′.
Case 1: f ′ is a normal local event. This causes a single application of Rule 1, yielding t′ =
min(t+ 1, r′). Briefly consider the rule that set the logical clock for f . Because all three rules
last-affect the logical clock with an application of Rule 1, we have that t = min(,̇r) and thus
that t ≤ r, yielding t < r′. Because t+ 1 > t and r′ > t we therefore have that t′ > t regardless
of which term of the min-operation is lesser, yielding that S(f ′) > S(f) as desired if f ′ is a
local-only event.
Case 2: f ′ is a send event. This causes an application of Rule 2, which affects the logical clock
only with an application of Rule 1. Thus, Case 2 reduces directly to Case 1.
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Case 3: f ′ is a receive event. WLOG suppose the message was (m, tm). This causes an
application of Rule 3 which itself calls Rule 1; the total effect is then t′ = min(max(t, tm)+1, r′).
Because max(t, tm) ≥ t we therefore have max(t, tm) + 1 > t. As in Case 1, we still have r′ > t.
Again, regardless of which term of the min-operation is smaller, this will yield t′ > t.
No matter what type of event f ′ is, we have S(f ′) > S(f). By the main argument above, we
then have S(e′) > S(e) as desired.
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(c) (6 points) Draw a time-series diagram in which S(send(m)) > S(receive(m)) for some message m.
Be sure to compute the Shamport-time and label the values of the real-time clocks at all computers
for any events in your diagram. Explain in 1-2 sentences why this unwanted behavior occurs.

Solution:
Because Kesden’s clock is always 15 minutes slow, his computer first advances its logical clock
to match the time from the incoming message, but then resets its logical clock back to match
the real-time clock when it applies Rule 1. The fundamental problem is that the logical clock
will never advance past the real-time clock at each computer, so skew in the real-time clocks
can cause the receive to be timestamped earlier than the send.

(d) (8 points) Suppose we know that the one-way latency of any message between any two computers
i, j is at least x clock-ticks by any local clock.
Also suppose we can synchronize Ri and Rj using an external time-source such that |Ri −Rj | ≤ y,
always, for some integer y. Is there a value of y small enough to guarantee that S(send(m)) <
S(receive(m)) for any message m between i and j? If yes, compute the largest possible value of y
to guarantee this property, and explain why your answer is correct. If no, explain why.

Solution: Yes, if y < x. Consider a diagram similar to the part above, but with send(m) at
(t, r) and receive(m) at (t′, r′). Because the propagation delay of m is at least x clock-ticks and
the clock-skew is at most y, we have r′ ≥ (r− y) + x and therefore that r′ > r ≥ t if x− y > 0.
Rule 3 is applied to timestamp the receive event, yielding t′ = min(max(x, t) + 1, r′), where
x was the value of the logical clock before receiving m. Because max(x, t) + 1 > t and r′ > t,
we have t′ > t and therefore that S(receive(m)) > S(send(m)).

Solution:
(An aside: Changing Rule 1 to Li = max(Li + 1, Ri) creates an algorithm that always respects
the global happens-before ordering (regardless of real-time clock synchronization), and also lets
each computer’s Lamport clock approximate its real-clock, if all the clocks in the system are
approximately-synchronized and the real-clocks are sufficiently granular. Neat!)
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