Name:

Operating Systems
V22.0202 Spring 2010

Midterm Exam
ANSWERS

1. True/False (10 points). Circle the appropriate choice.

(a)
(b)
()
(d)
(e)

(f)

T A process is a program in some state of execution.
F A physical address indicates a block on the disk where data can be found.
T The memory bus is a set of wires running between the CPU and main memory.

F A controller is the portion of the OS responsible for communicating with an 1/0O
device.

F The Not Frequently Used (NFU) page replacement algorithm keeps a precise count
of the number of times that a page has been referenced.

T In a system where lottery process scheduling is used, efficient use of the CPU
can be increased by allocating more “lottery tickets” to I/O-bound processes than to
compute-bound processes.

F If all the processes on a computer are blocked, the system must be rebooted because
there is no way for any of the blocked processes to become ready.

T Upon a TLB miss, a system that uses a 4-level page table will incur more memory
references than a system that uses a single-level page table.

F In round-robin scheduling, a longer quantum means that an interrupt from the disk
controller will take longer to be handled by the OS.

F The threads within a process have their own registers, but use the same code, global
data, and stack.

2. (5 points each) Fill in the blanks provided on this sheet.

(a)

Suppose that on a machine with 16-bit addresses and 512 byte pages, the TLB contains
the following:
1{o011|0C]| 38
111|145 1D
110(0(| 19 22
01137 66
where the fields are, from left to right, the valid bit, the R bit, the M bit, the virtual
page and the page frame. The numbers are given in hex. What is the physical address
corresponding to the virtual address 194A? If that information cannot be determined
from the TLB, indicate why. (NOTE: Consider the individual bits carefully)
Since the page size is 512 bytes, the lowest 9 bits of an address is used as
the offset within a page. Thus, the remaining 7 bits of the 16-bit address
are used for the page number. The virtual address 194A hex, given above,

corresponds to the bits 0001 1001 0100 1010. Thus, the upper 7 bits are
0001100, which is 0C in hex. The top entry of the given TLB maps page OC
to page frame 38. Concatenating the seven page frame bits representing 38
hex, namely 0111000 to the lower 9 bits of the above virtual address results
in 0111 0001 0100 1010, which is 714A hex.

Answer: 714A hex

Suppose the TLB uses the NRU algorithm to evict an entry, when a page has been
referenced for which there is no TLB entry. What is the first entry in the above TLB
(from part (a)) that will be evicted? What is the second TLB entry to be evicted?
The first entry of the TLB to be overwritten is the empty one, namely the
one with the valid bit equal to zero. That would be the bottom entry of the
above TLB. According to NRU, if there are no empty entries, then pick the
entry to evict that has a zero in both the R bit and the M bit. That would
be the entry that is second from the bottom in the above TLB.

Answer: First: Bottom entry ~ Second: Second from bottom entry

3. (5 points each part) Put your answer in the blue book.

This question is about how you would implement semaphores in your first programming
project (the interrupt handler & scheduler assigment).

Suppose the first programming assignment had specified that you had to implement binary
semaphores as follows:

e The OS supports 50 binary semaphores, which are numbered 0 through 49 and are

referenced by number, not by name.

e There is a trap called SEM_DOWN that, when invoked by a running process, causes the

number of the semaphore being used to be put in the R2 register.

There is a trap called SEM_UP that, when invoked by a running process, causes the number
of the semaphore being used to be put in the R2 register.

How would you represent the 50 semaphores in your kernel.c code?

Each semaphore should have a value (0 or 1) and a queue of PIDs of the
processes that are blocked on that semaphore. Thus, each semaphore could
be represented by a struct that contained an integer value and a queue. The
50 semaphores would be represented by an array of 50 of these structs.

Describe precisely, in C code or pseudo-code, how your trap handler procedure would
handle the SEM_DOWN trap.
The trap handler would handle the SEM_DOWN trap as follows:

e If semaphores[R2].value == 1 (i.e. the value field of the R2! element

of the semaphores array is 1), then set semaphores[R2].value = 0 and
return. The current process will continue to execute.

e Else, if semaphores[R2].value == 0, the current process needs to block.
Set the state of the current process to BLOCKED, add the current pro-

cess to the end of the queue of processes that are blocked on semaphores[R2],

and call the round-robin scheduler to pick a new process to run from the
ready queue.

e Otherwise, if semaphores[R2].value is some value other than 0 or 1, this
is an error condition. The program can either print an error and exit
or handle the error in some other way (you didn’t have to consider this
case).

(¢) Describe precisely, in C code or pseudo-code, how your trap handler procedure would
handle the SEM_UP trap.

The trap handler would handle SEM _UP as follows:

e If semaphores[R2].value == 0 and the queue of processes blocked on semaphores[R2]
is empty, then set semaphores[R2].value to 1 and return. The current process
continues to execute.

e Else, if semaphores[R2].value == 0 and the queue of processes blocked on
semaphores[R2] is not empty, do not modify semaphores[R2].value. In-
stead, remove a process from the head of the queue of processes blocked on
semaphores[R2], set the state of that process to READY, put that process
on the ready queue, and return. The current process continues to execute.

e Otherwise, if semaphore[R2].value is not 0, this is an error condition.The
program can either print an error and exit or handle the error in some other
way (you didn’t have to consider this case).

4. (5 points each part) Put your answer in the blue book.

On a machine with 32-bit addresses, suppose an OS uses two-level page tables as follows:

e A first level page table has 2048 entries.
e Each second level page table has 2048 entries.

(a) What is the size of a page?
The index into the first page table requires log(2048) = 11 bits of the 32-bit
address, as does the index into the second page table. Thus, the remaining
bits, 32 - (11 + 11) = 10, are the offset into the page. The page size is 2!0 =
1024 = 1K bytes.

(b) Suppose a process has a text segment that occupies 64MB, a stack segment that occupies
128MB, and a data segment that occupies 32MB. How much space is occupied by the
page tables for that process? Your answer can be given in powers of 2, if you want, to
avoid arithmetic.

As stated in class and written on the blackboard during the exam, you were
to assume that each page table entry is 4 bytes. Since the first page table
has 2048 = 2!! entries, it occupies 2!'! x4 = 2'3 bytes.

Only the second-level page tables that are needed for the actual text, data,
and stack segments are allocated. Since each page is 2! bytes, the number of
pages needed to hold the text segment is 64MB/2'0 = 226 /210 — 216 Gimjilarly,
the number of pages needed to hold the stack segment is 128MB /210 = 227 /210 —
2!7 and the number of pages to needed hold the data segment is 32MB/2'0 =
225/210 — 215.

()

(d)

(e)

(f)

Since each second-level page table has 2048 = 2!! entries (with one entry per
page in the process), the number of second-level page tables needed for the
text segment is 216/2!1 = 25 = 32. Similarly, the number of second-level page
tables needed for the stack segment is 2!7/2!! = 26 = 64 and for the data
segment is 2!°/2'1 = 24 = 16. Thus, the total number of second-level page
tables is 32 4+ 64 + 16 = 112. Since each second-level page table contains 2048
entries of 4 bytes each, it occupies 2''x4 = 213 bytes. Thus, all the second-level
page tables occupy 112 x 2'3 bytes.

Since the first page table also occupies 22 bytes, the total amount of space
occupied by all the page tables is (112 + 1) *2!3 = 113 % 2!3. To simplify (which
you didn’t have to), this is 113 x 8K = 904K bytes.

What does each entry in the first-level page table contain?
A pointer to a second-level page table (or null).

In a two-level page table mechanism, what does each TLB entry contain? How is it
different than a TLB entry on a system with a single-level page table mechanism?

bf The structure of a TLB entry is the same for single-level page tables as for multi-level
page tables. It contains a valid bit, R bit, M bit,page number, and page frame number
and possibly other bits for protection, etc.

When a process references an address, precisely how does the MMU determine if the
page containing the referenced address is in RAM and, if so, in which page frame. Be
precise regarding 1) how the bits of the address are used and 2) the steps that the MMU
goes through.

First, the MMU checks if the page number, which is the upper 22 bits of the
address in the above system, is found in a valid entry of the TLB. If so, the
corresponding 22-bit page frame in the TLB is concatented with the lower
10 bits of the address to form the 32-bit physical address. If no valid entry
containing the page number is found in the TLB, then the top 11 bits of the
address are used as an index into the first-level page table. If the entry in
the first-level page table is a valid pointer to a second level page table, then
the next 11 bits of the address are used to index into that second level page
table. If the second-level page table entry at that index has its present bit
set to 1, then the 22-bit page frame found in the entry is used. Otherwise, a
page fault occurs.

What happens if it turns out that the page containing the referenced address is not in
memory?

The MMU issues a page fault, which is an interrupt handled by the OS. The
OS will retrieve the requested page from the disk and write it into a page
frame in memory. If necessary, a page residing in memory will need to be
evicted to make room for the incoming page.

