
Operating Systems
V22.0202 Fall 2008

Midterm Exam

Answers

1. True/False. Circle the appropriate choice.

(a) T In priority scheduling, I/O-bound processes should be given a higher priority than
CPU-bound processes in order to make more efficient use of the CPU.

(b) F All computers must have at least two CPUs, since the operating system needs to
execute at the same time as user programs.

(c) T A short quantum in a round-robin scheduler gives better response time for interactive
users but less efficient use of the CPU than a longer quantum.

(d) F In a 2GHz Pentium, the clock interrupt occurs 2 billion times a second.

(e) F The main difference between the use of test&set and the use of semaphores is that
semaphores require the OS to do the busy waiting rather than the user program.

(f) F Within a given virtual memory system, pages of varying sizes are used to avoid
wasting space within partially-filled pages.

(g) F For a machine with 32-bit addresses, the use of a two-level page table allows for a
larger virtual address space than a single-level page table.

(h) F A process is just the compiled version of a program.

(i) T A processor is generally put into kernel mode through the execution of a trap instruc-
tion. I will accept F too, since interrupts also put the processor kernel mode.

(j) T The purpose of an operating system is to manage system resources and to provide a
more convenient abstract machine for programming.

2. Multiple Choice. Circle the correct answer.

(a) If addresses are 27 bits, the size of the space that can be addressed is:

• 64KB

• 128MB

• 256MB

• 4GB

(b) If a 64TB (where TB=terabyte) address space is desired, then addresses must be at
least:

• 32 bits

• 40 bits

• 46 bits

• 64 bits

1



3. Virtual Memory. Put your (short!) answers in the blue book

(a) Suppose, on a machine with 16-bit virtual and physical addresses and a page size of 256
bytes, a process is running and the TLB contains the following:

1 32 4F

1 1A C3

1 89 22

0 42 B2

where, from left to right, the columns contain the valid bit, the virtual page number,
and the page frame number. All numbers are given in hexadecimal. If the process issues
the virtual address 1AF2 hex, what physical address (in hex) will the MMU issue? Show
your work, but without giving a long explanation.

Since a page size is 256 bytes, an offset into a page is 8 bits. That leaves 8
bits of a virtual address to identify the page number. Thus, a virtual address
is partitioned as follows:

8-bit page number 8-bit offset

Since 8 bits is two hex digits, when looking up the virtual page number for
the address 1AF2 in the TLB, the top two hex digits, 1A, are used. In the
above TLB, the corresponding page frame number is C3, so the resulting
physical address, comprised of the 8-bit page frame number and the original
8-bit offset, would be C3F2.

(b) Why are multi-level page tables often used instead of ordinary (single-level) page tables?
What is the added cost associated with using multi-level page tables?

For most processes, the number of pages that are actually allocated to store
the code, data, and stack for the process is far less than the maximum number
of pages contained in a virtual address space. In a single level page table,
the number of entries would be the number of possible pages. On the other
hand, in a two-level page table, for example, only a sufficient number of
second level page tables are required in order to contain entries for pages
that are actually allocated. Thus, there is a substantial savings in the space
occupied by a two-level page table over a single-level page table. In a three-
level page table (for very large address spaces), the space savings is even
greater.

The added cost of a multi-level page table is the additional memory refer-
ence(s) needed to access the first level page table, then a second level page
table, etc. This additional overhead is reduced substantially, though, by the
use of a TLB.

(c) Suppose there is a machine with 32-bit addresses and a two-level page table (in memory)
such that the first 10 bits of an address is an index into the first level page table and the
next 10 bits are an index into a second level page table. Suppose also that each entry

2



in the page tables is 32-bits. How much space is occupied in memory by the page tables
for a process that has 64MB of actual virtual address space allocated. Show your work
without giving a long explanation.

As specified above, a 32-bit virtual address is partitioned as follows:

10-bit index in 1st-level PT 10-bit index in 2nd-level PT 12-bit offset

Since an index into the first level or second level page table is 10 bits, there
must be 1K entries (i.e. 210) per page table. Since each page table entry is
4 bytes, a page table (either first or second level) occupies 4KB.

Because 12 bits are used to offset into a page, a page must be 4KB (i.e 212)
in size.

Since the process uses 64MB (i.e. 226 bytes) and each page is 4KB (i.e. 212

bytes), there must be 214 pages. Thus, we need a sufficient number of second
level page tables to hold 214 entries. Since each second level page table has
210 entries, we need 16 (i.e. 24) second level page tables.Therefore, because
there is one first-level page table and 16 second level page tables, the total
space occupied in memory by the page tables is (17 * 4KB) = 68KB.

4. Semaphores. Put your answers in the blue book.

Suppose you were the implementor of an operating system that provided support for semaphores.

(a) Describe how you would implement the down(S) and up(S) systems calls, where S is a
semaphore.

The down(S) system call would trap to the OS. The trap handler for the OS
would check the status of the semaphore S. If the semaphore is already 0,
then the OS would block the process and invoke the scheduler to choose a
ready process to run. If the semaphore was not 0, then the semaphore is
decremented and the the scheduler is invoked to choose a process to run (it
may be the process that performed the down(S)).

The up(S) system call would also trap to the OS. The trap handler for the OS
would check if there were any processes that were blocked on the semaphore
S. If so, it would choose one of the blocked processes, set its state to ready
and then invoke the scheduler to choose a process to run next (it may still
be the process that performed the up(S)). If there are no waiting processes,
then the value of the semaphore is incremented.

(b) How would you represent the semaphore S itself?

The value of the semaphore could be represented as an integer in memory.
Along with the integer, a list of processes that are blocked on that semaphore
would need to be stored. Thus, a semaphore could be represented as a pair:
an integer and a pointer to the head of the list of blocked processes.

(c) How would you keep track of the processes that are blocked because they performed a
down(S)?

Each time a process performs a down(S) when S is already 0, the process
(actually, just its pid) gets put on the linked list of processes blocked on S.

3



When a process performs an up(S), a blocked process on that list is removed
and added to the ready queue.

If it helps, you can give your description in terms of the simulated system from the pro-
gramming project. Be sure to account for everything that happens when a down() or up()
operation is performed.

4


