CS 3133 Foundations of Computer Science C term 2015

Solutions for the Midterm Exam

1. Give a regular expression that represents the set of strings over $\Sigma=$ $\{a, b\}$ with an even number of a 's or an odd number of b 's.

Solution:

$$
\left(b^{*} a b^{*} a\right)^{*} b^{*} \cup\left(a^{*} b a^{*} b\right)^{*} a^{*} b a^{*}
$$

(20 points)
2. Consider the following grammar G :

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow a X|b X| a \\
& Y \rightarrow Y a|Y b| a
\end{aligned}
$$

(a) Give a leftmost derivation of $a b a a b b$.
(b) Build the derivation tree for the derivation in part (1).
(c) What is $L(G)$?

Solution:

(a) The following is a leftmost derivation of $a b a a b b$:

$$
\begin{aligned}
S & \Rightarrow X Y \\
& \Rightarrow a X Y \\
& \Rightarrow a b X Y \\
& \Rightarrow a b a Y \\
& \Rightarrow a b a Y b \\
& \Rightarrow a b a Y b b \\
& \Rightarrow a b a a b b
\end{aligned}
$$

(b)

(c)

$$
L(G)=(\boldsymbol{a} \cup \boldsymbol{b})^{*} \boldsymbol{a} \boldsymbol{a}(\boldsymbol{a} \cup \boldsymbol{b})^{*}
$$

(20 points)
3. Construct a context-free grammar over the alphabet $\Sigma=\{a, b, c\}$ whose language is

$$
L=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i+k \leq j\right\} .
$$

Solution: The grammar is:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a A b|A b| \lambda \\
& B \rightarrow b B c \mid \lambda
\end{aligned}
$$

(20 points)
4. Construct two regular grammars, one ambiguous and one unambiguous, that generate the language consisting of the set of strings over $\Sigma=$ $\{a, b\}$ in which the number of a 's is divisible by three.

Solution:

Unambiguous regular grammar:

$$
\begin{aligned}
& S \rightarrow b S|a A| \lambda \\
& A \rightarrow b A \mid a B \\
& B \rightarrow b B \mid a S
\end{aligned}
$$

Ambiguous regular grammar:

$$
\begin{aligned}
& S \rightarrow b S|a A| \lambda \\
& A \rightarrow b A|a B| a C \\
& B \rightarrow b B \mid a S \\
& C \rightarrow b C \mid a S
\end{aligned}
$$

It is ambiguous because there are two different leftmost derivations for the string aaa:

$$
\begin{aligned}
S & \Rightarrow a A \\
& \Rightarrow a a B \\
& \Rightarrow a a a S \\
& \Rightarrow a a a
\end{aligned}
$$

and

$$
\begin{aligned}
S & \Rightarrow a A \\
& \Rightarrow a a C \\
& \Rightarrow a a a S \\
& \Rightarrow a a a
\end{aligned}
$$

(20 points)
5. Design a DFA that accepts the language consisting of the set of those strings over $\{a, b\}$ that do not contain the substring aaa.

Solution:

The state diagram of a DFA is

(20 points)

