Concordia University

Midterm Exam February 19, 2015

```
Your name:
StudentID:
Your signature:
```

Write all answers in this booklet. No points will be awarded for answers appearing elsewhere. Write your answers with pen, not pencil.

1. For each of the languages $L_{i}, i \in\{1,2\}$, give a regular expression R_{i}, such that $L\left(R_{i}\right)=L_{i}$.
(a) $L_{1}=\left\{w \in\{a, b\}^{*}\right.$: length of w is odd $\}$

Solution: $(a a+b b+a b+b a)^{*}(a+b)$
(b) $L_{2}=\left\{w \in\{a, b\}^{*}: w\right.$ has exactly one occurrence of $\left.a a b\right\}$

Solution: $(b+a b)^{*} a^{*} a a b(b+a b)^{*} a^{*}$
2. Let the alphabet $\Sigma=\{a, b\}$. Construct a DFA that accepts language consisting of all strings where every substring ${ }^{1}$ of four symbols has at most two b 's. For example, bbaab and $b a a b b a$ are in the language, while for example $a b b a b$ is not in the language. Give your DFA as a transition diagram.

Solution: The automaton has to remember the last three symbols read, so we need at least $2^{3}=8$ states. Each state is labelled by the three last symbols read. Note that $b b b$ can be identified with the trap-state.

This can be minimized to

[^0]3. Use the state-elimination technique to find a regular expression for the DFA A below.
\[

\rightarrow * $$
\begin{array}{r||c|c}
A & 0 & 1 \\
\hline \hline q_{0} & q_{1} & q_{2} \\
q_{1} & q_{2} & q_{0} \\
q_{2} & q_{3} & q_{1} \\
q_{3} & q_{3} & q_{3}
\end{array}
$$
\]

Solution:

Eliminating states q_{2} and q_{3} (trap state), we get:

Eliminating state q_{1}, we get:

Finally, $r=\left((0+11)(01)^{*} 1\right)^{*}$.
4. Let L be the language of those strings over $\{0,1\}$ where the number of 0 's differ from the number of 1 's by at most 5 . Prove that L is not regular.

Solution:

Suppose L is regular. Then there exists a DFA A with $L(A)=L$. Suppose A has n states. Choose $w=0^{n} 1^{n}$. Then $w \in L$. Since $|w| \geq n$, the pumping lemma tells us that w can be decomposed as $x y z$, where $|x y| \leq n,|y| \geq 1$. Therefore y must consist of one or more zeroes. The pumping lemma also tells us that $x y^{7} z$ is in $L(A)$. But $x y^{7} z$ has at least 6 more zeroes than ones (since $|y| \geq 1$), and is not in L. Therefore it cannot be that $L=L(A)$, and the assumption that L is regular is wrong.

[^0]: ${ }^{1}$ A string v is a substring of a string w, if there are strings x and y (possibly ϵ), such that $w=x v y$.

