CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE \& SOFTWARE ENGINEERING COMP 335/4 Theoretical Computer Science Winter 2015

Assignment 4

Due date: April 14, 2015, by 11:59 p.m. EDT

1. (a) Construct a Turing machine for the language

$$
\left\{x a y: x, y \in\{a, b\}^{*},|x|=|y|\right\} .
$$

(b) Construct a Turing machine for the language

$$
\left\{a^{n} b^{2 n} c^{3 n}: n \geq 1\right\}
$$

(c) Construct a Turing machine that creates a copy of its input string to the right of the input with a blank separating the copy from the original.
2. Consider a nondeterministic TM whose tape is infinite in both directions. At some time, the tape is completely blank, except for one cell, which holds the symbol $\$$. The head is currently at some blank cell, and the state is q.
(a) Write transitions that will enable the NTM to enter state p upon reading $\$$.
(b) Suppose the TM were deterministic instead. How would you enable it to find the $\$$ and enter state p ?
3. Give a complete encoding of the TM

$$
A=\left(\left\{q_{1}, q_{2}, q_{3}\right\},\left\{a_{1}, a_{2}\right\}, \delta, B,\left\{q_{3}\right\}\right)
$$

where the transition function δ is given by $\delta\left(q_{1}, a_{1}\right)=\left(q_{1}, a_{1}, R\right), \delta\left(q_{1}, a_{2}\right)=$ $\left(q_{3}, a_{1}, L\right), \delta\left(q_{3}, a_{1}\right)=\left(q_{2}, a_{2}, L\right)$.
4. For each of the languages

$$
L_{i}=\left\{w_{i}: w_{i} \notin L\left(M_{2 i}\right)\right\}
$$

and

$$
L_{2 i}=\left\{w_{i}: w_{2 i} \notin L\left(M_{i}\right)\right\}
$$

show that the language is not accepted by any TM, using a diagonalizationtype argument, as was done for the language L_{d}.
5. Prove the following statement:

A language L is recursive if and only if both L and \bar{L} are recursively enumerable.
6. Show that the language of codes for TM's M that, when started with a blank tape, eventually write a " 1 " somewhere on the tape is undecidable.
7. For each of the following instances (A, B) of Post's Correspondence Problem, determine if it has a solution or not. If you think (A, B) has a solution, give one, and if you think (A, B) does not have a solution, provide reasoning to justify your claim.
(a)

	List A	List B
i	w_{i}	x_{i}
1	11	111
2	100	001
3	111	11

(b)

	List A	List B
i	w_{i}	x_{i}
1	00	0
2	001	11
3	1000	011

