Concordia University

Introduction to Theoretical Computer Science Winter 2015

Solution to Assignment 2 - Part II

5. If L is regular, it is accepted by some DFA, say $A=\left(Q, \Sigma, \delta, s_{0}, F\right)$. We will construct an ϵ-NFA, such that $L(B)=\operatorname{third}(L(A))$. Here you need four copies of A. Formally,

$$
B=(Q \times\{1,2,3,4\}, \Sigma, \rho, F \times\{2,3,4\}),
$$

where $\rho=$
$\{(\langle p, 1\rangle, \epsilon,\langle q, 2\rangle):(p, a, q) \in \delta$, for some $a \in \Sigma\} \cup$
$\{(\langle p, 2\rangle, \epsilon,\langle q, 3\rangle):(p, a, q) \in \delta$, for some $a \in \Sigma\} \cup$
$\{(\langle p, 3\rangle, \epsilon,\langle q, 4\rangle):(p, a, q) \in \delta\} \cup$
$\{(\langle p, 4\rangle, \epsilon,\langle p, 1\rangle): p \in Q\}$
6. The following DFA describes the language L.

Call this DFA A. Clearly $L(A)=L$. More precisely, $A=\left(\left\{r_{0}, r_{1}, r_{2}\right\},\{0,1\}, \delta,\left\{r_{1}, r_{2}\right\}\right)$. Construct $B=\left(\left\{r_{0}, r_{1}, r_{2}\right\},\{0,1\}, \gamma,\left\{r_{1}, r_{2}\right\}\right)$, where

$$
\gamma(q, a)=\hat{\delta}(q, h(a))
$$

for all $q \in\left\{r_{1}, r_{2}, r_{3}\right\}$ and all $a \in\{0,1\}$.
Then $L(B)=h^{-1}(L(A))=h^{-1}(L)$. The transition diagram for B is shown below.

7. Table of distinguishabilities:

- Using the table we can construct the minimum state equivalent DFA.

8. (a) $\left\{a^{n} b^{m}: n \geq 2, m \geq 1\right\}$

To show that this automaton is minimal, we compute its table of distinguishabilities:

B	\times			
C	\times	\times		
D	\times	\times	\times	
E	\times	\times	\times	\times
	A	B	C	D

(b) $\left\{a^{n} b: n \geq 0\right\} \cup\left\{a b^{n}: n \geq 1\right\}$

To show that this automaton is minimal, we compute its table of distinguishabilities:

B	\times				
C	\times	\times			
D	\times	\times	\times		
E	\times	\times	\times	\times	
F	\times	\times	\times	\times	\times
	A	B	C	D	E

(c) $\left\{a^{n} b: n \geq 0\right\} \cup\left\{a b^{n}: n \geq 1\right\}$

To show that this automaton is minimal, we compute its table of distinguishabilities:

B	\times			
C	\times	\times		
D	\times	\times	\times	
E	\times	\times	\times	\times
	A	B	C	D

