Solution to Assignment 2 - Part II

5. If L is regular, it is accepted by some DFA, say $A = (Q, \Sigma, \delta, s_0, F)$. We will construct an ϵ -NFA, such that L(B) = third(L(A)). Here you need four copies of A. Formally,

$$B = (Q \times \{1, 2, 3, 4\}, \Sigma, \rho, F \times \{2, 3, 4\}),$$

where $\rho =$

$$\begin{split} &\{(\langle p,1\rangle,\epsilon,\langle q,2\rangle):(p,a,q)\in\delta, \text{ for some } a\in\Sigma\}\cup\\ &\{(\langle p,2\rangle,\epsilon,\langle q,3\rangle):(p,a,q)\in\delta, \text{ for some } a\in\Sigma\}\cup\\ &\{(\langle p,3\rangle,\epsilon,\langle q,4\rangle):(p,a,q)\in\delta\}\cup\\ &\{(\langle p,4\rangle,\epsilon,\langle p,1\rangle):p\in Q\} \end{split}$$

6. The following DFA describes the language L.

Call this DFA A. Clearly L(A) = L. More precisely, $A = (\{r_0, r_1, r_2\}, \{0, 1\}, \delta, \{r_1, r_2\})$. Construct $B = (\{r_0, r_1, r_2\}, \{0, 1\}, \gamma, \{r_1, r_2\})$, where

$$\gamma(q,a) = \hat{\delta}(q,h(a)),$$

for all $q \in \{r_1, r_2, r_3\}$ and all $a \in \{0, 1\}$.

Then $L(B) = h^{-1}(L(A)) = h^{-1}(L)$. The transition diagram for B is shown below.

7. Table of distinguishabilities:

	\times							
С	×	×						
D	\bigcirc	\times	\times					
Ε	×	\bigcirc	×	\times				
\mathbf{F}	×	\times	\bigcirc	×	\times			
G	\bigcirc	\times	×	\bigcirc	\times	×		
Η	×	\bigcirc	×	×	\bigcirc	×	\times	
Ι	×	\times		\times	\times	\bigcirc	×	×
	А	В	С	D	Е	F	G	Н

• Using the table we can construct the minimum state equivalent DFA.

8. (a) $\{a^n b^m : n \ge 2, m \ge 1\}$

To show that this automaton is minimal, we compute its table of distinguishabilities:

	А	В		D
Ε	×	× ×	×	\times
D	×	\times	\times	
С	\times	×		
В	\times			

(b)
$$\{a^n b : n \ge 0\} \cup \{ab^n : n \ge 1\}$$

To show that this automaton is minimal, we compute its table of distinguishabilities:

	А	В	С	D	Е
F	×	×	\times	×	\times
Е	\times	\times	\times	\times	
D	\times	\times	\times		
С	×	×	× × ×		
В	\times				

(c)
$$\{a^n b : n \ge 0\} \cup \{ab^n : n \ge 1\}$$

To show that this automaton is minimal, we compute its table of distinguishabilities:

	А	В	С	D
Е	×	\times	\times	\times
D	×	\times	\times	
С	×	\times		
В	×			