CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE \& SOFTWARE ENGINEERING

 COMP 335/4 Theoretical Computer Science Winter 2015
Assignment 2

Due date: Part I : February 16, 2015, Part II: March 2, 2015.

Part I

1. Give a regular expression for each of the languages below.
(a) $\{a a, a b, b a, b b\} \backslash\{a a, b b\}$.
(b) $\left\{a^{k} b^{m} c^{n}: k+m+n\right.$ is odd $\}$.
(c) $\left\{w \in\{a, b, c\}^{*}:\right.$ no symbol occurs twice in succession in $\left.w\right\}$.
(d) $\left\{w \in\{0,1\}^{*}: 00\right.$ occurs at most twice in $\left.w\right\}$.

Note: 00 occurs twice in 000
2. Use the state-elimination technique to find a regular expression for
(a) the DFA given by the following transition table:

$$
\begin{array}{r||c|c}
& 0 & 1 \\
\hline \hline \star q_{0} & q_{2} & q_{1} \\
q_{1} & q_{3} & q_{0} \\
q_{2} & q_{0} & q_{3} \\
q_{3} & q_{1} & q_{2}
\end{array}
$$

(b) the DFA given by the following transition table:

$$
\begin{array}{r||c|c|c}
& a & b & c \\
\hline \hline q_{1} & q_{6} & q_{2} & q_{4} \\
q_{2} & q_{3} & q_{6} & q_{6} \\
q_{3} & q_{4} & q_{5} & q_{6} \\
q_{4} & q_{2} & q_{6} & q_{5} \\
\star q_{5} & q_{6} & q_{6} & q_{6} \\
q_{6} & q_{6} & q_{6} & q_{6}
\end{array}
$$

3. Convert the following regular expressions to ϵ-NFA's.
(a) $(000)^{*}(\epsilon+011+001)(111)^{*}$
(b) $(\mathbf{0}+\mathbf{1})^{*}(\mathbf{0 0 1}+\mathbf{0 1 0}+\mathbf{1 0 0})^{*}(\mathbf{0}+\mathbf{1})^{*}$
(c) $(\mathbf{0 1}+\mathbf{1 0})^{*}+(\mathbf{0 0}+\mathbf{1 1})^{*}+(1+\mathbf{1 0}+\mathbf{1 0 0})^{*}$
4. Apply the Pumping Lemma to prove that the following languages are not regular.
(a) $\left\{a^{k} b^{n}: n=2^{k}\right\}$
(b) $\left\{a^{n} b^{m} a^{k}: n=m\right.$ or $\left.m \neq k\right\}$
(c) $\left\{a^{n}: n\right.$ is a product of two primes $\}$

Part II

5. For a string $w=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} \ldots$, define $\operatorname{third}(w)=a_{3} a_{6} a_{9} \ldots$. Then, for a language L, define $\operatorname{third}(L)=\{\operatorname{third}(w): w \in L\}$. Show that if L is regular, then $\operatorname{third}(L)$ is also regular.
Hint: Construct an ϵ-NFA from the DFA for L.
6. Let h be the homomorphism $h:\{a, b\} \rightarrow\{0,1\}^{*}$ given by $h(a)=01, h(b)=$ 011, and define $L=\left\{w \in\{0,1\}^{*}: n_{1}(w) \not \equiv 0(\bmod 3)\right\}$. Construct a DFA for $h^{-1}(L)$.
7. Draw the table of distinguishabilities for the DFA below (run the TF algorithm), and then construct the minimum state equivalent DFA.

	0	1
A	B	E
B	C	F
${ }^{*} C$	D	H
D	E	H
E	F	I
F	G	B
G	H	B
H	I	C
${ }^{*} I$	A	E

8. Find minimal DFA's for the following languages. In each case prove (!) that your DFA is minimal.
(a) $\left\{a^{n} b^{m}: n \geq 2, m \geq 1\right\}$
(b) $\left\{a^{n} b: n \geq 0\right\} \cup\left\{b^{n} a: n \geq 1\right\}$
(c) $\left\{a^{n}: n \geq 0, n \neq 3\right\}$
