CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING

COMP 335/4 Theoretical Computer Science Winter 2015

Assignment 2

Due date: Part I : February 16, 2015, Part II: March 2, 2015.

Part I

- 1. Give a regular expression for each of the languages below.
 - (a) $\{aa, ab, ba, bb\} \setminus \{aa, bb\}$.
 - (b) $\{a^k b^m c^n : k + m + n \text{ is odd}\}.$
 - (c) $\{w \in \{a, b, c\}^*$: no symbol occurs twice in succession in $w\}$.
 - (d) $\{w \in \{0,1\}^* : 00 \text{ occurs at most twice in } w\}$. Note: 00 occurs twice in 000
- 2. Use the state-elimination technique to find a regular expression for
 - (a) the DFA given by the following transition table:

	0	1
$\rightarrow \star q_0$	q_2	q_1
q_1	q_3	q_0
q_2	q_0	q_3
q_3	q_1	q_2

(b) the DFA given by the following transition table:

	a	b	c
$\rightarrow q_1$	q_6	q_2	q_4
q_2	q_3	q_6	q_6
q_3	q_4	q_5	q_6
q_4	q_2	q_6	q_5
$\star q_5$	q_6	q_6	q_6
q_6	q_6	q_6	q_6

- 3. Convert the following regular expressions to $\epsilon\text{-NFA's.}$
 - (a) $(000)^*(\epsilon + 011 + 001)(111)^*$
 - (b) $(0+1)^*(001+010+100)^*(0+1)^*$
 - (c) $(\mathbf{01} + \mathbf{10})^* + (\mathbf{00} + \mathbf{11})^* + (\mathbf{1} + \mathbf{10} + \mathbf{100})^*$

- 4. Apply the Pumping Lemma to prove that the following languages are not regular.
 - (a) $\{a^k b^n : n = 2^k\}$
 - (b) $\{a^n b^m a^k : n = m \text{ or } m \neq k\}$
 - (c) $\{a^n : n \text{ is a product of two primes}\}$

Part II

5. For a string $w = a_1 a_2 a_3 a_4 a_5 a_6 a_7 \dots$, define $third(w) = a_3 a_6 a_9 \dots$. Then, for a language L, define $third(L) = \{third(w) : w \in L\}$. Show that if L is regular, then third(L) is also regular.

Hint: Construct an ϵ -NFA from the DFA for L.

- 6. Let h be the homomorphism $h : \{a, b\} \to \{0, 1\}^*$ given by h(a) = 01, h(b) = 011, and define $L = \{w \in \{0, 1\}^* : n_1(w) \not\equiv 0 \pmod{3}\}$. Construct a DFA for $h^{-1}(L)$.
- 7. Draw the table of distinguishabilities for the DFA below (run the TF algorithm), and then construct the minimum state equivalent DFA.

	0	1
$\rightarrow A$	B	E
B	C	F
* C	D	H
D	E	H
E	F	I
* F	G	B
G	H	B
H	I	C
* I	A	E

- 8. Find minimal DFA's for the following languages. In each case prove (!) that your DFA is minimal.
 - (a) $\{a^n b^m : n \ge 2, m \ge 1\}$
 - (b) $\{a^n b : n \ge 0\} \cup \{b^n a : n \ge 1\}$

(c)
$$\{a^n : n \ge 0, n \ne 3\}$$