Assignment 1

Due date: Tuesday February 3, 2015, by 23:59 p.m. EST

1. The *reversal* of a string w, denoted by w^R , is the string "spelled backwards". For example $(cat)^R = tac$. Reversal is defined inductively as follows:

$$\epsilon^R = \epsilon, (wa)^R = a(w^R).$$

(Here a is a symbol in the alphabet Σ , and w is a string in Σ^* .)

Let $u, v \in \Sigma^*$. Prove that

$$(uv)^R = v^R u^R.$$

Hint: Use induction on |v|.

- 2. Let $\Sigma = \{a, b\}$. For each of the languages below, give an example of a string in the language, and a string not in the language.
 - (a) $\{w \in \Sigma^* : w = uu^R u, \text{ for some } u \in \Sigma^2\}$
 - (b) $\{w \in \Sigma^* : ww = www\}$
 - (c) $\{w \in \Sigma^* : uvw = wvu, \text{ for some } u, v \in \Sigma^*\}.$
 - (d) $\{w \in \Sigma^* : www = uu, \text{ for some } u \in \Sigma^*\}.$

3. Construct a DFA for each of the following languages.

- (a) $\{w \in \{a, b\}^* : bb \text{ appears at most once as a substring of } w\}$
- (b) $\{w \in \{a, b\}^* : bab \text{ is not a substring of } w\}$
- (c) The set of strings that either begin or end (or both) with *ab*.
- (d) $\{w \in \{a, b\}^* : w \text{ contains an odd number of } a's \text{ and ends in at least two } b's\}$

Give your DFA's as transition diagrams.

4. Let $L = \{w \in \{0,1\}^* : w \text{ has an odd no. of 1's }\}$, and let A be the DFA with tabular representation:

Prove that L = L(A). *Hint:* Do the $L(A) \subseteq L$ part of the proof by induction on the the length of the string processed by A. You need a mutual induction with a claim for state p and a claim for state q.

- 5. Construct an NFA for each of the following languages.
 - (a) The set of strings over $\{0, 1, \ldots, 9\}$, such that the final digit has not appeared before
 - (b) The set of strings over {0, 1}, such that there are two 0's separated by a number of positions that is a multiple of 4. Note that 0 is an allowable multiple of 4.
- 6. Let $\Sigma = \{a, b\}$.
 - (a) Construct an NFA that accepts the strings in Σ^* where at least one of the last two symbols is an a.
 - (b) Convert your NFA to a DFA using the subset construction. Give the DFA both in tabular form and as a transition diagram.
- 7. Let $\Sigma = \{0, 1\}$. Design ϵ -NFA's for the following languages.
 - (a) The set of string that consists of either 01 repeated one or more times or 010 repeated one or more times.
 - (b) The set of strings such that at least one of the last ten positions is a 1.