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1. The reversal of a string w, denoted by wR, is the string “spelled backwards”.
For example (cat)R = tac. Reversal is defined inductively as follows:

ϵR = ϵ, (wa)R = a(wR).

(Here a is a symbol in the alphabet Σ, and w is a string in Σ∗.)

Let u, v ∈ Σ∗. Prove that
(uv)R = vRuR.

Hint: Use induction on |v|.

Solution:

By induction on length of v,

Basis: if |v| = 0 then v = ϵ, and (uv)R = (uϵ)R = (u)R = uR = ϵuR = ϵRuR.

IH: If |v| = n we have (uv)R = vRuR

IS: Now we show that if |v| = n+ 1 then the claim in the inductive hypothesis
is also true.

|v| = n+ 1 ⇒ v = xa, where |x| = n and a ∈ Σ.

Then (uv)R = (uxa)R = a(ux)R = a(xRuR) = (axR)uR = (xa)RuR = vRuR.



2. Let Σ = {a, b}. For each of the languages below, give an example of a string in
the language, and a string not in the language.

(a) L1 = {w ∈ Σ∗ : w = uuRu, for some u ∈ Σ2}
Solution:

w = aaaaaa ∈ L1, since u = aa ⇒ w = uuRu

w = aa /∈ L1, since @u ∈ Σ2 such that w = aa = uuRu

(b) L2 = {w ∈ Σ∗ : ww = www}
Solution:

w = ϵ ∈ L2, since ww = ϵ = www

w = aa /∈ L2, since ww = aaaa ̸= aaaaaa = www

(c) L3 = {w ∈ Σ∗ : uvw = wvu, for some u, v ∈ Σ∗}.
Solution:

w = ab ∈ L3, since u = ab, v = aba ⇒ uvw = ababaab = wvu.

L3 = Σ∗, since for any w, we can choose u = w and v = ϵ.

(d) L4 = {w ∈ Σ∗ : www = uu, for some u ∈ Σ∗}.
Solution:

w = aa ∈ L4, since u = aaa ⇒ www = aaaaaa = uu.

w = a /∈ L4, since www = aaa and @u such that uu = aaa.



3. Construct a DFA for each of the following languages.

(a) {w ∈ {a, b}∗ : bb appears at most once as a substring of w}
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(b) {w ∈ {a, b}∗ : bab is not a substring of w}
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(c) The set of strings that either begin or end (or both) with ab.
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(d) {w ∈ {a, b}∗ : w contains an odd number of a′s and ends in at least two b′s}
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Give your DFA’s as transition diagrams.
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4. Let L = {w ∈ {0, 1}∗ : w has an odd no. of 1’s }, and let A be the DFA with
tabular representation:

A 0 1

→ p p q

⋆ q q p

Prove that L = L(A). Hint: Do the L(A) ⊆ L part of the proof by induction
on the the length of the string processed by A. You need a mutual induction
with a claim for state p and a claim for state q.

Solution:

To prove w ∈ L(A) ⇒ w ∈ L we use an induction on length of w. We claim
that

(1) If δ̂(p, w) = p, then w has even number of 1’s.

(2) If δ̂(p, w) = q, then w has odd number of 1’s.

Basis: |w| = 0 then w = ϵ, so obviously (1) is true. Also, it is clear that
δ̂(p, ϵ) = p ̸= q, so (2) is vacuously true.

IH: (1) and (2) are true for any string w of length n.

IS: Now prove (1) and (2) for w = xa, where |x| = n and a ∈ Σ.

(1): If δ̂(p, xa) = p then δ̂(p, x) is p and a = 0 or q and a = 1, as can be seen
from the transition diagram of A.

If δ̂(p, x) = p then by the IH (1), the string x has even number of 1’s. Therefore
w = x0 which has even number of 1’s.

If δ̂(p, x) = q then by the IH (2), the string x has odd number of 1’s, so w = x1
has even number of 1’s.

(2): If δ̂(p, xa) = q then δ̂(p, x) is p and a = 1 or q and a = 0, as can be seen
from the transition diagram of A.

If δ̂(p, x) = p then by the IH (1), the string x has even number of 1’s. Therefore
w = x1 which has odd number of 1’s.

If δ̂(p, x) = q then by the IH (2), the string x has odd number of 1’s, so w = x0
has odd number of 1’s. This completes induction.

For the other direction, we have:

w ̸∈ L(A) ⇒ δ̂(p, w) = p

⇒ w has even number of 1’s

⇒ w ̸∈ L

So it never ends in a final state with an even number of 1’s. Therefore, this
direction is also proved, that is L ⊆ L(A).



5. Construct an NFA for each of the following languages.

(a) The set of strings over {0, 1, . . . , 9}, such that the final digit has not ap-

peared before
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(b) The set of strings over {0, 1}, such that there are two 0’s separated by a
number of positions that is a multiple of 4. Note that 0 is an allowable
multiple of 4.
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q3

q3

q2
0 0

0, 1
0, 1

0, 10, 1

0, 1 0, 1

6. Let Σ = {a, b}.

(a) Construct an NFA that accepts the strings in Σ∗ where at least one of the
last two symbols is an a.
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(b) Convert your NFA to a DFA using the subset construction. Give the DFA

both in tabular form and as a transition diagram.
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a b

→ A C B
B D C
C D E

∗D D E
∗E D B

A = {q0}
B = {q0, q2}
C = {q0, q1, q2}
D = {q0, q1, q2, q3}
E = {q0, q2, q3}

7. Let Σ = {0, 1}. Design ϵ-NFA’s for the following languages.

(a) The set of string that consists of either 01 repeated one or more times or

010 repeated one or more times.
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(b) The set of strings such that at least one of the last ten positions is a 1.
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