COMP 335 – Introduction to Theoretical Computer Science

Solution to Assignment 3

- 1. Let L be any CFL. Then, we know that there is a context-free grammar $G = (V, \Sigma, S, P)$ that generates L. Using G, we obtain another CFG $G' = (V, \Sigma, S, P')$ such that if P includes the production $X \to$ "whatever", then P' includes the corresponding production for variable X in which the right-hand side is the reverse of "whatever". It is easy to see that G' generates L^R , which means the language L^R is context-free. For this, let w be any string in L. Since L(G) = L, we know that there is a sequence of k derivations $(S \Rightarrow^{i_1} \Rightarrow \cdots \Rightarrow^{i_k} w)$ in G that generates w. This implies that the string w^R could be dreived by the corresponding k sequence of derivations in G' (that is, $S \Rightarrow^{i_1} \Rightarrow \cdots \Rightarrow^{i_k} w^R$), which was to be shown.
- This is yet another normal form for context-free gramamrs which can be obtained from Chomsky normal form. First note that productions of the form A → BC in Chomsky normal form (CNF) are also allowed in G. Also, productions of the form A → a in CNF can be replaced by the three productions: (1) A → aV₁V₂, (2) V₁ → λ, and (3) V₂ → λ, in which V₁ and V₂ are new variables.
- 3. We will show that the languages (1), (2) and (5) are context-free, while languages defined in aprts (3) and (4) are not.
 - (a). $S \rightarrow AB$ $B \rightarrow aCa \mid bCb$ $C \rightarrow aCa \mid bCb \mid A$ $A \rightarrow aa \mid ab \mid ba \mid bb$
 - (b). $S \to aSa \mid bSb \mid a \mid b \mid \lambda$
 - (c). Suppose L_3 is CF. Then since it is infinite, we can apply the pumping lemma for CFL's. Let m be the integer in the P.L. Consider the string $w = a^{m+2}b^{m+1}c^m$ in L, whose size $|w| = 3m+3 \ge m$. We have the following possible scenarios consider for substrings u, v, x, y, z in the P.L.

<- m+2 -><- m+1 -><- m -> w= a.....ab.....bc....c 1 v y 2 vy 3 v y 4 v У 5 v у 6 vy=a^k b^j 7 vy=b^i c^p

Case 1. $v = a^{k_1}$ and $y = a^{k_2}$, for $1 \le k_1 + k_2 \le m$. We take i = 0. This gives $w_0 \notin L_3$, since the number of a's in w_0 is not more than number of b's: i.e., $n_a(w_0) = m + 2 - k_1 - k_2 \le m + 1 = n_b(w_0)$.

Case 2. $v = b^{k_1}$ and $y = b^{k_2}$, for $1 \le k_1 + k_2 \le m$. We take i = 0. This gives $w_0 \notin L_3$, since $n_b(w_0) = m + 1 - k_1 - k_2 \neq n_c(w_0) = m$.

Case 3. $v = c^{k_1}$ and $y = c^{k_2}$, for $1 \le k_1 + k_2 \le m$. We take i = 2. This yields $w_2 \notin L_3$, since $n_c(w_2) = m + k_1 + k_2 \ge n_c(w_2) = m + 1$.

Case 4. $v = a^p$ and $y = b^q$, where $p, q \ge 1$. Taking i = 0, the number of a's in w_0 (also the number of b's) is not more than $n_c(w_0)$ (the same problem with the number of b's: $n_b(w_0) \le n_c(w_0)$.

Case 5. Similar to case 4; We have that $v = b^p$ and $y = c^q$, for p, q 0. Taking i = 2, we can see that $n_a(w_2) \le n_b(w_2)$.

Case 6: $v = a^p b^q$, for p, q 0. That is, v includes symbols a and b. In this case, taking i = 2, the string w_2 is not in L_3 since it does not have the proper pattern as v^2 includes both mixed a's and b's.

Case 7. $v = b^p c^q$, for p, q > 0. This case is similar to case 6 but b's and c's are mixed in w_2 , and hence $w_2 \notin L_3$.

We considered all possible cased of decomposition of w and obtained a contradiction, and hence L_3 is not CF.

(d). Suppose L_4 is CFL, and since it is infinite, we can apply the PL for CFLs. Let us consider the string $w = a^m b^m a^m b^m$ in L_4 whose length $|w| = 4m \ge m$. Then, by P.L., there are substrings u, v, x, y, z in Σ^* where w = uvxyz, $|vxy| \le m$, $|vy| \ge 1$, such that $w_i = uv^i xy^i z \in L_4, \forall i \ge 0$.

w= <- m -><- m -><- m -> a....ab....ba....ab....b 1 v y 2 vу 3 v y 4 v y 5 v У 6 v у 7 v у 8 vy=a^k b^j 9 vy=b^k a^j 10 vy=a^k b^p

Case 1. v and y consist of only a's. That is, $u = a^p$, $v = a^{k_1}$, $x = a^q$, $y = a^{k_2}$, $z = b^{m-p-k_1-q-k_2}b^m a^m b^m$. where $k_1 + k_2 \ge 1$ Consider w_i for i = 2: that is $w_2 = a^{m+k_1+k_2}b^m a^m b^m$. Since $k_1 + k_2 \ge 1$, then w_2 has more a's at the beginning than it has in the second part of a's. Thus $w_2 \notin L_4$.

The treatment of cases 2 to 4 is similar to case 1.

Case 5. $v = a^p$ and $y = b^q$, where p, q 0. Taking i = 0, we get $w_0 = a^{m-p}b^{m-q}a^mb^m$ which is not in L_4 .

Case 6. $v = b^p$ and $y = a^q$, where p, q 0. Taking i = 0, we get $w_0 = a^m b^{m-p} a^{m-q} b^m$ which is not in L_4 .

Case 7. $v = a^p$ and $y = a^q$, where p, q 0. Taking i = 0, we get $w_0 = a^m b^m a^{m-p} b^{m-q} \notin L_4$.

Case 8. $v = a^p b^q$; that is v includes both symbols a and b. Taking i = 2, we get w_2 which is not in L_4 since it does not have the proper pattern as a's and b's are mixed in the first part of the string w_2 .

The treatment of cases 9 and 10 are similar to Case 8, by taking i = 2.

Since for every decomposition of w, we obtained a string which was not in L_4 , we can conclude that L_4 is not CF.

(e). $S \to AB \mid BA \mid A \mid B$ $A \to aAa \mid aAb \mid bAa \mid bAb \mid a$ $B \to aBa \mid aBb \mid bBa \mid bBb \mid b$

4. A desired PDA for L_1 is given in Fig.1 and for L_2 in Fig. 2.

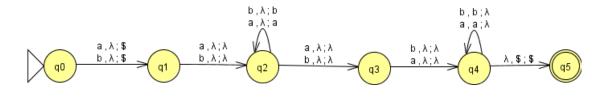


Fig. 1. A PDA for L_1

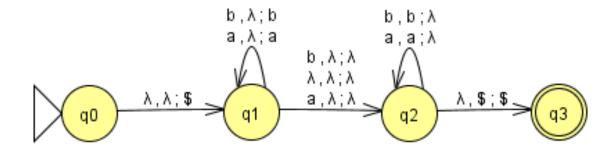


Fig. 2. A PDA for L_2