CONCORDIA UNIVERSITY Dept. of Computer Science and Software Engineering Introduction to Theoretical Computer Science COMP335 – Section AA Summer 2015

$\begin{array}{c} {\cal A}ssignment \ 2 \\ {\sf Electronic Submission Due \ on \ May \ 21} \ {\sf May \ 25th, \ 2015 \ at \ 23:59} \end{array}$

The grade for each part is 5; the maximum grade is 65.

- 1. Find regular grammars for the following languages.
 - (a) $L = \{w \in \{a, b\}^* : |n_a(w) n_b(w)| \text{ is odd}\}.$
 - (b) $L(aa+ab+ba+bb)^*$.
 - (c) The language L_2 in Assignment 1.
- 2. Give a left-linear grammar for L_1 in Assignment 1.
- 3. Consider the language $L = \{w \in \{a, b\}^* : w \text{ does not have } ba \text{ as a substring}\}.$
 - (a) Give a regular grammar G for L.
 - (b) Give a regular expression r for L.
- 4. For each of following languages, find a FA that accepts it.
 - (a) $L(((aa^*)^*b)^*)$.
 - (b) $L(ab^*a^*) \cap L((ab)^*ba)$.
- 5. Find a regular expression for the FA M with the following transitions:

$\delta(q_0, a) = \{q_0\}$	$\delta(q_0, b) = \{q_1, q_2\}$
$\delta(q_1, a) = \{q_2\}$	$\delta(q_2, a) = \{q_1\}$

where q_0 is the initial state and q_1 and q_2 are the final states.

- 6. For each of the following languages, prove or disprove that the given language is regular.
 - (a) $L_a = \{uav : uv \in L\}$, where L is a given regular language over $\Sigma = \{a, b\}$.
 - (b) $L_b = \{ w \in \{a, b\}^* : w = w^R \}.$
 - (c) $L_c = \{b^k a^n b^n : n, k \ge 0\}.$
 - (d) $L_d = \{a^n : n \text{ is a prime number}\}.$