COMP 335 - Introduction to Theoretical Computer Science

Solution to Assignment 1

Q1.1. $\Sigma=\{a, b\}$.
$L_{1}=\left\{w: w=b x y a z\right.$ and $\left.x, y, z \in \Sigma^{*}\right\}$.

Fig. 1. DFA for L_{1} defined in Q1
Q1.2. $\Sigma=\{a, b\}$.
$L_{2}=\left\{w: w \in \Sigma^{*}\right.$ and $\left.|w|=2 k+1, k \geq 0\right\}$. i.e., $|w|=1,3,5, \ldots$ for $k=0,1,2,3, \ldots$.

Fig. 2. DFA for L_{2} in Q1.

Q1.3. $\Sigma=\{a, b\}$.
$L_{3}=\left\{w:\left(\left(n_{a}(w)+n_{b}(w)\right) \bmod 3<2\right\}\right.$.
Since á' and b' are the only symbols in Σ we basically focus on the size of w - there is no requirement regarding the order of a's and b's in w. Note that $|w| \bmod 3<2$ means the length of string $|w|=0,1,3,4, \ldots, 3 \mathrm{k}, 3 \mathrm{k}+1, \ldots$.

Fig. 3. DFA for L_{3} in Q1.
Q1.4. This language includes the strings $\lambda, b a$, and every string in $\left\{a^{n} b^{m}: m, n \geq 0\right\}$ but $a b$. A DFA for L_{4} is shown in Fig. 5.

Fig. 4. A DFA for L_{4} in Q1

Q2. We use the DFA proposed above for these languages, and transformed them into generalized transitions diagrams discussed in the class. Applying the state elimination method repeatedly, we reduce each diagram and finally "read out" the regular expression that they each encode.

For $L_{1}: r_{1}=b(a+b)^{*} a(a+b)^{*}$.
For $L_{2}: r_{2}=(a+b)(a a+a b+b a+b b)^{*}$.
For $L_{3}: r_{3}=((a+b)(a+b)(a+b))^{*}(\lambda+a+b)$.
Q3. We first give a DFA M for $L=\left\{a^{n} b^{m}: m, n \geq 0\right\}$, and then change the status of the states in M from final to non-final and vice versa. This yields the DFA shown in Fig. 4 which accepts \bar{L}.

Fig. 5. A DFA for the complement of language L_{5} in Q3
Q4. We first draw the transitiin diagram of the given DFA. Using the state elimination technique, we remove all the states $\left(q_{2}\right)$ but the initial state and the only final state. We get a generalized transition diagram which has the following 3 transitions with the corressponding strings and their edges:
The label on the edge from q_{0} to q_{1} is $0+1$.
The label on the edge from q_{1} to q_{0} is 0 .
The label on the edge from q_{1} to q_{1} is $1+01$.
A regular expression which can be obtained from the above diagram would be: $r_{6}=(0+1)(1+00+01)^{*}$, where $L\left(r_{6}\right)=L(M)$.

Q5. The minimal DFA is shown in Fig. 6. Steps and details will be discussed in the tutorial.

Fig. 6. Minimized DFA

