
    Solution to Assignment 5 
 
1(a)(i) number of cache blocks (slots) = cache size / block size = 1M / 256 = 4K 

(ii) cache address = <slot#, byte#> 
number of bits in slot# = log2 (number of slots) = log2 4K = 12 
number of bits in byte# = log2 (number of bytes/slot) = log2 256 = 8 

(iii) memory address = <tag, slot#, byte#> = <block#, byte#> 
number of memory blocks = memory size / block size = 2G / 256 = 8M 
number of bits in block# = log2 (number of blocks) = log 8M = 23 
number of bits in tag = number of bits in block# - number of bits in slot# = 11 

(b)(i) 100110016 = 00010000 000000010001 000000002  
 Cache line (slot)# =  1116 

(ii) Similarly, for 200100016 , it can be buffered in cache line# 1016. 
(iii) S1 accesses memory locations (ebx + esi*4), starting with ebx = 100110016 

and esi = 0 initially and repeats 100016 times, each time esi is incremented by 
1. Hence it will access memory locations: 1001100, 1001104, ….., 10050FC. 
These are found in cache lines (whose numbers are) 11, 12, …. 50 (all in hex). 
Similarly, S2 accesses memory locations (edx + esi*4), starting with edx = 
10100016 and esi = 0 initially, and repeats 100016 times. Hence it will access 
cache lines 10, 11, …, 4F (all in hex). 

(iv) The instructions are stored starting from 200100016. Assuming all four 
instructions can be stored in a single block (and hence these instructions do 
not exceed 256 bytes in length), the cache line needed to buffer this block is 
1016. 

(c) Instruction  Memory Access    Cache Miss  
 S1   fetch instruction S1 into cache slot 10 Yes* 
    fetch data from [1001100] into slot 11 Yes 
 S2   fetch instruction S2 from cache slot 10 No 
    fetch data from [101000] into cache slot 10 Yes 
    write data to [101000] which is in slot 10 No 
 S3   fetch instruction S3 into cache slot 10 Yes* 
 S4   fetch instruction S4 from slot 10  No 
 S1 (2nd iteration) fetch instruction S1 from slot 10  No 
    fetch data from [1001104] from slot 11 No 
 S2   fetch instruction S2 from slot 10  No 
    fetch data from [101004] into cache slot 10   Yes 
    write data to [101004] which is in slot 10 No 
 S3   fetch instruction S3 into cache slot 10 Yes* 
 S4   fetch instruction S4 from slot 10  No 
 Total number of cache misses during the first two iterations = 6  
 Note: there is continual competition between operand fetch from [edx + esi*4] 

and instruction fetch during the first 256/4 = 64 iterations of this program loop, 
caused by the fact that the first data block of the former is buffered in the same 
cache slot as the instruction block. 

 The instruction misses are identified with a * in the above. There are two 
instruction misses in the first iteration, and one instruction miss in each of the 



subsequent iterations until iteration 256/4 = 64. Afterwards, the instructions will 
reside in cache block 10 without conflicting with other data accesses, since [edx + 
esi*4] afterwards will move to slot 11, 12, …etc. 

(d)(i) The total number of instructions executed = 4 * 100016 = 8K 
(ii) The total number of data operand accesses = 3 * 100016 = 6K 
(iii) The total number of cache misses for instruction fetches =  2 + 63 = 65 
(iv) In the first 256/4 = 64 iterations, operand accesses to block 10 conflicts with 

instruction accesses. Hence there are 63 extra data misses (excluding the first 
iteration that brings in the block for the first time). The total number of blocks that 
are brought into the cache is 4016*2 = 8016 =128. Hence total number of data 
misses = 128+63 = 191. 

(v) Hit ratio = (number of accesses – number of cache misses)/ number of accesses  
  r  = (8K + 6K – 191) / 14K 
(vi) Memory speedup  

= memory access time / [cache hit time + miss ratio * miss penalty] 
= 4 / [1 + (1-r)*28]. 

(e) Doubling the cache size without changing the other design parameters will simply 
increase the number of cache slots. This does not change the actual slots to buffer 
the program code and data in this case (of program execution), as the same subset 
of cache slots will be used. So the hit ratio will not be affected. 

(f) Doubling the block size also doubles the number of bytes brought into a slot. As a 
result the number of data slots used during the execution will be halved (from 8016 
to 4016). This affects the number of data misses and hence the hit ratio. 

(g) With set associative mapping with a set size of 2, there will be two slots for each 
set. Hence the conflicts between the instruction block and the data block from 
[edx + esi*4] can be avoided. This will improve the hit ratio. 

(h) Registers are directly connected to the internal bus of the CPU and controlled by 
the control unit in a datapath operation. Cache is accessed through a cache 
manager that performs the address translation and subsequent access (for 
read/write). Logically, registers are under user program control (at program 
design time). So a large number of registers will place a heavy responsibility on 
the programmer or compiler in ‘using’ these for buffering program variables, 
whereas the cache is under system control (at runtime by the cache manager in 
using temporal/spatial locality effectively). The runtime optimization can manage 
a larger buffer space than the program time optimization performed by a user.  

(i) Instruction fetch exhibits spatial locality: it is likely that instruction control flow is 
sequential, and hence instructions within a vicinity (in code space) will likely be 
used. Instruction fetch also exhibits temporal locality: often instructions form 
program loops that instructions in a loop will likely be reused in the near future. 

 
2(a)(i) A mouse has a single ‘bit’ input (when the mouse is clicked), and is infrequent 

and random. A printer involves line buffer output and has a very low bandwidth 
(date rate) requirement, compared with the rest of peripherals (except keyboard). 
Typically, the line buffer is filled by the CPU under interrupt management. A disk 
has a high data rate and its input/output data is often buffered and transferred 
directly to the memory under DMA, without involving the CPU. 



(ii) Programmed I/O involves pure software polling of device interfaces. As a result, 
the busy wait principle renders the system non-responsive to spontaneous needs 
arising from other devices. In a personal computer environment, the user expects 
spontaneous service (interactive use). As a result, it is a less appealing solution to 
manage interactive applications, for example, while the printer is printing, the 
mouse click may not respond and so on. 

(iii) Certainly interrupt I/O is most suitable for managing a mouse and to some extent 
a printer, but not for a disk. Transfer a few bytes under CPU management at a 
high data rate will consume too much CPU time unnecessarily. 

(iv) Similarly, DMA has no place in managing a mouse, which does not have much 
data at all (besides being infrequent). DMA may not be justified for printer, which 
is also usually slow. 

(b)(i) A DMA interface competes with other potential bus masters (CPU’s, other DMA 
interfaces) to become the next bus master when the bus becomes free, often by 
going through the DMAR and DMAA handshakes. If the CPU is not using the 
bus, then the DMA interface can use the bus without affecting/stalling the 
operation of the CPU. Otherwise, the CPU may be stalled from using the bus to 
access the memory. This effectively allows the DMA interface to ‘steal’ bus 
cycles away from the CPU. 

(ii) As mentioned above, if the CPU is doing internal operations, it will not be 
affected by the DMA transaction on the system bus (between a DMA interface 
and the memory). 

(iii) If a DMA interface fails to get the system bus (being delayed for too long), the 
buffer in the DMA will not be emptied soon enough for the DMA device to refill 
it. For example, a disk drive that continues to rotate may be unable to fill the 
buffer in time before the read/write head move away from the current byte(s). As 
a result, the disk transfer is affected: the drive has to wait for a complete 
revolution so that the missed data returns to the same position to continue the 
read/write transfer. 

(c)(i) This problem does a simple cost-performance tradeoff analysis. 
 Consider 10 hours of work consisting 6 hours CPU activity and 4 hours of disk 

activity. 
 $8,000 can reduce the disk time to 4/2.5 = 1.6 hours (hence total time by 24%) 
 $5,000 can reduce the CPU time to 6/1.4 = 4.3 hours (hence total time by 17%) 
 So 60% additional cost (from CPU to disk) brings (24-17)/17 < 50% additional 

performance return. As a result, the more effective improvement (cost-
performance together) choice is the CPU. 

(ii) Without considering money, the disk improvement will bring the best 
performance return. 

(iii) x/5000 = 24/17  x = 5000*24/17 for equal cost-effectiveness. 
(d)(i) If the second interrupt is not masked, then the interrupt handler of the first 

interrupt (from the disk) will be interrupted in order that the second interrupt can 
be served. 

(ii) This may be a problem if the second interrupt handler performs a function that 
interferes with the integrity of the disk transfer. For example, the second interrupt 



handler modifies the memory content involved with the disk transfer. As a result, 
the disk transfer may not be ‘atomically’ performed. 

(iii) To avoid the issues mentioned in (ii), the interrupt handler (for the disk transfer) 
should have disabled (masked) those interrupts that could potentially affect the 
correctness (atomicity) of the disk transfer. 

(e)(i) Capacity of the disk drive = 
#surfaces*#tracks/surface*#sectors/track*#bytes/sector = 5*1024*256*512 bytes 

 (ii) Average access time = average seek time + ½ revolution time 
             = 8 ms + ½ * 60 * 1000/7500 ms 
             = 8 ms + 4 ms 
 [Here I assume the problem indicates the average seek time is 8 ms, not the 

movement time from one track to the next track on a surface, otherwise, the seek 
time has to be multiplied by the average number of tracks traversed and this will 
become an unreasonably large number for the given problem specification.]  

(iii) No, it is slower, because its seek time is larger, and not compensated enough by 
the faster rotation speed. 


