
Midterm MATH 251, October 19, 2012

Justify all answers

Problem 1 [5 pt] Are the following subsets of R5 subspaces? Justify your answer.

(a) W1 :=
{
〈a1, a2, a3, a4, a5〉 : a21 + a2 = 0, a4 + a5 = 0

}
(1)

(b) W2 := {〈a1, a2, a3, a4, a5〉 : 2a2 + a3 = 0, a1 + 3a5 = 0} (2)

Problem 2 [5 pt] Find a basis for the following subspace of R5

W := {〈a1, a2, a3, a4, a5〉 : a1 − 2a2 = 0 , a3 + a4 + a5 = 0} (3)

Problem 3 [5 pt] Let V = Mat2×3(R) and consider the following subspaces:

W1 :=

{[
a 2a a+ b
c d 0

]
a, b, c, d ∈ R

}
, W2 :=

{[
f −f g
e e `

]
e, f, g, ` ∈ R

}
(4)

Find the dimensions of W1, W2, W1 +W2, W1 ∩W2. Verify that

dimW1 + dimW2 − dim(W1 ∩W2) = dim(W1 +W2) (5)

Problem 4 [5 pt] Let T : V → W be a linear transformation. Let {w1, w2, . . . , wk} be a linearly inde-
pendent subset of R(T ), (the range of T ). Prove that if v1, . . . , vk ∈ V are pre-images of the wj ’s, that is,
Tvj = wj for j = 1, . . . , k, then the set {v1, v2, . . . , vk} is linearly independent.

Problem 5 [5 pt] Let T : R2 → R3 be given by T (〈a1, a2〉) = 〈2a1, a1 +a2, 5a1−a2〉. Let β be the standard
basis of R2 and α = (〈1, 1〉, 〈1,−1〉) another basis of R2. Let γ = (〈1, 1, 1〉, 〈0, 1, 1〉, 〈0, 0, 1〉) be a basis of
R3. Compute

[T ]γβ, [T ]γα . (6)

Problem 6 [5 pt] Consider the transformation T : P3 → P3 where P3 the finite dimensional vector space
consisting of polynomials of degree up to 3.

T (p(x)) = x2p′′(x) + p(x− 1) (7)

Note: here p(x− 1) means the shift of variable, for example if p(x) = x2 + 2 then p(x− 1) = (x− 1)2 + 2 =
x2 − 2x+ 3.

1. Show that T is linear;

2. Find [T ]β where β = (1, x, x2, x3) is the standard ordered basis of P3.

Problem 7 [Bonus 3 pt] Let T : V → W and U : W → Z be two linear transformations between the
indicated vector spaces V,W,Z. Prove that N(T ) ⊆ N(UT ), where N(T ), N(UT ) denote the kernels
(null-spaces) of the indicated transformations. Give an example where the inclusion is strict.
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Solution to Problem 1 The set W1 is not a subspace because the sum of two vectors in it is not necessarily
still in the same space For example v1 =< 1,−1, 0, 0, 0 >∈ W1 and also v2 =< 2,−4, 0, 0, 0 >∈ W1, but
v1 + v2 =< 3,−5, 0, 0, 0 > is not because 32 − 5 = 4 6= 0 and thus it is not in W1.
The set W2 is a subspace:

• 0 ∈W2 because 2(0) + 0 = 0 and 0 + 3(0) = 0;

• if 〈a1, a2, a3, a4, a5〉, 〈b1, b2, b3, b4, b5〉 ∈W2 then their sum satisfies the conditions since

2(a2+b2)+(a3+b3) =

=0︷ ︸︸ ︷
2a2 + a3 +

=0︷ ︸︸ ︷
2b2 + b3 = 0 (a3+b3)+(a4+b4)+(a5+b5) =

=0︷ ︸︸ ︷
a3 + a4 + a5 +

=0︷ ︸︸ ︷
b3 + b4 + b5 = 0

(8)

• if c ∈ R and v = 〈a1, a2, a3, a4, a5〉 ∈W2 then cv = 〈ca1, ca2, ca3, ca4, ca5〉 ∈W2 because

2(ca2) + (ca3) = c(

=0︷ ︸︸ ︷
2a2 + a3) , ca3 + ca4 + ca5 = c(

=0︷ ︸︸ ︷
a3 + a4 + a5) = 0 (9)

�
Solution to Problem 2 Since a1 = 2a2 and a5 = −a3 − a4 then any vector in W has the form

< 2a2, a2, a3, a4,−a3 − a4 >= a2 < 2, 1, 0, 0, 0 > +a3 < 0, 0, 1, 0,−1 > +a4 < 0, 0, 0, 1,−1 >; (10)

so the three indicated vectors span W . They are linearly independent because setting the lhs to zero implies
a2 = 0, a3 = 0, a4 = 0 by looking at the entries 1,2,3. The dimension of the space is 3 and the basis is for
example the collection of the three vectors above. �
Solution to Problem 3 A matrix in the sum W1 +W2 has the form[

a+ f 2a− f a+ b+ g
c+ e d+ e `

]
(11)

We claim that any matrix in V = Mat2×3 can be expressed in the above form. To see it let M =[
A B C
D E F

]
. Equating the entries we have

[
a+ f 2a− f a+ b+ g
c+ e d+ e `

]
=

[
A B C
D E F

]
⇒



a+ f = A
2a− f = B
a+ b+ g = C
c+ e = D
d+ e = E
` = F

(12)



a = A+B
3

f = 2A−B
3

g = C − A+B
3 − b

c = D − e
d = E − e
` = F

(13)
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where b, e can be arbitrary. Thus the dim(W1 +W2) = dimV = 6. On the other hand M ∈W1

M = a(E11 + 2E12 + E13) + bE13 + cE21 + dE22 (14)

and we can see that the four matrices multiplying a, b, c, d are independent (setting M = 0 gives a = 0 by
looking at the 11 entry, hence b = 0, c = 0, d = 0 looking at the other entries. Thus dimW1 = 4. Similarly
M ∈W2

M = f(E11 − E12) + gE13 + e(E21 + E22) + `E32 (15)

and the same argument shows that these matrices are independent. Hence dimW2 = 4.
The intersection. We have to equate[

a 2a a+ b
c d 0

]
=

[
f −f g
e e `

]
(16)

from which we have a = 0, f = 0, c = d = e, ` = 0, b = g. So the matrices in the intersection are of the form[
0 0 b
c c 0

]
(17)

and the dimension is 2.
Thus

4 + 4− 2 = 6 (18)

as expected. �
Solution to Problem 4 Since wk are independent then the only solution to

0W =
k∑
j=1

cjwj (19)

is the trivial solution. Now, consider the similar equation

0V =
k∑
j=1

cjvj (20)

Applying T to both sides we have

0W = T0V = T

 k∑
j=1

cjvj

 by linearity
=

k∑
j=1

cjTvj =

k∑
j=1

cjwj (21)

Since the only solution of eq. (19) is the trivial one, it implies that all cj ’s are zero. Thus the equation (20)
implies c1 = 0 = . . . = ck and hence vj ’s are also independent. �
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Solution to Problem 5 We have

T < 1, 0 >=< 2, 1, 5 >= 2 < 1, 1, 1 > − < 0, 1, 1 > +4 < 0, 0, 1 >; (22)

T < 0, 1 >=< 0, 1,−1 >= 0 < 1, 1, 1 > + < 0, 1, 1 > −2 < 0, 0, 1 >; (23)

[T ]γβ =

 2 0
−1 1
4 −2

 (24)

T < 1, 1 >=< 2, 2, 4 >= 2 < 1, 1, 1 > +0 < 0, 1, 1 > +2 < 0, 0, 1 >; (25)

T < 1,−1 >=< 2, 0, 6 >= 2 < 1, 1, 1 > −2 < 0, 1, 1 > +6 < 0, 0, 1 >; (26)

[T ]γβ =

 2 2
0 −2
2 6

 (27)

�
Solution to Problem 6 The map is linear; T0 = 0 (the shift of the polynomial p(x) = 0 is p(x− 1) = 0
as well)

T ((p+ q)(x)) = x2(p′′(x) + q′′(x)) + p(x− 1) + q(x− 1) = x2p′′(x) + p(x− 1) + q(x− 1) = T (p(x)) + T (q(x))(28)

T (λp(x)) = x2λp′′(x) + λp(x− 1) = λ(x2p′′(x) + p(x− 1)) = λT (p(x)) (29)

Then:

T (1) = x2(1)′′ + 1 = 1 + 0x+ 0x2 + 0x3; (30)

T (x) = x2(x)′′ + (x− 1) = −1 + x+ 0x2 + 0x3; (31)

T (x2) = x2(x2)′′ + (x− 1)2 = 2x2 + x2 − 2x+ 1 = 1− 2x+ 3x2 + 0x3 (32)

T (x3) = x2(x3)′′ + (x− 1)3 = 6x3 + x3 − 3x2 + 3x− 1 = −1 + 3x− 3x2 + 7x3 (33)

(34)

Thus

[T ]β =


1 −1 1 −1
0 1 −2 3
0 0 3 −3
0 0 0 7

 (35)

�
Solution to Problem 7 If v ∈ N(T ) then

UT (v)
by def.

= U(T (v))
v∈N(T )

= U(0W )
by linearity of U

= 0Z (36)
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Thus v ∈ N(UT ) and hence any vector in the kernel of T is in the kernel of UT and the inclusion is proved.
To show that the inclusion can be strict, consider the example where T : R2 → R2 is the identity map (with
trivial kernel)

Tv = v , ∀v ∈ R2 , (37)

and U : R2 → R3 to be the zero transformation (i.e. U(w) = 0Z) Then N(T ) = {0R2} ⊂ N(UT ) = R2. �
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