Midterm MATH 251, October 19, 2012

Justify all answers
Problem 1 [5 pt] Are the following subsets of \mathbb{R}^{5} subspaces? Justify your answer.

$$
\begin{array}{ll}
\text { (a) } W_{1}:=\left\{\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\rangle:\right. & \left.a_{1}^{2}+a_{2}=0, a_{4}+a_{5}=0\right\} \\
\text { (b) } W_{2}:=\left\{\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\rangle:\right. & \left.2 a_{2}+a_{3}=0, a_{1}+3 a_{5}=0\right\} \tag{2}
\end{array}
$$

Problem 2 [5 pt] Find a basis for the following subspace of \mathbb{R}^{5}

$$
\begin{equation*}
W:=\left\{\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\rangle: \quad a_{1}-2 a_{2}=0, a_{3}+a_{4}+a_{5}=0\right\} \tag{3}
\end{equation*}
$$

Problem 3 [5 pt] Let $V=\operatorname{Mat}_{2 \times 3}(\mathbb{R})$ and consider the following subspaces:

$$
W_{1}:=\left\{\left[\begin{array}{ccc}
a & 2 a & a+b \tag{4}\\
c & d & 0
\end{array}\right] \quad a, b, c, d \in \mathbb{R}\right\}, \quad W_{2}:=\left\{\left[\begin{array}{ccc}
f & -f & g \\
e & e & \ell
\end{array}\right] \quad e, f, g, \ell \in \mathbb{R}\right\}
$$

Find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}, W_{1} \cap W_{2}$. Verify that

$$
\begin{equation*}
\operatorname{dim} W_{1}+\operatorname{dim} W_{2}-\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}+W_{2}\right) \tag{5}
\end{equation*}
$$

Problem 4 [5 pt] Let $T: V \rightarrow W$ be a linear transformation. Let $\left\{\underline{w}_{1}, \underline{w}_{2}, \ldots, \underline{w}_{k}\right\}$ be a linearly independent subset of $R(T)$, (the range of T). Prove that if $\underline{v}_{1}, \ldots, \underline{v}_{k} \in V$ are pre-images of the \underline{w}_{j} 's, that is, $T \underline{v}_{j}=\underline{w}_{j}$ for $j=1, \ldots, k$, then the set $\left\{\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}\right\}$ is linearly independent.

Problem 5 [5 pt] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $T\left(\left\langle a_{1}, a_{2}\right\rangle\right)=\left\langle 2 a_{1}, a_{1}+a_{2}, 5 a_{1}-a_{2}\right\rangle$. Let β be the standard basis of \mathbb{R}^{2} and $\alpha=(\langle 1,1\rangle,\langle 1,-1\rangle)$ another basis of \mathbb{R}^{2}. Let $\gamma=(\langle 1,1,1\rangle,\langle 0,1,1\rangle,\langle 0,0,1\rangle)$ be a basis of \mathbb{R}^{3}. Compute

$$
\begin{equation*}
[T]_{\beta}^{\gamma}, \quad[T]_{\alpha}^{\gamma} . \tag{6}
\end{equation*}
$$

Problem 6 [5 pt] Consider the transformation $T: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ where \mathcal{P}_{3} the finite dimensional vector space consisting of polynomials of degree up to 3 .

$$
\begin{equation*}
T(p(x))=x^{2} p^{\prime \prime}(x)+p(x-1) \tag{7}
\end{equation*}
$$

Note: here $p(x-1)$ means the shift of variable, for example if $p(x)=x^{2}+2$ then $p(x-1)=(x-1)^{2}+2=$ $x^{2}-2 x+3$.

1. Show that T is linear;
2. Find $[T]_{\beta}$ where $\beta=\left(1, x, x^{2}, x^{3}\right)$ is the standard ordered basis of \mathcal{P}_{3}.

Problem 7 [Bonus 3 pt] Let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be two linear transformations between the indicated vector spaces V, W, Z. Prove that $\mathbf{N}(T) \subseteq \mathbf{N}(U T)$, where $\mathbf{N}(T), \mathbf{N}(U T)$ denote the kernels (null-spaces) of the indicated transformations. Give an example where the inclusion is strict.

Solution to Problem 1 The set W_{1} is not a subspace because the sum of two vectors in it is not necessarily still in the same space For example $\underline{v}_{1}=<1,-1,0,0,0>\in W_{1}$ and also $\underline{v}_{2}=<2,-4,0,0,0>\in W_{1}$, but $\underline{v}_{1}+\underline{v}_{2}=<3,-5,0,0,0>$ is not because $3^{2}-5=4 \neq 0$ and thus it is not in W_{1}.
The set W_{2} is a subspace:

- $\underline{0} \in W_{2}$ because $2(0)+0=0$ and $0+3(0)=0 ;$
- if $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\rangle,\left\langle b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right\rangle \in W_{2}$ then their sum satisfies the conditions since

$$
\begin{equation*}
2\left(a_{2}+b_{2}\right)+\left(a_{3}+b_{3}\right)=\overbrace{2 a_{2}+a_{3}}^{=0}+\overbrace{2 b_{2}+b_{3}}^{=0}=0 \quad\left(a_{3}+b_{3}\right)+\left(a_{4}+b_{4}\right)+\left(a_{5}+b_{5}\right)=\overbrace{a_{3}+a_{4}+a_{5}}^{=0}+\overbrace{b_{3}+b_{4}+b_{5}}^{=0}=0 \tag{8}
\end{equation*}
$$

- if $c \in \mathbb{R}$ and $\underline{v}=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\rangle \in W_{2}$ then $c \underline{v}=\left\langle c a_{1}, c a_{2}, c a_{3}, c a_{4}, c a_{5}\right\rangle \in W_{2}$ because

$$
\begin{equation*}
2\left(c a_{2}\right)+\left(c a_{3}\right)=c(\overbrace{2 a_{2}+a_{3}}^{=0}), \quad c a_{3}+c a_{4}+c a_{5}=c(\overbrace{a_{3}+a_{4}+a_{5}}^{=0})=0 \tag{9}
\end{equation*}
$$

Solution to Problem 2 Since $a_{1}=2 a_{2}$ and $a_{5}=-a_{3}-a_{4}$ then any vector in W has the form

$$
\begin{equation*}
<2 a_{2}, a_{2}, a_{3}, a_{4},-a_{3}-a_{4}>=a_{2}<2,1,0,0,0>+a_{3}<0,0,1,0,-1>+a_{4}<0,0,0,1,-1> \tag{10}
\end{equation*}
$$

so the three indicated vectors span W. They are linearly independent because setting the lhs to zero implies $a_{2}=0, a_{3}=0, a_{4}=0$ by looking at the entries $1,2,3$. The dimension of the space is 3 and the basis is for example the collection of the three vectors above.
Solution to Problem 3 A matrix in the sum $W_{1}+W_{2}$ has the form

$$
\left[\begin{array}{ccc}
a+f & 2 a-f & a+b+g \tag{11}\\
c+e & d+e & \ell
\end{array}\right]
$$

We claim that any matrix in $V=M a t_{2 \times 3}$ can be expressed in the above form. To see it let $M=$ $\left[\begin{array}{ccc}A & B & C \\ D & E & F\end{array}\right]$. Equating the entries we have

$$
\begin{align*}
{\left[\begin{array}{ccc}
a+f & 2 a-f & a+b+g \\
c+e & d+e & \ell
\end{array}\right]=\left[\begin{array}{ccc}
A & B & C \\
D & E & F
\end{array}\right] } & \Rightarrow\left\{\begin{array}{c}
a+f=A \\
2 a-f=B \\
a+b+g=C \\
c+e=D \\
d+e=E \\
\ell=F \\
a=\frac{A+B}{3} \\
f=\frac{2 A-B}{3} \\
C-\frac{A+B}{3}-b \\
c=D-e \\
d=E-e \\
\ell=F
\end{array}\right. \tag{12}
\end{align*}
$$

where b, e can be arbitrary. Thus the $\operatorname{dim}\left(W_{1}+W_{2}\right)=\operatorname{dim} V=6$. On the other hand $M \in W_{1}$

$$
\begin{equation*}
M=a\left(E^{11}+2 E^{12}+E^{13}\right)+b E^{13}+c E^{21}+d E^{22} \tag{14}
\end{equation*}
$$

and we can see that the four matrices multiplying a, b, c, d are independent (setting $M=0$ gives $a=0$ by looking at the 11 entry, hence $b=0, c=0, d=0$ looking at the other entries. Thus dim $W_{1}=4$. Similarly $M \in W_{2}$

$$
\begin{equation*}
M=f\left(E^{11}-E^{12}\right)+g E^{13}+e\left(E^{21}+E^{22}\right)+\ell E^{32} \tag{15}
\end{equation*}
$$

and the same argument shows that these matrices are independent. Hence $\operatorname{dim} W_{2}=4$.
The intersection. We have to equate

$$
\left[\begin{array}{ccc}
a & 2 a & a+b \tag{16}\\
c & d & 0
\end{array}\right]=\left[\begin{array}{ccc}
f & -f & g \\
e & e & \ell
\end{array}\right]
$$

from which we have $a=0, f=0, c=d=e, \ell=0, b=g$. So the matrices in the intersection are of the form

$$
\left[\begin{array}{lll}
0 & 0 & b \tag{17}\\
c & c & 0
\end{array}\right]
$$

and the dimension is 2 .
Thus

$$
\begin{equation*}
4+4-2=6 \tag{18}
\end{equation*}
$$

as expected.
Solution to Problem 4 Since \underline{w}_{k} are independent then the only solution to

$$
\begin{equation*}
\underline{0}_{W}=\sum_{j=1}^{k} c_{j} \underline{w}_{j} \tag{19}
\end{equation*}
$$

is the trivial solution. Now, consider the similar equation

$$
\begin{equation*}
\underline{0}_{V}=\sum_{j=1}^{k} c_{j} \underline{v}_{j} \tag{20}
\end{equation*}
$$

Applying T to both sides we have

$$
\begin{equation*}
\underline{0}_{W}=T \underline{0}_{V}=T\left(\sum_{j=1}^{k} c_{j} \underline{v}_{j}\right) \text { by linearity } \sum_{j=1}^{k} c_{j} T \underline{v}_{j}=\sum_{j=1}^{k} c_{j} \underline{w}_{j} \tag{21}
\end{equation*}
$$

Since the only solution of eq. (19) is the trivial one, it implies that all c_{j} 's are zero. Thus the equation (20) implies $c_{1}=0=\ldots=c_{k}$ and hence \underline{v}_{j} 's are also independent.

Solution to Problem 5 We have

$$
\begin{array}{r}
T<1,0>=<2,1,5>=2<1,1,1>-<0,1,1>+4<0,0,1>; \\
T<0,1>=<0,1,-1>=0<1,1,1>+<0,1,1>-2<0,0,1>; \\
{[T]_{\beta}^{\gamma}=\left[\begin{array}{cc}
2 & 0 \\
-1 & 1 \\
4 & -2
\end{array}\right]} \tag{24}
\end{array}
$$

$$
\begin{array}{r}
T<1,1>=<2,2,4>=2<1,1,1>+0<0,1,1>+2<0,0,1>; \\
T<1,-1>=<2,0,6>=2<1,1,1>-2<0,1,1>+6<0,0,1>; \tag{26}
\end{array}
$$

$$
[T]_{\beta}^{\gamma}=\left[\begin{array}{cc}
2 & 2 \tag{27}\\
0 & -2 \\
2 & 6
\end{array}\right]
$$

Solution to Problem 6 The map is linear; $T 0=0$ (the shift of the polynomial $p(x)=0$ is $p(x-1)=0$ as well)
$T((p+q)(x))=x^{2}\left(p^{\prime \prime}(x)+q^{\prime \prime}(x)\right)+p(x-1)+q(x-1)=x^{2} p^{\prime \prime}(x)+p(x-1)+q(x-1)=T(p(x))+T(q(x))$

$$
\begin{equation*}
T(\lambda p(x))=x^{2} \lambda p^{\prime \prime}(x)+\lambda p(x-1)=\lambda\left(x^{2} p^{\prime \prime}(x)+p(x-1)\right)=\lambda T(p(x)) \tag{29}
\end{equation*}
$$

Then:

$$
\begin{array}{rcl}
T(1) & =x^{2}(1)^{\prime \prime}+1 & =1+0 x+0 x^{2}+0 x^{3} ; \\
T(x) & =x^{2}(x)^{\prime \prime}+(x-1) & =-1+x+0 x^{2}+0 x^{3} ; \\
T\left(x^{2}\right) & =x^{2}\left(x^{2}\right)^{\prime \prime}+(x-1)^{2}=2 x^{2}+x^{2}-2 x+1 & =1-2 x+3 x^{2}+0 x^{3} \\
T\left(x^{3}\right)=x^{2}\left(x^{3}\right)^{\prime \prime}+(x-1)^{3}=6 x^{3}+x^{3}-3 x^{2}+3 x-1 & =-1+3 x-3 x^{2}+7 x^{3} \tag{33}
\end{array}
$$

Thus

$$
[T]_{\beta}=\left[\begin{array}{cccc}
1 & -1 & 1 & -1 \tag{35}\\
0 & 1 & -2 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 7
\end{array}\right]
$$

Solution to Problem 7 If $\underline{v} \in \mathbf{N}(T)$ then

$$
\begin{equation*}
U T(\underline{v}) \stackrel{\text { by def. }}{=} U(T(\underline{v})) \stackrel{\underline{v} \in \mathbf{N}(T)}{=} U\left(\underline{0}_{W}\right) \stackrel{\text { by linearity of } U}{=} \underline{0}_{Z} \tag{36}
\end{equation*}
$$

Thus $\underline{v} \in \mathbf{N}(U T)$ and hence any vector in the kernel of T is in the kernel of $U T$ and the inclusion is proved. To show that the inclusion can be strict, consider the example where $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is the identity map (with trivial kernel)

$$
\begin{equation*}
T \underline{v}=\underline{v}, \quad \forall \underline{v} \in \mathbb{R}^{2}, \tag{37}
\end{equation*}
$$

and $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ to be the zero transformation (i.e. $U(\underline{w})=\underline{0}_{Z}$) Then $\mathbf{N}(T)=\left\{\underline{0}_{\mathbb{R}^{2}}\right\} \subset \mathbf{N}(U T)=\mathbb{R}^{2}$.

