Principles of Programming Languages

Dr.C.Constantinides

COMP 340

COMP348
Principles of Programming Languages
Fall term 2015

C. Constantinides, Ph.D., P.Eng.

Department of Computer Science and Software Engincering
Concordia University

August 4, 2015

Contents

I Logic Programming with Prolog 17
1 Clauses and queries 19
1.1 Introduction to data types 19
1.2 Data types in Prologo 19
1.3 Facts . . . 0 o 20
1.4 Procedures 21
L. ATty © oo 22
1.6 Queries. . . . L 22
1.7 Rules . . o 25
1.8 Anonymous variables L0000 32
1.9 Ground vs. non-ground queries 32
1.10 The inferencing processo 33
1.11 Unification and resolution oo 33
1.12 Qualifiers e 43
1.13 Arithmetic operators 44
1.14 Relational and logical operators Lo 45
2 Lists 1 47
2.1 Clauses and lists 48
2.2 Controlling backtracking with “cut’™ o000 56
2.3 List construction with findall 58

3 Finite state machines 67

3.1 Deterministic finite state machineso o000 67
3.2 Deterministic finite state machines for a regular expression 68
3.3 A logic program interpreter for deterministic FSMs .. 0 0 0 0o 000 69
4 Boolean algebra and digital gates 73
4.1 Boolean operations 73
4.2 Evaluating Boolcan expressions L0 L0000 oo 76
IT Functional Programming with Common Lisp (CL) 79
5 Lists II 81
5.1 Expressions and functions L Lo 82
5.2 Prohibiting expression evaluationo 0oL 83
5.3 Boolean operations L 83
5.4 Constructing lists L 84
5.5 Mutabilityo 86
5.6 Accessing a list Lo 93
5.7 Predicate functionso 97
5.8 Advanced mathematical operations00 98
6 Control How 99
6.1 Variables and bindingo 100
6.2 Context and nested binding00 101
7 Functions [103
7.1 Introduction to mathematical functionso 103
7.2 Defining functionso 103
7.3 Sideeffects. . .. 0L 105
7.4 Pure functions oL 105
7.5 Referential transparencyo 106

7.6 Idempotence 107

7.7 Higher-order functions 0oL 108
7.8 Anonymous functions Lo 109
7.8.1 Equivalence between let and lambda 110

7.9 Paramcter listso 110
7.9.1 Developing variable arity functions with rest parameters 110

7.9.2 Optional parameterso 111

7.9.3 Keyword parameterso L0000 L o 112

7.10 Function composition L 114
7.11 Common built-in and predicate functions 116

8 Side effects 121
8.1 Variables and assignments00 0oL L o 121
8.2 Shared structure L 125
8.3 Control low 128
84 Blocks . . . e 130

9 Recursion 133
9.1 Higher-order recursion L. 145
9.2 From specification to code: summary and guidelines 165
9.2.1 Additional guidelines for defining functions 166

10 Structures 167
10.1 Unordered structures: Scts and bagso 167
10.1.1 Operations on sets L 168

10.1.2 Bags o o e 173

10.2 Ordered structures: Tuples L 174
11 Trees 177
12 Numbers 183
12.1 Exponentiationo 183

12.2 Cartesian system 0 0L Lo 184

12.3 Factorial of anumbero oo 185
12.4 Prime numberso 186
12.5 Greatest common divisor oL oL Lo 187
12.6 Relative primality 187
12.7 Division remaindero 0L L0 Lo 187

13 Sorting 189
13.1 Bubblesort 189
14 Searching 193
14.1 Lincar scarch oo 193
14.2 Binary searcho 194
IIT Procedural Programming with C 195
15 Functions II 197
15.1 Functions oo 197
15.2 Recursion o Lo e e 198
15.3 Global and local variables o oL 201
15.4 Variable and function modifiers o000 202
15.5 The C standard library Lo 203
15.6 Formatted outputo 204

16 Data types 207
16.1 Classes of data typeso L 207
16.2 Primitive data types 0oL 208
16.2.1 Optional specifiers: Short, long, signed and unsigned 208

16.2.2 Type conversiono 209

16.2.3 Defining constantso Lo 210

16.2.4 Constant declarations in function parameters. 210

16.3 Composite data types. o L e
16.4 Arrayso
16.5 Pointers L
16.5.1 Aliasing L
16.5.2 Constant pointers and pointers to constants
16.5.3 Pointers and arrays00 L L
16.5.4 Pointers as function parameters L.
16.5.5 Function pointers Lo
16.6 Records . . 0 o o 0 e
16.6.1 Records and pointers o
16.6.2 Records and arrays L0000 oL
16.7 Unions . . .« . o 0 e e

16.8 Enumerated data typeso
17 Memory management

18 Data structures and abstract data types I
18.1 ADTs vs. data structures
18.2 Data structures vs. data typeso

18.3 The linked list data structure

19 File I/O

IV Object-oriented programming with Java

20 Object-oriented programming with message passing [

20.1 Object creation and initialization L.

20.1.1 Order of initialization00
20.2 Field shadowing
20.3 Parameter passing 0oL
20.4 Type signatureo e e

210

217

229

231

241

245

20.5 Static features . . .
20.5.1 Static blocks

20.5.2 Initialization

21 Inheritance

of static attributes

21.1 Single vs. multiple inheritance L0000

21.2 Subeclass initialization L

21.3 Modifiers.

21.3.1 Modifiers and inheritance L L L

21.3.2 Preventing inheritance: Final classes

21.3.3 Enforcing inheritance: Abstract classes

21.4 Method overloading

21.5 Method overriding

21.6 Overriding vs. hiding

21.7 Static and dynamic type of an object00

21.8 Subtype relationshipso Lo

21.9 Compiler and run time system responsibilities00 0L L

21.10Dcsign recommendations for inheritance 0000

21.11Types of inheritance

21.12Inheritance vs. delegation L. oo Lo
21.13Interfaces L L
21.14Casting

21.15Additional examples

V Aspect-Oriented Programming with AspectJ

22 Aspects
22.1 Introduction
22.2 The building blocks:
advices

22.2.1 Join points

Join points. pointcuts and

264
264

267

274
278

309

311

312

22.3

224

22.5
22.6

22.7
22.8

22.9

22.2.2 Pointcuts 314

22.2.3 Advice . ..o 315
22.2.4 Named and unnamed pointcutso 316
22.2.5 Putting everything together: An aspect definition 317
A closer view of crosscuttingo 318
22.3.1 Implications of crosscutting L. 318
Quantification and obliviousness L oL 320
Dissection of a pointeuto 321
The join point modelo o 323
22.6.1 Call join points 324
22.6.2 Call to constructor join points L. 327
22.6.3 Call join points in the presence of inheritance 327
22.6.4 Reflective information on join points with thisJoinPoint 330
22.6.5 Multiple pointcutso 331
22.6.6 Exccution join pointso 333
22.6.7 Constructor execution join points 335
22.6.8 Call vs. exccution join points oL 335
22.6.9 Exception handling join points oL 342
22.6.10 Lexical structure join pointso oL 342
22.6.11 Object initialization join points 342
22.6.12 Class initialization join points 346
22.6.13 Control flow join points oo 346
22.6.14 Field access join pointso 348
22.6.15 Conditional test join points oL 354
Arvound advice L 354
Advice precedence ... L L L Lo L 362

22.8.1 Precedence rules among advices within the same aspect 363

22.8.2 Precedence rules among advices from different aspects 372

Introducing state and bechavior 00000000 375
o
22.9.1 Introducing static featureso 375

VI

23

22.9.2 Introducing instance features I. o000 377

22.9.3 Introducing behavior through an interface implementation 378
22.10Context passing 380
22.10.1 Sclf and target join pointso 380
22.10.2 Introducing instance features IIo 380
22.10.3 Argument join points L. 383
22.10.4 Combining advice precedence and context passing 384
22.10.5 Advice exccution join points oL 386
22. 11 Privileged aspectso 388
22.11.1 Combining context passing and privileged aspect behavior 388

22.11.2 Combining introductions, context passing, and privileged aspect be-

havior 391
22.12Multiple aspects L L L e e 396

22.12.1 Combining context passing, privileged aspect behavior and multiple

aspects L L L e e 399
22.13Reusing pointcuts: Abstract aspectso 402
22.13.1 Reusing concrete pointeuts o 0oL 0oL oo 402
22.13.2 Reusing abstract pointcutso 402
22.141In retrospect: Final words by E. W. Dijkstra 405
22.15The thisJoinPoint APT oo o 405
22.15.1thisJoinPoint on call(* Server.connect(..)) 406
22.15.2thisJoinPoint on execution(* Server.connect(..)) 407
Multiparadigm Programming with Ruby 409
Object-oriented programming with message passing II 411
23.1 Variables and aliasingo 411
23.2 Chain and parallel assignment statementso 412
23.3 Arrays . ..o 413
23.4 Associative arrayso 414

10

23.5 Classes . . o o o s, 416

23.6 Objects . . . o o e 417
23.7 Inheritanceo 420
23.8 Object extensionso 421
23.9 Control flow 421
23.9.1 Single selectiono 421

23.9.2 Multiple selectiono 423

23.9.3 Repetition o oo Lo e 424
23.10Regular expressions Lo Lo 425
23.11TAccess control Lo 427
23.12The interactive Ruby shell . . . 0 0000000000 429

24 Modules 431
24.1 Modules as namespaces Lo e e 431
24.2 Modules as mixing L 432
24.3 Additional examples L 434
25 Introspection 437
25.1 What objects does the system contain?o 438
25.2 Contents and behaviors of objects 000000 438
25.3 The current class hicrarchy00 439

VII Functional Object-Oriented Programming with Common

Lisp Object System (CLOS) 441
26 Object-oriented programming with generic functions 443
26.1 Classes and objects . . . o o o 0oL 443
26.1.1 Generic functions and methodso 446

26.1.2 Auxiliary methods oL Lo 446

26.2 Inheritance and method combination 0000 450)

11

27 Data structures and abstract data types 11
27.1 The Stack ADT . . . o 0 0000 o
27.2 The Queue ADT

28 Bibliography and online resources

12

List of Figures

1.1
1.2

3.1
3.2

4.1

[
—

7.1

8.1
8.2

11.1
11.2
11.3

16.1
16.2
16.3

18.1

22.1
22.2
22.3

An example family genealogy tree.00 00000 21
Directed graph. Lo 39
An example finite state machine.00 0000 68
A deterministic finite state machine.00 00000 69
Digital circuit for the expression (z X ¢')+y. L. 76
List representations. Lo Lo 86
Example of function composition.00 114
Shared structure - Part 1 of 2. o 127
Shared structure - Part 2 0f 2.o 128
Binary tree. 178
A binary tree of height 3.. 0 0000 179
Binary tree. . . . oL o 182
An initial illustration of pointers.o Lo 213
Hlustration of pointers. L 214
A pointer to arccord. 225
The creation of a linked list. o000 00000 238
Crosscutting: Scattering and tangling. 319
Quantification and obliviousness. L oL 321
A dissection of a pointeut. 322

13

224
22.5
22.6
22.7
22.8
22.9

23.1
23.2

26.1

27.1

A disscction of a call join point. o oo 322

Classes Human and Bladerunner. v v i 332
Calls and executions. 337
Classes Dog and Collie. 338
Classes Point and ColoredPoint. 344
Around advice. 359
The interactive Ruby shell (1).. .. 00000000 430
The interactive Ruby shell (2). 430
Multiple inheritance.o Lo 452
UML class diagram representation of class stack. 458

14

List of Tables

17.1

19.1
19.2

21.1

22.1
22.2
22.3
224
22.5
22.6
22.7

Memory management functions and their corresponding descriptions. 233
File functions and their corresponding descriptions. 243
String literals and their corresponding modes.0 243
Demonstrating explicit casting. oL 276
Join point signatures - Tof 3.o oo 324
Join point signatures - 2 ot 3.o 325
Join point signatures - 3of 3.o 0oL 326
Examples of call join points. 328
Examples of constructor call join points.00 328
Examples of lexical structure join points. 343
Examples of control flow join points. L oL 347

15

16

Part 1

Logic Programming with Prolog

17

18

Chapter 1

Clauses and queries

1.1 Introduction to data types

A data type is a classification of the kind of data that can be held by a variable. Examples
include numeral types (such as integers, or real numbers), and boolean types (can only
assume the values of true or false). Every programming language has data types and ways

of combining and abstracting them. For any data type, we are concerned with:

1. The values of the type.
2. The operations on that type.

3. How the values are represented.

Data types can be simple or composite. Examples of simple data types include booleans,
numerals, or symbols (sequences of characters). An example composite data type is the list

(sce Chapter 2: Lists).

1.2 Data types in Prolog

Prolog’s single data type is the term. A term can be an atom (begins with a lower-case

letter),

i

a number (can be an integer or a float), a variable (begins with an upper-case letter),

or a compound term (composed of an atom called a functor and a number of arguments

19

which arc themselves terms).

For example, consider the binary (of order 2) relation likes over the set of all people. One such
instance would be Noodles likes Deborah. Using words is just one example we can express
relations. We can re-write this instance in Prolog syntax as likes(noodles, deborah).
Note a) the lack of capitalization, and b) the period at the end. The sentence is a proposition
that we consider to be true and we refer to it as a fact (see next section). The compound
term likes(noodles, deborah). includes the functor likes and the arguments noodles
and deborah which are separated by commas and enclosed in a pair of round brackets. The

number of arguments of a compound term is called the arity of the term.

1.3 Facts

We will use a running example to express the meaning and constraints of data as well as to
construct queries over their representation in order to obtain information. A Prolog program
consists of assertions (clauses). These are divided into facts and rules. Facts are proposi-

tions which are taken to be true. We will discuss rules in a subsequent section.

We will start with a discussion about family trees. Consider an example family gencalogy

tree shown in Figure 1.1. The clause

parent(peter, daphne) :- true.

can be simplified to

parent(peter, daphne).

and can rcad as “Peter is a parent of Daphne.” The proposition can be regarded as an

instance of the binary predicate parent(X, Y) and is obtained by substituting Peter for X

and Daphne for Y.

20

\ Tom W Sandra \ \ Michael W Eve \

\ Adam \ \ Helen Andrew\ \ John \

Judy = Mark

| Roger | | Jim | | Janis

Figure 1.1: An example family genealogy tree.
1.4 Procedures

A procedure consists of onc or more clauses where cach clause defines a certain relation
between its arguments. We will adopt the Prolog programming language to model and
process clauses. A Prolog program consists of a collection of procedures. For example, the

following program segiment

parent(tom, adam).
parent(tom, helen).
parent (sandra, adam).
parent(sandra, helen).
parent (michael, andrew).
parent(michael, john).
parent(eve, andrew).
parent(eve, john).
parent(helen, mark).
parent (andrew, mark).

parent (judy, roger).

21

parent (judy, jim).
parent(judy, janis).
parent (mark, roger).
parent (mark, jim).
parent(mark, janis).
parent(janis, daphne).

parent (peter, daphne).

defines procedure parent specifying a relationship between its two arguments. The procedure
consists of 18 clauses (all of which are facts). Note the dot (.) which signifies the end of a

clause. The clauses constitute a knowledge base or (declarative) database.

1.5 Arity

The number of arguments in a term is called its arity and it is usually indicated with the
suffix “/” followed by the a number that indicates the arity. For example, our gencalogy
database defines parent/2. Note that terms that have the same name but different arities

are treated as different.

1.6 Queries

Is Peter a parent of Daphne? We can codify this question into a query. The Prolog repre-

sentation of this query!' is as follows:
?7- parent(peter, daphne).
to which the Prolog system will respond

Yes

'The question mark (?) is the prompt of the Prolog system.

22

implying that it has been successful in obtaining a fact which satisfies the query. This implies

that the query has been successfully matched to a given fact.

The family tree of Figure 1.1 is codified into a collection of facts as shown below:

man (tom) .

man (michael) .

man (adam) .

man (andrew) .
man(john) .

man (mark) .

man (roger) .

man (jim) .

man (peter) .

woman (sandra) .

woman (eve) .

woman (helen) .

woman (judy) .

woman (janis) .

woman (daphne) .

parent (tom, adam).
parent(tom, helen).
parent(sandra, adam).
parent (sandra, helen).
parent(michael, andrew).
parent (michael, john).
parent(eve, andrew).
parent(eve, john).
parent(helen, mark).

parent (andrew, mark).

23

parent (judy, roger).
parent (judy, jim).
parent (judy, janis).
parent (mark, roger).
parent(mark, jim).
parent (mark, janis).
parent(janis, daphne).

parent(peter, daphne).

Note that even though we are flexible in deciding the format of a fact, we must ensure that
all facts denoting the same relation are consistent. In this example, we have decided to
follow the convention that parent (X, Y) will denote the relation “X is the parent of Y.”

This means that parent (tom, adam) and parent(helen, tom) arc not consistent.

Variables can be used in queries (and must always start with a capital letter) to find all values
which can be substituted for, in order to make the clause true. On the fact parent(peter,
daphne), a new question can be formed: “Who is a parent of Daphne?” which can be

codified into a query as follows:

?7- parent(X, daphne).

to which the Prolog system will respond
X = janis

In recaching this response, Prolog scarches the database starting from the top to sce under
what conditions the query can be satisfied, i.e. whether a value for X exists which can result

in a match.

The response we obtain is a correct answer but we know that it is not complete according
to our collection of facts, since Daphne has two parents. Prolog allows an interaction during
a query. We can now ask “Arc there more matches?” With the semicolon symbol (;) we

instruct the Prolog system to continue its search.

24

7- parent (X, daphne).

X = janis ;

X

peter
“Are there still more matches?”

?7- parent(X, daphne).
X

janis ;

X = peter ;

No

The response No indicates that this is the system’s final response, i.e. there are no (more)

matches.

In a similar fashion to the semicolon symbol during an interaction with the Prolog system,

a period symbol (.) indicates our intention to stop the search.

1.7 Rules

A rule is a clause described in the general form

head : — body

which reads “The head (of the rule) is true, if the body is true.”, or alternatively “The head
of the rule can succeed if the body of the rule can succeed.”. The body consists of predicates,
which are called the goals of the rule. The predicates in the body of a rule can be combined by
conjunction (logical and, denoted by comma), disjunction (logical or, denoted by semicolon),

or combinations of them. The example below
H:-P1, P2, ..., Pn.

reads that in order to prove (or show) H, we need to prove (or show) P1, and P2, and ..., and

Pn.

25

Let us extend the database with a new relation. Suppose we let p stand for the isParentOf

relation and let g stand for the isGrandParentOf relation.

We can then define ¢ in terms of p by the following formula we will call G-

G=Ya¥yVz(plrz)Apzy) = gley)

In other words, if x is a parent of z and z is a parent of y, then we conclude that x is a
grandparent of y. We can represent this in Prolog with the rule below. We use variables to
express the feature that a grandparent is a parent whose child is itself a parent. The rule

below is a compound proposition comprised by two goals:

grandparent (X, Y) :- parent(X, Z), parent(Z, Y).

The rule can succeed if parent (X, Z) and parent(Z, Y) can both succeed. More specifi-
cally, for a query to succeed, Prolog moves from left to right attempting to satisfy cach of
its goals. In this example, once and if the first goal succeeds, we move right to the next
goal, otherwise the query fails. If and once the second goal succeeds, then the query has

succeeded in finding a match. If the sccond goal fails, the query fails.

We can now pose the following question: “Is Judy a grandparent of Daphne?” The question

can be codified into the following query:

7- grandparent (judy, daphne).

to which the Prolog system will respond

Yes

This implics that Prolog has found a match for Z for which

grandparent (judy, daphne) :- parent(judy, Z), parent(Z, daphne).

can become true.

26

Consider the question: “Is Roger a grandparent of Daphne?” The query is as follows:

7- grandparent(roger, daphne).

No

Consider the question: “Who are the grandparents of Daphne?” The query is as follows:

?7- grandparent (X, daphne).

X = judy ;

X = mark ;

No

Consider the question: “Who is Helen a grandparent of 77 The query is as follows:

?7- grandparent (helen, X).

X = roger ;

X = jim ;
X = janis ;
No

We can now further extend the database: Suppose we let p stand for the isParentOf relation
and let a stand for the isAncestorOf relation. Then we can define a in terms of p by the

following formula we will call A:

A=V aVy (plr,y) — alz,y))

A=VaVyV¥z((ple z) anda(z,y)) — alx,y))

In other words, x is an ancestor of y if either x is a parent of y. or x is a parent of an ancestor
of y. We can represent this in Prolog with the rules below. We use variables to express the
feature that a onc’s parent is also one’s ancestor, as well as the parent of one’s ancestor is

also one’s own ancestor.

27

ancestor (X, Y) :- parent (X, Y).

ancestor (X, Y) :- parent (X, Z), ancestor(Z, Y).

Note that the ancestor rule is composed of a digjunction. We can combine this into a single

line, denoting the disjunction with a semicolon as

ancestor (X, Y) :- parent (X, Y); (parent(X, Z), ancestor(Z, Y)).

Consider the question: “Is Tom an ancestor of Daphne?” The query is as follows:

7- ancestor(tom, daphne).

Yes
Consider the question: “Is Tom an ancestor of Peter?” The query is as follows:

?- ancestor(tom, peter).

No
Consider the question: “Who are the ancestors of Janis?” The query is as follows:

?7- ancestor(X, janis).
= Judy ;

= mark ;

= tom ;

= gsandra ;

= michael ;

= eve ;

= helen ;

L T - B T T -

= andrew ;

=
@)

Consider the question: “Who are the ancestors of Peter?” The query is as follows:

7- ancestor(X, peter).

No

28

Note that Prolog finds no ancestors for Peter not because he has no ancestors (we know that

all humans have ancestors), but because no such facts exist in our database which define any.

Consider the question: “Who is Eve an ancestor of 7" The query is as follows:

?- ancestor(eve, X).
= andrew ;

= john ;

= mark ;

roger ;

= jim ;

= janis ;

>3 < < >3 < < >3
Il

= daphne ;

No

Suppose we let a stand for the isAncestorOf relation and let d stand for the isDescendantOf

relation. Then we can define d in terms of @ by the following formula we will call D:

D=VaVy (alz,y) = dy,z))

In other words, if x is an ancestor of y then we can conclude that y is a descendant of .
We can represent this in Prolog with the rule below. We use variables to express the feature

that the descendant of any person has that person as his or her ancestor.

descendant (X, Y) :- ancestor(Y, X).

Consider the question: “Is Jim a descendant of Michael?” The query is as follows:

?7- descendant(jim, michael).

Yes
Consider the question: “Is Peter a descendant of Michael?” The query is as follows:

7- descendant(peter, michael).

No

29

We can further extend the database by adding more rules. Suppose we let m stand for the

isMan relation, p stand for isParentOf relation and let f stand for the isFatherOf relation.

Then we can define f in terms of m and p by the following formula we will call F:
F=VaVy ((m(z)Aplz,y)) = f(z,y))

In other words, if z is a man and z is a parent of g, then we conclude that x is the father of ¥.

We can represent this in Prolog with the rule below. We use variables to express the feature

that every man who is a parent of any child is also his or her father.

father (X, Y) :- man(X), parent(X, Y).

A similar reasoning can be applied to build a rule for the isMotherOf relation.

mother(X, Y) :- woman(X), parent(X, Y).

We can now pose even more different types of questions in our system, such as: “Who is the

father of Helen?” The query is as follows:

?- father (X, helen).

X = tom
We can hit semicolon (;) to instruct Prolog to continue its search for more possible matches:

?- father(X, helen).
X = tom ;

No

There is no other match, as was expected.

30

Consider the question: “Who is Sandra the mother of 77 The query is as follows:

?- mother(sandra, X).

X = adam ;
X = helen ;
No

Supposc we let m stand for the isMan relation, let p stand for isParentOf relation and let s
stand for the wsSonOf relation. Then we can define s in terms of m and p by the following

formula we will call S:

S=Ya ¥y ((mx)Aply.x)) — s(z.y))

In other words, if x is a man and y is a parent of x, then we conclude that x is the son of .
We can represent this in Prolog with the rule below. We use variables to express the feature

that every man who has a parent, is also his parent’s son.

son(X, Y) :- man(X), parent(Y, X).

A similar reasoning can applied to build a rule for the isDaughterOf relation:

D=V vy ((w)Aply.z) = da.y)

daughter(X, Y) :- woman(X), parent(Y, X).

Consider the question: “Is Adam the son of Tom?” The query is as follows:

?- son(adam, tom).

Yes

31

Consider the question: “Who is Adam the son of 77 The query is as follows:

?- son(adam, X).

X = tom ;
X = sandra ;
No

1.8 Anonymous variables

If any parameter of a relation is not important, we can replace it with an anonymous variable

(denoted by the underscore character) as follows:

is_father(X) :- father(X, _).

is_mother(X) :- mother(X, _).

We can now pose more questions such as “Is Tom a father?” To answer this type of question,
it is important to realize that it does not matter whom Tom is the father of, as long as Tom

is found as the first term in a father fact. The query is as follows:

?- is_father(tom).

Yes

1.9 Ground vs. non-ground queries

We have so far posed many different questions on the family tree database. However, all
questions we have posed, fall into two categories. The first category are those which can
be answered by a Yes/No and can be expressed as “Is it the case that a given statement is
true?” The second category are those which can be expressed as “Under what conditions, if

any, is a given statement true?”

32

This brings us to the notion of ground and non-ground querics:

Ground queries consist only of value identifiers as parameters to the predicate
such as parent (peter, daphne). The answer to a ground query is of the form Yes/No.
The answer “Yes” means that the system has proved that the goal was true under the
given databasc of facts and rules. The answer “No” means that cither the goal was

proved false or the system was unable to prove it.

Non-ground queries contain variables as parameters such as parent (X, daphne). A non-
ground query is satisfiable relative to the program if there is a substitution for its

rariable which makes the query true.

1.10 The inferencing process

To prove that a goal is true, the inferencing process must find a chain of nference rules
and/or inference facts in the database that connect the goal to one or more facts in the
databasc. Given a goal (2, then cither () must be found as a fact in the databasc or the

inferencing process must find a fact 17 and a sequence of propositions 1%, ... %, such that:

P2 . *P]
Py —D
(2 *Pn,

The process of proving a goal is called matching.

1.11 Unification and resolution

The mechanisms of unification and resolution are vital to query evaluation.

33

Unification The process of taking two terms (one from the query and the other being a
fact or the head of a rule) and determining if there is a substitution which makes them
the same. If such a substitution exists, then one or more variables are instantiated
to reflect this. For example, parent (X, daphne) can be unified with parent(peter,

daphne) since X can be substituted for peter (in which case it is instantiated to peter).

Resolution When a term from the query has been unified with the head of a rule (or a
fact), resolution replaces the term with the body of the rule (or nothing, if a fact) and

then applies the substitution to the new query.
Given a query, Prolog scarches the database of clauses from top to bottom:

o If it finds a fact, it tries to unify the query with the fact. If successtul, one solution

has been found. If not successful, it tries the next clause.

e [f it finds a rule, it trics to unify the query with the head of the rule. If successful, the
goals of the body of the clause are treated as those queries which must be satisfied in
order for the initial query to be satisfied. If not successful, it tries the next clause in

the program.

Example 1.1. Consider the question “Who is Helen the daughter of 7”7 translated into the
query daughter(Helen, Y). Prolog will search the database from top to bottom trying to

find a clause that can be matched with the query.

The query daughter(helen, Y) will unify with the daughter(X, Y) rule, instantiating X
to helen.

Resolution will apply the substitution of the variables and produce a new rule:
daughter(helen, Y) :- woman(helen), parent(Y, helen).}

Both goals in the body of the rule have to be satisfied for the head of the rule to be satisfied.
The first goal is unified with the fact woman(helen). The sccond goal is also unified with

the fact parent(tom, helen). instantiating Y to Tom.

34

Example 1.2. Consider the evaluation of the query grandparent (judy, daphne). Prolog
will scarch the database from top to bottom, trying to unify the query with one of the
clauses of the database. It will unity the query with the head of the rule grandparent (X,
Y) :- parent(X, Z), parent(Z, Y) instantiating X to judy and Y to daphne, and apply

the substitution as follows:
grandparent (judy, daphne) :- parent(judy, Z), parent(Z, daphne).

For the head of the new query to be true, both goals of the body of the clause must be

cvaluated to true. To cvaluate the two goals, Prolog will consider the two new querics
parent(judy, Z), parent(Z, daphne).

and it will perform a new search of the database to unify each one, looking for an instantia-
tion which can satisfy them both. Variable Z can be instantiated to janis thus making the

original query true.

Example 1.3. Suppose we let p stand for the isParentOf relation and let s stand for the
18S1bling With relation. Then we can define s in terms of p by the following formula we will

call S:

S=VaVyVzplza)Aplz.y)) = s(z,y))

In other words, if z is a parent of both x and y, then we conclude that x and y are siblings.
We can represent this in Prolog with the rule siblings below. We use variables to express

the feature that two different persons with a common parent are siblings.

siblings(X, Y) :- parent(P, X), parent(P, Y), X \= Y.

The above rule does not consider full siblings (those with both common parents). We can
define this new relation based on previous relations. Suppose we let f stand for the isFatherOf

relation, m stand for the isMotherOf relation and let fs stand for the isFullSibling With

35

rclation. Then we can define fs in terms of p and m by the following formula we will call

FS:

FS=VaVyVuw¥z(flwz)Nflwy Am(z,z) Nm(zy)) = fs(x,y)).

In other words, if 2 and y have both father and mother in common, then we conclude that x
and y are full siblings. We use variables to express the feature that two different persons with
the same father and mother arc full siblings. We can follow a similar rcasoning to provide

the alternative implementation full siblings?2.

full siblingsi(X, Y) :-
father(F, X), father(F, Y), mother(M, X), mother(M, Y),
X \=1Y.

full _siblings2(X, Y) :-
parent(F, X), parent(F, Y), parent(M, X), parent(M, Y),
X\=Y, F \= M.

Use can now usc the rule siblings to define rules for uncle and aunt relations as shown

below:

uncle(U, N) :- man(U), siblings(U, P), parent(P, N).

aunt (A, N) :- woman(A), siblings(A, P), parent(P, N).

Example 1.4. Consider the following databasc of facts which represents a directed graph:

edge(a,b).
edge(b,c).
edge(a,c).
edge(c,d).

36

edge(d,e).
edge(f,e).

edge(f,g).

We define a rule path(N1, N2) which succeeds if there is a path from node N1 to node N2.

path(N1, N2) :- edge(N1, N2).
path(N1, N2) :- edge(N1, N), path(N, N2).

We additionally define a rule is-connected (N1, N2) specifying that a source node N1 is

connected to a destination node N2 if there is a path from N1 to N2.

is-connected (N1, N2) :- path(N1i, N2).

Consider the following questions which we will subsequently translate into queries:

e Is there a path from b to e?
e [s there a path from d to a?
e [s node a connected to node d?

e Which node(s) is node ¢ connected to?
The queries and the responses are shown below:

7- path(b,e).

Yes

?7- path(d,a).

No

?- is—connected(a, d).
Yes

?- is-connected(c, X).

37

X =e ;

No

Let us concentrate on the last query above and see how unification and resolution work

during its evaluation:

Unify with the rule is-connected(N1, N2), and instantiate N1 to c, and N2 to X.

Resolve to new query path(c, X).

Unity first path(N1, N2) rule with the fact edge(c, d), and instantiate X to d.

Unify first goal of second path (N1, N2) rule with the fact edge(c, d). and instantiate

X to d. Resolve to new query path(d, N2).

Unity path(d, N2) with the fact edge(d, e), and instantiate N2 to e.

The system will respond with d and e as the values for X.

Example 1.5. Consider a declarative database, representing a graph, that contains facts of

the form

edge(a, b).

where edge(a, b) defines a directed edge from node a to node b. Construct a Prolog rule
path(Source, Destination) that succceds if there exists a path from node Source to node
Destination. Translate the graph of Figure 1.2 into a Prolog database, and execute and
trace a query to determine whether there exists a path from node a to node c. In tracing

the query, clearly indicate all steps.

The declarative representation of the graph and the rule to define a path between two nodes

arc shown below:

38

Figure 1.2: Directed graph.

edge(a, b).

edge(b,).

edge(c, d).

path(Source, Destination) :- edge(Source, Destination).
path(Source, Destination) :- edge(Source, IntermediateNode),

path(IntermediateNode, Destination).

For the query path(a, c). we have the following trace:

1. We scarch the database from top to bottom, looking to unify the query to a fact or
a rule. We unify with edge(Source, Destination). instantiating Source to a and

Destination to c, thus resolving to edge(a, c).

2. We now attempt to satisty this query, searching again from top to bottom; We will

fail.

3. We unify with the sccond rule, instantiating Source to a and Destination to c, thus
resolving to edge(a, IntermediateNode), path(IntermediateNode, c). We must

satify both goals of this resolution if we were to satify the original query.

39

4. We scarch the databasce from top to bottom and we unify edge(a, IntermediateNode)

with edge(a, b), instantiating IntermediateNode to b, and resolving to path(b, c¢).

. We unify path(b, c¢) with the first rule, instantiating Source to b and Destination

[

to c, thus resolving to edge (b, ¢).

6. We scarch for edge(b, c¢) which we can unify to one of the facts, thus returning True

(recall that we are resolving a ground query).

Example 1.6. Consider the following Prolog database:

clerk(jones).

clerk(smith).

typist (brown) .

manager (patel) .

manager(lee).

supervises(X,Y) :- manager(X), clerk(Y).
supervises(X,Y) :- clerk(X), typist(Y).

supervises(X,Y) :- manager(X), typist(Y).

We will follow the search of the query supervises(Supervisor, brown) and describe how
Prolog deploys unification, instantiation and resolution to perform an evaluation until the
first successtul match. There are three Supervises(X, Y) rules. Prolog will try all of them

in the order from top to bottom.

1. Unity supervises(Supervisor, brown) with the rule supervises(X, Y), instanti-

ating Supervisor to X and Y to brown. Resolve to

supervises(Supervisor, brown) :- manager(Supervisor), clerk(brown).

Prolog trics manager (Supevisor) . Unify manager (Supervisor) with manager (patel),

instantiating Supervisor to patel. Prolog now tries to find clerk(brown) and fails.

40

Unify manager (Supervisor) with manager(lee), instantiating Supervisor to lee.
It tries again to find clerk(brown) and it fails. As a result, the first supervises(X,

Y) fails.

2. Unify supervises(Supervisor, brown) with the rule supervises(X, Y), instanti-

ating Supervisor to X and Y to brown. Resolve to

supervises(Supervisor, brown) :- clerk(Supervisor), typist(brown).

Unify clerk(Supervisor) with the fact clerk(jones). Prolog trics typist(brown)
and succeeds. As a result, the second rule for supervises(X, Y) succeeds. Prolog

replies Yes and Supervisor = jones.

Example 1.7. Consider a declarative database composed by a number of facts of the fol-

lowing procedure:

likes(Name, Liking).

Construct a rule likes to go out with(X, Y) that succeceds for two persons X and Y which

have common interests.

likes_to_go_out_with(X, Y) :- likes(X, Something),
likes(Y, Something),
X \=1Y.

Example 1.8. Consider a declarative database composed of the following facts and one rule:

man (X) .
woman (Y) .
parent(P, C). %% P is the parent of C.

father(X, Y) :- man(X), parent(X, Y).

41

1. Let f stand for isFatherOf relation, and a stand for isMaleAncestorOf relation. Con-

struct a predicate formula, call it A, defining a in terms of f.

2. Translate the predicate into a Prolog rule male_ancestor (A, P) that succeeds if A is

a male ancestor or P.

A=Y aVy (flr,y) — alr.y))

A=VaVyVz(fle.2)Nalzy)) = alz,y))

male_ancestor(A, P) :- father(A, P).

male_ancestor(A, P) :- father(A, P2), male_ancestor(P2, P).

Example 1.9. On the genecalogy database:

1. Let m stand for man relation, w stand for woman relation, p stand for the isParentOf
rclation, and s stand for the isSibling With rclation where the two paramecters of the
last relation are of different gender. Define s in terms of m., w and isParentOf by a

predicate formula, call it S.

2. Translate the predicate into a Prolog rule siblings(X, Y) that succeeds if X and Y

is a male-female siblings pair.

For full-siblings we need two common parents:

S=VaVyV fVmp(f,e)\p(f,y) Ap(m,) Ap(m,y) A f#=mAm(z)Aw(y)) — s(z,y))

siblings(X, Y) :-
parent(F, X),
parent(F, Y),

parent (M, X),

42

parent (M, Y),
F \= M,
man(X),

woman (Y) .

For half-siblings we need one common parent:

S=VaVyVz(plz,x) Aplz,y) Am(x) ANw(y)) — s(z,y))

siblings(X, Y) :-
parent(Z, X),
parent(Z, Y),
man(X),

woman (Y) .

1.12 Qualifiers

What if we now wanted to pose a different type of question: “Are all men parents?” We can

do this with the qualifier forall.

qualify(X) :- forall(man(X), parent(X, _)).

The body of the rule will be true only if each instantiation of man(X) appears as a first term

in a parent (X,) clausc.

?7- qualify(X).
No

43

1.13 Arithmetic operators

We can evaluate the truth value of an arithmetic expression. The operators +, -, * and /

denote their respective arithmetic operations and mod denotes the remainder operation.

The keyword is is a built-in arithmetic operator. It takes an arithmetic expression as its
right-hand side (RHS) operand and a variable as its left-hand side (LHS) operand. In the

example below, we are asking if it is true that 7 can be expressed as 6 + 1.

?- (7 is 6 + 1).

Yes
Alternatively we can ask under what conditions a given expression can be evaluated:

7- X is 6 + 1).
X =7
No

?7- (X is 7 mod 2).
X=1;
No

We can use arithmetic operators in the definition of rules. For example, we can specify that
Y is considered the double of X if it can be expressed by the RHS operand of the operator

is. as defined below:

double(X, Y) :— Y is X * 2.

?7- double(2, 4).

Yes

?7- double(3, X).

44

No

In general, a function that takes n arguments will be represented in Prolog as a relation that
takes n + 1 arguments, the last one being used to hold the result, as shown in the example
above. An important point to remember is that all variables on the RHS of the operator is

must alrcady be instantiated. In the example below,
?7- double(X, 16).

the variable X that appears on the RHS of is is not instantiated. As a result, the query will

result in an crror.

1.14 Relational and logical operators

We can evaluate relational operators such as less than (<) as shown below:

7- 1 < 3.
Yes
7- (1 < 3).

Yes

Other relational operators are <=, >, >=, and ==, the last onc indicating cquality.

We can also have logical operators as in the examples below:

7- (1 <3), (4 <2).

No

7- (1 <3); (4<2).

Yes

45

Example 1.10. Consider function max to return the maximum between two numbers:

max(X, ¥, X) (- X > Y.

max(X, Y, Y) :- X < Y.

The first rule reads “The maximum of X and Y is X, provided that X > Y.”

?- max(9, 5, X).
X=9,;

No

46

Chapter 2

Lists 1

A list is a finitec ordered sequence of zero or more clements that can be repeated. We can
only access two things in a list: the first clement of the list (head) and the list made up of
all except the head, called the tail of the list. The number of elements in a list is called the
length of the list. For example, the list L = {a, b, ¢, d) has length 4, its head is a and its tail
is (b, c,d). We will use the notation head(L) and tail(L) to denote the head of L and the

tail of L. The empty list, denoted by () does not have a head or tail.

Note that

a7 {a) # ((a))

The clements of a list can be any kind of objects, including lists themselves in which case a

list is said to be nested (as opposed to being flat).

L head(L) | tail(L)

:)
{a). (b)) | (a) | {{b.))
() a {

47

2.1 Clauses and lists

Syntactically, a Prolog list is represented by square brackets [...]. The empty list is
represented as []1. Every non-empty list can be represented in two parts: head and tail.
Consider the list L = [a, b, ¢, d, e]l. The notation [H|IT] is used to represent a list

whose head is H and its tail is T. So L can be represented as

L=1[a, b, ¢, d, el
—=T[la | [b, c, d, el]
=la | b | [c, d, ell]
=la | [b | [c | [d, el]ll]
=[al [b | [c!| [d | [elll]]
=la | bl lc!| [d]l [e| [1111]1]

Example 2.1. In this example we want to define a clause first/2 which succeeds if an

clement is the head of a list. The rule below,

first(F, [FI_1).

rcads “Clausc first succeeds if an clement F is found to be the first clement of a given list,

represented as [F|_], since we are not really interested in the contents of the tail.”

The query below reads “Is element a the head of the list [a b ¢]7” to which Prolog responds

with a Yes.

?- first(a, [a, b, cl).

Yes

Let us now rephrase the question. We ask “Under what conditions an element is the head

48

of the list [a b ¢]?” The condition is that an clement must be cqual to a. Let us translate

the question in Prolog and sce its response:

?- first(F, [a, b, cl).

which means that the condition under which the statement can be truc is when F = a.

Example 2.2. In this example, we want to define a clause ¢/3 which succeeds if a list can

be broken down into a head and a tail. The rule below,

c(lHIT], H, T).

reads “Clause ¢ succeeds if a list, represented as [H|T]. can be broken down into a head H

and a tail T.

The query below reads “Given the list [a b ¢ d], is a the head and [b ¢ d] the tail?” to

which Prolog responds with a Yes. (What type of question is this?)

?- ¢c(la, b, ¢, 4], a, [b, c, d]).

Yes

The query below reads “Given the list [a b ¢ d], what are the head and tail, if any?”

(What type of question is this?)

?- ¢(la, b, ¢, d], H, T).

49

to which Prolog will respond by providing the conditions under which the statement can be

true.

The query below reads “Given the list [1, what are the head and tail, if any?” (What type

of question is this?)

?- c([1, H, T).

No

which means that there are no conditions under which the empty list can have a head or

tail.

Example 2.3. Consider a procedure to define a predicate member (X,L) which is true if X
is an element of the list L. An element X is a member of the list L if X is the head of L

(regardless of what its tail is):

member (X, [X|_1).

Additionally, X can be a member of L if X is a member of the tail of L (regardless of what

its head is).

member (X, [_|T]) :- member(X, T).

Let us execute some queries:

?- member(a, [a, b, c]).

Yes

?- member(e, [a, b, ¢, d, el).
Yes

?- member (X, [a,bl).

X =a ;
X=Db;
No

50

Let us trace the call to member (e, [a, b, ¢, d, el):

?- member(e, [a, b, ¢, d, el).
member (e, [b,c,d,e]).
member (e, [c,d,el).
member (e, [d,el).
member (e, [e]).

Yes

Example 2.4. In this example, we want to define a clause add/3 which succeeds if a new

list can be created by placing an element as the head of some other list. The rule below,

add(X, L, [XILI).

reads “Clause add succeeds if a new list, represented as [X[L], can be created whose head

is an clement X and whose tail is a list L.”

The query below reads “Is the list [a, b, c] created when placing element a as the head

and list [b c] as the tail?” to which Prolog responds with a Yes.

?7- add(a, [b, c], [a, b, cl).

Yes

The query below reads “Is the list [a, b, c] created when placing element b as the head

and list [b c] as the tail?” to which Prolog responds with a No.

?7- add(b, [b, <], [a, b, c]).

No

The query below reads “Under what conditions, if any, can a list be comprised with a as its
head and with the list [b c] as its tail?” to which Prolog provides the condition as the list

[a b c].

51

?- add(a, [b, ¢, d], NewList).

NewList = [a, b, c, d]

The query below reads “Under what conditions, if any, an clement a can be added to a list

creating the list [a b ¢ d e]?”

?- add(a, L, [a, b, ¢, d, el).

L =1[b, ¢, d, €l

which mecans that the condition under which the statement can be true is when the list is

[b ¢ d e].

Example 2.5. In this example, we would like to define a rule last/2 which succeeds if an

element is the last element of a given non-empty list. We can identify two cases for this:

1. The list has onc clement.

2. The list has more than one clement.

Case 1: The list has only one element. In this case, the last element is the only existing

clement of the list. Let us translate this into Prolog. The following rule,

last (L, [L]).

rcads “Rule last succeeds if an clement L is found to be the only clement of a given list.”

The query below reads “Is clement a the last clement of the list [al?” to which Prolog

responds with a Yes.

?- last(a, [al).

Yes

52

The query below reads “Under what conditions, if any, is an clement the last clement of the

list [al?”

?- last(L, [al).

which means that the condition under which the statement can be truc is when L = a.

Case 2: The list has more than one element. In this case, we need to reduce the
problem to the onc that can be handled by case 1. In other words, the clause will succeed
once it chops off all clements, one by one, until it ends up with onc clement. The following

rule,

last(L, [HIT]) :- last(L, T).

reads “Rule last can be proven true for a list whose head is H and whose tail is T, if it can

be proven true for a new list which is the tail T of the original list.”

In other words, let us get rid of the first element and see if we end up with only one element
in which case the rule of case 1 will determine that this remaining element is indeed the

last clement.

However, if after getting rid of the first element we end up with something which has a
non-cmpty tail (i.c. there is still more than one clement in the list), we must repeat this
chopping off the head of the list, until we end up with a list which has only one element and

subscquently handled by the first rule (of case 1).

The query below reads “Is clement ¢ the last clement of the list [a b ¢]?” to which Prolog

responds with a Yes.

53

?- last(c, [a, b, cl).

Yes

The query below reads “Under what conditions, if any, is an element the last element of the

list [a b c]7”.

?- last(L, [a, b, cl).

which means that the condition under which the statement can be truc is when L = c.

Example 2.6. Consider the rule size/2 to read in a list and calculate its length:

size([],0).

size([H|T]J,N) :- size(T,N1), N is Ni+1.

We can exccute queries as follows:

7- size([],N).

N = 0.

?7- size([la,b,c],N).
N = 3.

7- size([[a,b]l,c],N).
N = 2.

7- size([[a,b,c]],N).
N=1.

54

Example 2.7. Consider the following Prolog program, a2b, which hchaves as follows:

?7- a2b([a,a,a,al,[b,b,bl).

No

?7- a2b([a,a,a,al,[b,b]).

Yes

?- a2b([a,a,a,a,a,al,[b,b,bl).
Yes

?- a2b([a,a,a,al,[b]l).

No

?- a2b(la,d,f,a,al, [b,bl).

No

?

a2b([a,al, [b]l).
Yes

7

a2b(la,al, [b,b,b,b]).

No

?7- a2b([a,a,a,a,a,r],[b,b,b]).
No

7a2b([a,al, [b,b]).

No

?7- a2b([a,a,a,al,[b,d]).

No

Our task is to describe what the program does, and write a Prolog program to perform this
task. The program takes two lists as arguments, and succeeds if the first argument is a list
of a’s, and the sccond argument is a list of b’s where the list of a’s is twice the size of the

list of b’s.

55

The program is as follows:

;; shortest possible list is the empty list
a2b([1,[1).
;; need to have two a’s for one b

a2b(la,alTal, [b|Tb]) :- a2b(Ta, Tb).

2.2 Controlling backtracking with ’cut’

Recall the rule member/2:

member (X, [X|_1).

member (X, [_|T]) :- member(X, T).

If the first clause succeeds, it would be inefficient to attempt to satisfy the sccond. Prolog
provides a special built-in predicate called "cut’” and spelled "1.” When called. the 'cut’ always
succeeds and removes any alternative choices. We can now re-write the above example as

follows:

member (X, [X|_1) :- !.

member (X, [_|T]) :- member(X, T).

Let us execute the program:

?- member(a, [a, b, c]).
true.
?- member(d, [a, b, cl).
false.
?- member (X, [a, b, cl).

X = a.

56

We sce that in the last case the interpreter discards alternative choices once it has found an

instantiation for variable X.

The “cut” can also be used to specify mutually exclusive cases. Consider the rule max/3:

max(X, Y, X) :- X >=Y.

max(X, Y, Y) :- X < Y.

A version using ’cut” would be as follows:

max(X, Y, X) (- X >=Y, !.

max(X, Y, Y).

Let us execute the program:

7- max(b, 3, X).
X =5,
?- max(b, 7, X).
X=7.

If the first clause succeeds, the ‘cut’ ensurcs that the sccond clause is disregarded as an

alternative choice and it is never evaluated.

Let us now try a ground query as follows:

?- max (10, 0, 0).

true.

Why is that? The first clause fails, and Prolog evaluates the second clause which now

succeeds. To rectify this we can re-write the rule as follows:

max(X, Y, X) (- X >=Y, !.

max(X, Y, Y) :(- X < Y.

57

Let us now re-try the previous ground query:

?- max (10, 0, 0).

false.

2.3 List construction with findall

The built-in function findall(X,P,L) returns a list L with all values for X that satisfy

predicate P. For example, for the database below

likes(bill, movies).
likes(bill, walks).
likes(james, beer).
likes(peter, beer).
likes(peter, movies).
likes(mike, soccer).
likes(mike, walks).

likes(michael, cars).

the query findall(X,likes(X, movies), L). will return L = [bill, peter].

The built-in function list to set(List, Set) converts a list (with possibly repeated ele-
ments) into a sct. For example, 1ist to set([a, b, b, a, c], X). will return X = [a,

b, cJ.

Finally, the built-in function length(List, L) returns the length L of a given list. For

example, length(la, b, c], X). will return X = 3.

Example 2.8. Construct a Prolog rule qualifies for benefits(P) that succceds if P is

a mother of more than three children.

58

qualifies_for_benefits(P) :- woman(P),
findall(P, parent(P, _), L),
length(L, N),
N >= 3.

Example 2.9. Decfine a Prolog procedurce second to last (A, L) that succceds when A is

the second to last clement in a list L. Sample runs arce shown below:

?- second_to_last(a, []1).

false.

?- second_to_last(a, [a,b]l).

true.

?- second_to_last(a, [a,b,c,d,e,f]).

false.

?- second_to_last(X, [a,b,c,d,e,f]).

X = e.

The procedure is as follows:

second_to_last(4, [4,_]1).

second_to_last(4A, [_IT]) :- second_to_last(a, T).

59

Example 2.10. Consider the following database:

object(sun).
object (mercury) .
object(venus) .
object(earth).
object (mars) .
object(jupiter).
object(saturn).
object(uranus).
object(neptune) .
object(pluto).
object (moon) .
object(deimos).
object (phobos) .
object(arche).
object(callisto).
object(europa) .
object(io).
object(themisto).
object(atlas).
object(calypso) .
object(helene).
object(desdemona) .
object(titania).
object(despina) .
object(galatea).
object(larissa).

object(thalassa).

60

mass(mercury, 0.33). %% mass in 10724 KG
mass(venus, 4.87).

mass (earth, 5.98).

mass(mars, 0.64).

mass (jupiter, 1900).

mass (saturn, 569).

mass (uranus, 569).

mass (neptune, 86.8).

mass(pluto, 0.02).

orbits(mercury, sun).
orbits(venus, sun).
orbits(earth, sun).
orbits(mars, sun).
orbits(jupiter, sun).
orbits(saturn, sun).
orbits(uranus, sun).
orbits(neptune, sun).
orbits(pluto, sun).
orbits(moon, earth).
orbits(deimos, mars).
orbits(phobos, mars).
orbits(arche, jupiter).
orbits(callisto, jupiter).
orbits(europa, jupiter).
orbits(io, jupiter).
orbits(themisto, jupiter).
orbits(atlas, saturn).
orbits(calypso, saturn).

orbits(helene, saturn).

61

orbits(desdemona, uranus).
orbits(titania, uranus).

orbits(despina, neptune).
orbits(galatea, neptune).
orbits(larissa, neptune).

orbits(thalassa, neptune).

Supposc we let obj stand for the isObject relation, let orb stand for the orbits relation and
let p stand for isPlanet relation. We can define a formula (call it P), to say that if o is an
object with mass equal to or greater than 0.3 and o orbits around the sun, then we conclude

that o is a planet. We use mass(0) to represent the mass of object o.

P =VYo (obj(o) N (mass(o) >= 0.3) A orblo,sun)) — p(0))

We can now define a rule, planet (P), for the isPlanet relation:

planet(P) :- object(P), mass(P, M), M >= 0.3, orbits(P, sun).

Consider the following query and its result:

?7- planet(X).
= mercury ;
= venus ;
= earth ;
= mars ;
jupiter ;
= saturn ;

= uranus ;

< < >3 >3 < >3 < >3
Il

= neptune ;

false.

62

Let s stand for isSatellite relation. We can define a formula (call is .S), to say that if an

object o orbits around a planct, then we conclude that o is a satellite.

S =Yovx (obj(o) N orblo,z) A p(x)) — s(o))

We can now define a rule, satellite(8), for the isSatellite relation:

satellite(S) :- object(S8), orbits(S, P), planet(P).

Consider the following query and its result:

?- satellite(X).

= moon ;
= deimos ;

= phobos ;

= arche ;

= callisto ;
= europa ;

= jo ;

= themisto ;
atlas ;

= calypso ;

= helene ;

= desdemona ;
= titania ;

= despina ;

= galatea ;

= larissa ;

< < >3 < >3 < < >3 >3 < >3 >3 < < >3 >3 <
Il

= thalassa.

We can deploy rule planet (P) to define a new rule obtain satellites(P, L) which suc-

ceeds when P contains all satellites in the collection L.

63

Recall that the query

findall(Object, Goal, List).

produces a list List of all the objects Object that satisty the goal Goal.

obtain_satellites(P, L) :- planet(P), findall(S, orbits(S, P), L).

Consider the following query and its result:

?- obtain_satellites(P, L).

mercury,
ad;
= venus,

=[] ;

= earth,

= [moon] ;

= mars,

= [deimos, phobos] ;

= jupiter,

= [arche, callisto, europa, io, themisto] ;
= saturn,

= [atlas, calypso, helene] ;

= uranus,

= [desdemona, titanial ;

= neptune,

- v ++ =w +~ =~ — v ~Y ¥ w9 = v =

[despina, galatea, larissa, thalassal ;

false.

The above query contained two variables, so the result considered all possible sucessful pairs.

How about if we wanted to obtain the satellites for planet Mars?

64

?- obtain_satellites(mars, L).

L = [deimos, phobos].

We deploy rule obtain_satellites(P, L) to define a new rule moonless (P) which succeeds

when P contains no satellites.

moonless(P) :- obtain_satellites(P, L), length(L, 0).

We can now invoke this rule as follows::

?7- moonless (X).
X = mercury ;

X

venus ;

false.

Phobos is an objecct in our solar system. Is Phobos a satellite? Let us translate this question
into a query. What type of query would that be? The query would be satellite(phobos) .

and it is a ground query.

Let us demonstrate step-by-step how the above query proceeds until indicating success or
failure. We want to explain this only in terms of unification, instantiation and resolution
and substitution: Prolog will search the database from top to bottom trying to find a clause
that can be matched with the query. The query satellite(phobos) will unify with the rule
satellite(S) rule, instantiating S to phobos. Resolution will apply the substitution of the

variables and produce a new rule:

satellite(phobos) :- object(phobos), orbits(phobos, P), planet(P).

All three goals in the body of the rule have to be satisfied for the head of the rule to be

satisfied.

1. The first goal is unified with the fact object (phobos) .

65

2. The sccond goal is unified with the fact orbits(phobos, mars). instantiating P to

mars.

3. Prolog will now try to satisfy the third goal. It will unify planet(mars) with the
rule planet (P) instantiating P to mars. Resolution will apply the substitution of the

variables and produce a new rule:

planet(mars) :- object(mars), mass(mars, M), M >=0.3, orbits(mars, sun).

4. The first and fourth goals are unified with the facts object(mars), and orbits(mars,
sun) respectively. The sccond goal unifies with the fact mass(mars, 0.64) instanti-
ating M to 0.64. The third goal will be evaluated and succeed. As a result the original

query succeeds.

66

Chapter 3

Finite state machines

A finite state machine (FSM) (or state machine, or finite state automaton), is an abstract
model of a machine with a primitive internal memory. The behavior of an FSM is composed
of a finite number of states, transitions between those states, and possibly actions. In
the example of Figure 3.1 the machine includes two states state 1 (the initial state) and
state 2. While at state 1, if event event a occurs, there is a transition to state state 2.
Similarly, while at state 2 if event b occurs, there is a transition to state 1.

A parser state machine (also: acceptor, recognizer, sequence detector) produces a binary
output, accepting or rcjecting an input. On the other hand, a transducer gencrates output

(take an action) based on a given input and/or a state.

3.1 Deterministic finite state machines

Formally, a parser state machine is defined as a 5-tuple (read: “quintuple”) as follows:

((2/ Z: (S: qo, F)

where

e () is a finite, non-empty set of states.

e > is a finite, non-empty set of symbols, called the input alphabet.

67

event a

event b

Figure 3.1: An example finite state machine.

e) is a state transition function: ¢ : (Q X X — (). This function defines a deterministic
finite state machine as opposed to a nondeterministic finite state machine whose state

transition function returns a set of states.
e gy € (Q is the initial state.
e [C () is aset of final states.

What does it mean “to execute a parser FSM over an input alphabet 377 Given an FSM and
a string w in 3*, the FSM accepts cach one of the letters of w as input (from left to right)
following a path starting from the start state. Each letter causes a state transition from the
start state to the next and so forth. If this path eventually ends in the final state, then we
say that the FSM accepts w. Otherwise we say that the FSM rejects w. The language of an

FSM is the set of all strings that it accepts.

3.2 Deterministic finite state machines for a regular
expression

Supposc we need to build a deterministic FSM to recognize the language represented by the
FSM of Figure 3.2. The following arc valid strings: aab, aaaab, babaab, bbabaab, aababaab.

All valid strings end in aab.

68

Start a

Figure 3.2: A deterministic finite state machine.

We can represent the states and their transitions with a transition table as follows:

a | b

initial state | ¢o | g1 | qo
q1 | 92 | o
2 | 42 | 43

final state g3 | 91 | o

3.3 A logic program interpreter for deterministic FSMs

In problems of this kind, we need two pieces of information: a) the representation of an
FSM by a sequence of facts, and b) an interpreter to recognize a language. The interpreter
is made up of a sequence of rules and the language that it is meant to recognize is expressed

as a regular expression.

FSM representation

We can represent an FSM by facts of the following form:

start (state) .

transition(currentState, condition, nextState).

69

end(state) .

The start and final states can be taken directly from the figure, wherecas the transitions can

be more casily taken from the transition table.

start (q0) .

final(qg3).

transition(q0, a, ql).
transition(q0, b, q0).
transition(ql, a, g2).
transition(ql, b, q0).
transition(q2, a, g2).
transition(g2, b, g3).
transition(q3, a, ql).

transition(q3, b, q0).

Building an interpreter

Given a sct of facts as above, we need to build rules to determine whether or not a given
string can be accepted by the FSM. A string w is accepted by an FSM if its reading from left
to right (i.e. each symbol in turn is taken as a condition which determines some transition)

causes a path from the start state to the final state.

Consider a predicate accept(Xs), where Xs is a an input string, represented by a list. A

parsing is only valid if initiated from the start state.

accept(Xs) :- start(Q), path(Q, Xs).

The second goal above needs to be defined as a new rule. While at the start state Q, a string
Xs will be accepted if its head causes a transition to a new state Q1 as well as if starting

from Q1 the tail of Xs is accepted.

70

path(Q, [X[Xs]) :- tramnsition(Q, X, Q1), path(Q1l, Xs).

If our input string is valid, we will eventually reach the final state, having exhausted all

symbols in the string, i.e. once we reach the final state and we have an empty string.

path(Q, [1) :- final(Q).

Putting cverything together, we can provide the full listing of our interpreter program for

the FSM of Figure 3.2 as follows:

start (q0) .

final(qg3).

transition(q0, a, ql).
transition(q0, b, q0).
transition(ql, a, g2).
transition(ql, b, q0).
transition(q2, a, q2).
transition(g2, b, g3).
transition(q3, a, ql).
transition(q3, b, q0).

accept(Xs) :- start(Q), path(Q, Xs).
path(Q, [X[Xs]) :- tramnsition(Q, X, Q1), path(Q1l, Xs).
path(Q, [1) :- final(Q).

We arc now ready to cxecute the interpreter program:

?- accept([a,a,bl).
Yes
7- accept([la,a,b,a,b,a,a,bl).

Yes

71

accept([]).

accept([b,a,al).

accept([b,b,b,b,b,a,a,al).

accept([a,a,b,al).

72

Chapter 4

Boolean algebra and digital gates

In this chapter we will deploy clauses to model and simulate Boolean expressions and digital

circuits.

4.1 Boolean operations

We have already seen that a proposition is a sentence that is either true or false (but not
both). Many statements can be constructed by combining one or more propositions. New
propositions, called compound propositions, can be formed from existing propositions us-
ing logical operations (or logical connectives) which are expressed as functions, called truth

functions. Commonly used logical connectives include:

Conjunction (and connective) constructs a new proposition whose truth value is true if
both of its operands arc true, otherwise is false. It is denoted by %, A, or -, c.g. p X q.
Many authors prefer to omit the conjunction symbol and simply write pg instead of

D X q.

Disjunction (or connective) constructs a new proposition whose truth value is true if either

or both of its operands are true, otherwise is false. It is denoted by +, or V. e.g. p + ¢.

Inverse (not connective) constructs a new proposition whose truth value is the reverse truth
ralue of its operand. It is denoted by ’, ~, or —. Some authors usc 7 to denote the

inverse of proposition g.

73

The relationships between the truth values of the above compound propositions can be

displayed in a truth table as follows:

xly | Xy |ty
11110 1 1
170710 0 1
0|11 0 1
0101 0 0

We can define procedures to represent logical connectives in Boolean algebra and conse-
quently digital gates which are the building blocks of digital circuits. In defining clauses., we
will follow the convention operation(in, out) to denote an operation whose input is in and
whose output is out. For example, the Boolean operation ’ (inverse) is a unary operation

whose procedure inv will include the clause
inv (0, 1).

which recads “The inverse of 0is 1.7

The Boolean operation or is a binary operation whose procedure or will include the clause
or(0, 1, 1).

which reads “The disjunction of) and 1 is 1.”

Knowing the truth-table definitions for Boolean operations, we can define the corresponding

procedures as follows:

and(1, 0, 0).
and (0, 1, 0).
and (0, 0, 0).
and(1, 1, 1).

74

or(l, 0, 1).
or(0, 1, 1).
or(0, 0, 0).
or(l, 1, 1).

inv (0, 1).
inv(1, 0).

The above would be enough to he able to represent any Boolcan expression. However, for
convenicnce we can also define operations nor (not or), zor (exclusive or), and nand (not

and) as follows:

nand(1, 0, 1).
nand(0, 1, 1).
nand(0, 0, 1).
nand(1, 1, 0).

nor(1, 0, 0).
nor(0, 1, 0).
nor(0, 0, 1).
nor(l, 1, 0).

xor(1, 0, 1).
xor(0, 1, 1).
xor (0, 0, 0).
xor(1l, 1, 0).

75

AND

OR (x ANDY’) ORy

NOT

Figure 4.1: Digital circuit for the expression (z X y') + y.
4.2 FEvaluating Boolean expressions

We can build rules to represent Boolean expressions. Consider the expression (z X ¢') + y

whose truth table is given below:

rly |y lexy | (zxy)ty
17170 0 1
110711 1 1
01110 0 1
001 0 0

The expression can be built as the digital circuit shown in Figure 4.1. We can define a rule

to represent the Boolean expression (and consequently the digital circuit) as follows:

circuit(X, Y, Out) :-
inv(Y, Tmpl),
and (X, Tmpl, Tmp2),

or(Tmp2, Y, Out).

76

We can now test the digital circuit by executing querics over particular input sequences as

follows:

?- circuit(1,
Qut =1
?- circuit (1,
Qut =1
?- circuit (0,
Qut =1
?- circuit (0,

OQut = 0

1, Out).

0, Out).

1, Out).

0, Out).

We can ask questions that correspond to ground and non-ground querics. For example, we

can ask “Is it indeed the case that for X = 1 and for Y = 1, the output is 177, and the

corresponding query is

?- circuit(1, 1, 1).

true

We can also ask questions like “For what input values, if any. is the output 077

?- circuit(X, Y, 0).

X =0,
Y =0 ;
false.

We can also simulate the digital circuit by executing the program as follows:

?- circuit(X, Y, 0OUT).

X =0,
Y =20,
ouT = 0 ;
X =1,

77

ouT = 1 ;

Y=1,
ouT = 1 ;

false.

It turns out that the Boolean expression of this example (and its corresponding digital circuit)
can be simplified to a single logic gate or. How can we be sure? If we use simulation to
investigate the behavior of the two circuits, then we see that for the same input, the output

of the two circuits is the same.

7- or(X, Y, OUT).

X =1,
Y =0,
QuT = 1 ;
X =0,
Y =1,
ouT = 1 ;
X =0,
Y =0,
ouT = 0 ;
X=1,
Y =1,
QuT = 1.

78

Part 11

Functional Programming with

Common Lisp (CL)

79

80

Chapter 5

Lists 11

Written in 1958, Lisp? is a family of programming languages and the second-oldest high-level
programming language in use today?. We will adopt Common Lisp? (CL), one of the two
most widely known dialects® of Lisp to model, construct and manipulate lists and subsc-

quently define functions.

A list is the central notion of functional programming. An clement of a list can be cither an

atom or a list. A list can also be empty. Consider the following examples:

O ; The empty list.
(1357) ; A list of four elements, the numbers 1, 3, 5, and 7.
((1 2)(3 4)) ; A list of two elements, the list (1 2) and
; the list (3 4).
(((1 2)(3 4))) ; A list of one element, the list ((1 2)(3 4)).
(a (b 1) 2) ; A list with three elements: the symbol a,

; the list (b 1) and the number 2.

MHistorically known as LISP as this is an abbreviation of LISt Processing.
2The oldest high-level language in use today is Fortran.

3ANSI INCITS 226-1994 (R2004).

*The second most widely known dialect of Lisp is Scheme.

81

5.1 Expressions and functions

A function f is a mapping from cach clement in a set A to exactly one clement in a sct B.
The function is denoted by f: A — B. The sct A is the domain of f and the set B is the

codomain of f. We also say that f has type A — 3.

If f(x) =y, then x is called an argument of f. and y is called a value of f. If the domain of

f is the Cartesian product A; x ... x A,,, we say f has arity n.

Expressions arc written as lists, using prefix notation. Prefix notation is a form of notation
for logic, arithmetic, and algebra. It places operators to the left of their operands. For

example, the (infix) expression 14 — (2 x 3) is written as (—14(x23)).

The first element in an expression list is the name of a function and the remainder of the

list are the arguments:

(functionName arguments)

When an expression is evaluated, it produces a value (or list of values), which then can be
cembedded into other expressions. In the above example, (* 2 3) will invoke the * (mul-
tiplication) function on the arguments 2 and 3 returning 6 which will in turn become the
sccond argument to the invocation of the - (subtraction) function which will return 8. This

shows that we can invoke Lisp as a calculator.

As in arithmetic, we can nest expressions. Nested expressions are evaluated by reducing
the innermost parenthesized expressions to numbers, followed by the next layer, and so on.
Unlike in regular arithmetic where multiplication has priority over addition the evaluation

of prefix expressions is unambiguous. For example, the expression

a — b X ¢
d x e+ f

82

is translated in prefix notation as

(/ (ma(xbe) (+ (xde) f))

The term arity is used to describe the number of arguments or operands that a function
takes. A unary function (aritl\/ 1) takes onc argument. A binary function (aritl\/ 2) takes two
arguments. A ternary function (arity 3) takes three arguments, and an n-ary function takes
n arguments. Furthermore, variable arity functions can take any number of arguments. For

example,

(+ 12 3 4) ; Equivalent to infix (1 + 2 + 3 + 4). Returns 10.
(x 2 3 4) ; Equivalent to infix (2 % 3 * 4). Returns 24.

(<13 2) ; Equivalent to (1 < 3 < 2). Returns false (NIL).

5.2 Prohibiting expression evaluation

The subexpressions of a procedure application are evaluated, whereas the subexpressions of

a quoted expression arc not.

(/ (x 2 6) 3) ; Returns 4.
() (x 2 6) 3) ; Returns (/ (x 2 6) 3).

5.3 Boolean operations

Lisp supports Boolean logic with opcrators and, or, and not. The two former have variable

arity, and the last one is a unary operator.

The or Boolean operator evaluates its subexpressions from left to right and stops immediately
(without evaluating the remaining expression) if any subexpression evaluates to true. In the
example below the or function will return frue which is the value of (> x 3). Note that

the values true/ false are denoted in Lisp by t/nil respectively.

83

> (let ((x 5))
(or (< x2) > x 3)))
T

The and Boolean operator evaluates its subexpressions from left to right and stops immedi-
ately (without evaluating the remaining expression) if any subexpression evaluates to false.

In the example below the and function will return nil which is the value of (< x 3).

> (let ((x 5))
(and (< x 7) (< x 3)))
NIL

Consider another example:

>(or (and (=1 1) (< 586)) (not (> 3 1))
T

5.4 Constructing lists

We have three mechanisms to create a list which are summarized below:
1. coms: creates a list by adding an clement as the head of an existing list.
2. list: creates a list comprised of its arguments.

3. append: creates a list by concatenating existing lists.

Constructing lists with cons

Function cons constructs a new list by adding a new clement at the head of an existing list.
For an element h and a list L, cons(h, L) denotes a list whose head is h and whose tail is L.

Consider the following examples:
cons(a, () = {(a)

84

cons(a, (b,c)) = (a,b,c)

For any non-cmpty list L, the operations cons, head and tail arc related as follows:

cons(head(L). tail(L)) = L

The function cons is a binary function: it expects two arguments, an clement and a list. If
an element is added to an empty list, then cons is essentially used to create a list, as in the

first of the examples below:

(cons ’a ’()) ; Returns (a).
(cons 1 ’(2 3)) ; Returns (1 2 3).
(cons ’(1 2) ’(3 4)) ; Returns ((1 2) 3 4).

A list in Lisp is singly-linked where each node is a pair of two pointers. the first one pointing
to a data clement and the second once pointing to the tail of the list with the last node’s

sccond pointer pointing to the empty list (See Figure 5.1).

For example, the list (a) can be constructed (and represented) as (cons ’a ?()) or (cons

’a nil).

> (cons ’a ()
(A)
(cons ’a nil)

(A)

The list (a b) can be constructed as (cons ’a (cons ’b ’())) or (cons ’a (cons ’b

nil)).

> (cons ’a (coms ’b ’()))
(A B)
> (cons ’a (cons ’b nil))

(A B)

85

> (cons 'a '()) — nil or a
(7) l
a
> (cons 'a (cons 'b ‘())) —1 | nil
(A B) l l
a b
> (cons 'a (cons (cons 'b (cons 'c¢ '()))
(cons 'd (cons 'e '()))))
(A (B C) D E)
— | | nil
! ! |
a d e
| nil
|
b C

Figure 5.1: List representations.

Thelist (a (b ¢) d e) can be constructed as (cons ’a (cons (cons ’b (coms ¢ ’()))

(cons ’d (cons ‘e "())))).

> (cons ’a (cons (cons ’b (cons ’c *())) (cons ’d (cons ’e *()))))

(A (BC)DE)

5.5 Mutability

An object is said to be mutable (as opposed to immutable) if it can be modified once it is
created. In the example (cons ’(a b) ’(c d)) the function cons produces a new list, as

opposed to modifying any of its list arguments.

Example 5.1. Consider the following sequence of list constructions using cons:

> (cons (+ 2 3) (b ¢))

86

Is the above syntactically correct? Yes, because there are indeed two arguments supplied to
cons and the sccond argument is a list. Here, the parenthesized form (+ 2 3) is evaluated
and replaced by an element, 5. which is now the head of a newly created list, whose tail is the

list (b ¢) passed as a second argument. As a result, the function will return the list (6 B C).

What if we had placed a quote in front of the first argument, i.e.
>(cons *(+ 2 3) (b c))

Lisp would not procced to evaluate the expression, thus taking the parenthesized form as is.

The result would be the list ((+ 2 3) B C).

Consider the following:
> (cons a)

Is this syntactically correct? No, because there are two crrors here. First, a cannot be
cevaluated. Second, there is only onc argument. A list as a sccond argument is missing. As

a result, the function will return Exror (The variable A is unbound.)

How about the following:
> (cons ’a)

Is this syntactically correct? No, because there is only one argument. Even though we use
quotation to tell Lisp not to evaluate a, a list (as a sccond argument) is missing. As a result,

the function will return Exror (The call does not match definition.)

Consider the following:
> (cons ’a ’())

Is this syntactically correct? Yes, because we have an clement and a list. This creates a new

list whose head is a, and whose tail is the list passed as the second argument (the empty

87

list). As a result, the function will return (A).

Yet one more example:
> (cons ’a ’(b c d))

Is this syntactically correct? Yes, because we have an element and a list. This is very similar
to the previous problem, only the second argument is not the empty list. As a result, the

function will return (A B C D).

Constructing lists with list

Function list takes any number of arguments and constructs a list comprised of these

arguments. Function list has variable arity, i.c. it can take any number of arguments.

(list 1 2 ’a 3) ; Returns (1 2 A 3).
(list 1 ’(2 3) 4) ; Returns (1 (2 3) 4).
(list °(+ 2 1) (+ 2 1)) ; Returns ((+ 2 1) 3).

(1ist 1 2 3 (1list ’a ’b 4) 5) ; Returns (1 2 3 (a b 4) 5).
Example 5.2. Consider the following sequence of list constructions using list:
> (list a 1)

Is this syntactically correct? No, because a cannot be evaluated. If we wanted to pass it
as an clement, we needed to precede it with a quote. As a result, the function will return
Error (The variable A is unbound).

Consider the following:

> (list ’a 1)

This is very similar to the above, only now we tell the interpreter not to attempt to evaluate

a. The function will create a list with all its arguments as its clements and will return (A 1).

88

One more example:
> (list ’a ()

Note that as a list can be nested (i.e. it can contain other lists), the empty list is a valid list
element. The function will return (A NIL). It is interesting to query on the length of this

list with the built-in function length:

> (length (list ’a > ()))
2

Let us now extend the previous problem:
> (1ist ’a 70 70O 7O)
This will create and return the list (A NIL NIL NIL). What is the length of this list?

> (length (list ’a >0 >0 *0O))
4

Consider the following:
> (list ’a)

This will create the singleton list (A).

One more example:
> (1list (a b) 2)

Is this syntactically correct? No, because Lisp will attempt to resolve (a b) (remember:
it assumes that it is an expression to be evaluates) but will fail. As a result, the function
will retwrn Error (Undefined operator A in form (A B)). From the error message you can

sce that it assumes the first element of the parenthesized form, a, to be an operator (function).

89

A slight variation:
> (list ’(a b) 2)

This is very similar to the above, only now we tell the interpreter not to attempt to evaluate
(a b). This will create a list with two clements, the first of which is the list (a b): ((A B)

2).

How about an example where we have compound list constructions?
> (list (list ’a ’b) 2)

Whenever you see examples like this, work your way from the innermost parentheses out-
wards. The inner parenthesis contains function list which takes two arguments and it will
create the list (a b). Thus, the outer function is now interpreted as (1ist ’(a b) 2), and

it will return ((A B) 2).

Yet another compound list construction:
> (list (coms ’a (cons ’b ’>())) 2)

We follow exactly the same approach like the previous problem: We work our way from the
innermost parcntheses outwards. The innermost cons will create the list (b), thus making
the outer cons as (cons ’a ’ (b)) which returns the list (a b). The list (a b) will be the
first element in a newly created list, whose second (and last) element is 2. Thus, the list

function will now create the list ((A B) 2).

Constructing lists with append

Concatenation is the operation of joining two sequences of elements end to end. Concatena-
tion can be applied to strings or lists. In the latter case, we can demonstrate the operation

of concatenation with the following example:

concatenate({a,b), (¢, d)) — {a, b, c,d)

90

Function append constructs a new list by concatenating any number of lists that are supplied
as its arguments. Much like list, function append has variable arity, i.c. it can take any

number of arguments. There is a restriction on the types of its arguments: they must all be

lists.
(append ’(1 2) (3 4)) ; Returns (1 2 3 4).
(append ’(1 2 3) *() '(a) (b 6)) ; Returns (1 2 3 a 5 6).

(append ’(1 2 3 ’(abc)) >0 ’(d) ’(4 5)) ; Returns (1 2 3 (QUOTE (a b c)) d 4 5).

Note that append cxpects only lists as its arguments. The following call to append will cause

an error since the first argument, 1, is not a list.

> (append 1 ’(4 5 6))

Error: 1 is not of type LIST.
To crecate the list (1 4 5 6) we must first transform 1 into a list:

> (append (list 1) (4 5 6))
(1 4586)

Example 5.3. Consider the following sequence of list constructions using append:

First, our intention is to create the list (a b ¢).
> (append ’a (b c¢))

Is the above syntactically correct? No, because the first argument is not a list. As a result,
the function will retwrn an Error (A is not of type LIST). What if we insisted to create the
list (& b ¢) using append? We must transform the first argument from an atom to a list.

We have a few options here as shown below:

> (append ’(a) ’(b ¢))
(A B C)

91

> (append (cons ’a >()) ’(b c))
(A B C)

> (append (list ’a) ’(b ¢))
(A B C)

Consider the following cvaluation:

> (append (cons ’a >()) (list ’b ’c))

We have nested expressions, therefore we must work our way from the innermost outwards.
The first expression will create the list (a) and the second expression will create the list (b
c). The outermost expression now becomes (append ’(a) ’(b c)) and it will create the

list (A B C).

Consider the following:

> (append ’() ’(a) (b c) >())

This problem is straightforward. Function append will concatenate all clements of all its list

arguments, returning (A B C).

Yet one more example:

> (append ’(nil) ’(a) (b ¢) *0O)

As in the previous problem: Function append will concatenate all clements of all its list

arguments and it will return (NIL A B C).

Example 5.4. At first, the following expression may seem rather complicated:

> (append (list ’a ’(c d)) (coms ’f (list ’g (cons 'k 2()))))

92

Do not get intimidated with problems like this. The approach should always be the same:
Let us work our way from innermost parenthesized expressions outwards. There are two
expressions which are passed as arguments to append, both of which are evaluated as lists

(thus the form is syntactically correct).

e First argument: (list ’a ’(c d)) will return the list (a (¢ d)).
e Sccond argument:

— (cons ’k ’()) will return the list (k).

— (1list ’g (cons ’k ’())) is now interpreted as (list g ’(k)),

returning the list (g (k)).

— (cons ’f (list ’g (comns ’k ’()))) isnow interpreted as (cons ’f 7 (g (k))),

returning the list (£ g (k)).
The outermost expression can thus be interpreted as
> (append ’(a (c d)) (f g (k)))

and it will return (A (C D) F G (X)).

5.6 Accessing a list

We can only access cither the head of a list, or the tail of a list. Hence, only two operations
arc available: car and cdr. The names arc indeed cryptic. Operation car is somectimes
referred to (and implemented) as first, and operation cdr is referred to and implemented

=4 . .
as rest”. In this text we will adopt car, crd.

Opcration car takes a list as an argument and returns the head of the list. Note that the

head of a list can be either an atom or itself a list. For example,

If your Lisp implementation supports both notations, my suggestion is to adopt one pair only, i.e. chose
between car/cdr and first/rest and keep a consistency. It is confusing to mix the two notations.

93

(car ’(a s d f)) ; Returns a.

(car ’((a s) d £)) ; Returns (a s).

Operation cdr takes a list as an argument and returns the tail of the list. Note that the tail

of a list is itself a list. For example,

(cdr ’(a s d £)) ; Returns (s d f).
(cdr ’((a s) d £)) ; Returns (d £f).

(cdr ’((a s8) (d £))) ; Returns ((d f)).

In the following example, we are interested in accessing the second element in a list. The

sccond clement is the head of the tail of the list:
(car (cdr (1 (3 5) (7 11)))) ; Returns (3 5).
Example 5.5. Consider the following operations to construct and access a list:

> (car (list () ’(a b ¢c)))

NIL

As in previous examples, we should work our way from the innermost parentheses outwards.
The inner function list will create the list (nil (a b ¢)). This list has two elements.
Function car will return the head of this list. It so happens that the head is not an atom,

but a list. In fact it is the empty list.

What if instead of the head we wanted to obtain the tail of the list? The tail of any list is a

list containing all clements except the first (head).

> (cdr (1ist () ’(a b ¢)))
((A B C))

This list contains one element which is itself the list (a b ¢).

94

Consider the following:
> (cdr (append O 70 *0))

Function append will concatenate all elements of all (list) arguments. There are no elements
in its arguments, so the result is the empty list: NIL. There is no tail to the empty list, thus

the result is NIL.

How about if in the previous example, we used 1ist instead?
> (cdr (ist 20 >0 20N

Unlike function append which looks at the contents of its arguments, function list will take
all its arguments (cven if empty) as clements in the newly created list, i.c. the result of

(List () 2O () isthelist (nil nil nil). The tail of this list is the list (nil nil).
Example 5.6. Consider the following expression evaluation:

(append (1ist ’b ’(d e) (x 2 3)) (cons ’(+ 2 3) (list ’f (coms ’g *()))))
Let us work our way from innermost to outermost expressions:

> (list ’b ’(d e) (x 2 3))
(B (D E) 8)

> (cons ’(+ 2 3) (list ’f (coms ’g *()))
((+ 23 F (@)

The value of the outermost expression is (B (D E) 6 (+ 2 3) F (G)). Its length is 6.

Example 5.7. Consider the following expression cvaluation:

(list (append °(+ 1 4) () (list O *0))
(cons (+ 1 4) (1list ’a (cons (+ 1. 7) O

95

Let us work our way from innermost to outermost expressions:

> (append > (+ 1 4) *O (List 0O 70
(+ 1 4 NIL NIL)

> (cons (+ 1 4) (list ’a (cons (+ 1.7) O
(5 A (8))

The value of the outermost expression is ((+ 1 4 NIL NIL) (5 A (8))). Its length is 2.

Example 5.8. Consider the following expression cvaluation:

(car (cdr (cdr (append (list ’(O) ’(a))
(cons b (list (+ 2 3 4)))))))

Let us first evaluate the values of the two expressions supplied as arguments to function

append:

> (list () ’(a))
(NIL (A))

> (cons ’b (list (+ 2 3 4)))
(B 9)

Thus, the append expression becomes

(append (1list ’() ’(a)) (coms ’b (list (+ 2 3 4))))

and it is evaluated to (NIL (A) B 9).

(cdr (append (list ’() ’(a)) (comns ’b (list (+ 2 3 4)))))

evaluates to ((A) B 9).

(cdr (cdr (append (list () ’(a)) (coms ’b (list (+ 2 3 4))))))

96

evaluates to (B 9) and its head (the overall evaluation) is B. This is an atom (not a list) so

there is no notion of length.

Example 5.9. Consider the following expression:

(car (cdr (cdr (append (append ’() ’(a) () (list ’b > (cons (+ 3 4) *O)))))
> (append *() ’(a) > ())

(A)

> (list ’b ’() (coms (+ 3 4) *O))

(B NIL (7))

Thus, the append expression becomes

(append (append > () ’(a) ’()) (list ’b ’() (comns (+ 3 4) >N

and it evaluates to (A B NIL (7)).

(cdr (append (append ’() ’(a) ’()) (list ’b () (comns (+ 3 4) *0))))
cvaluates to (B NIL (7)).

(cdr (cdr (append (append ’() ’(a) *()) (list ’b ’() (cons (+ 3 4) *())))))

evaluates to (NIL (7)) and its head (the overall evaluation) is NIL (the empty list). The

length of the empty list is zero.

5.7 Predicate functions

A function whose return value is intended to be interpreted as truth or falsity is called a
predicate function. The built-in function listp returns true if its argument is a list. For

example,

(listp ’(a b ¢)) ; Returns true (T).

(listp 7) ; Returns false (NIL).

97

Other common predicate functions include:

Predicate Description

(numberp argument) | Returns true if argument is a number.

(zerop argument) Returns true if arqument is zero.

(evenp argument) Returns frue if argument is an cven number.

(oddp argument) Returns true it argument is an odd number.
We provide a larger list of such predicate functions in Chapter 7: Functions I.

5.8 Advanced mathematical operations

Lisp provides a number of built-in advanced mathematical operations. For example, (sqrt

a) returns y/a, (expt a b) returns a® and (log a) returns the natural logarithm of a.

\

(sqrt 9)
3.0

v

(expt 2 3)

\

(log 10)
2.3025852

98

Chapter 6

Control flow

The simplest single conditional is 1f:

(if testEapression

thenExpression)

An alternative form is

(if testExpression
thenErpression

clseExpression)

The testExpression is a predicate while the thenEzpression and the (optional) elseErpression

arc expressions to be cvaluated.

Consider the following example:

(if (listp ’(a b c)) ; If (a b ¢c) %8s a list...
(+ 3 7) ; ...then evaluate this exzpression,

(+ 1 3)) ; ...else evaluate this one.

99

Multiple selection can be formed with a cond expression which contains a list of clauses where
cach clause contains two expressions, called question (condition) and answer. Optionally, we

can have an else clause.

(cond (question answer)

(else answer)) ; Optional.

Questions are predicate expressions evaluated to true or false whereas answers are expres-
sions. Questions arc cvaluated sequentially. For the first question that cvaluates to true,
Lisp evaluates the corresponding answer, and the value of the answer is the value of the
entire cond expression. If the last condition is else and all other conditions fail, the answer
for the cond expression is the value of the last answer expression. We can also use t (true)

in place of else.

6.1 Variables and binding

Binding is a mechanism for implementing lexical scope for variables. The let syntactic form
takes two arguments: a list of bindings and an expression (the body of the binding) in which

to use these bindings.

(let
((binding,)
(binding,)

)

(expression))

100

where (binding,) is of the form (variable, value).

The let values are computed and bindings are done in parallel, which requires all of the
definitions to be independent. In the example below, x and y are let-bound variables; they

arc only visible within the body of the let.

(let ((x 2) (y 3))
(+ x y))

; Returns 5.

6.2 Context and nested binding

An opcerator like let creates a new lexical context. Within this context there are new
variables, and variables from outer contexts may become invisible. A binding can have

different values at the same time:

(let ((a 1))
(let ((a 2))
(let ((a 3))
2)))

Here, variable a has three distinet bindings by the time the body (marked by ...) exccutes
in the innermost let. The inner binding for a variable shadows the outer binding and the

region where a variable binding is visible is called its scope. Consider the following example:

(let ((x 1)) ;¢ 15 1.
(let ((x (+ x 1))) ; = <18 2.

(+ x x))) ; Returns 4.

What if we want the value of one new variable to depend on the value of another variable
established by the same expression? In that case we have to use a variant called let*. A

let* is functionally cquivalent to a scries of nested lets.

101

Consider the following example:

(let*x ((x 10)
(y (* 2 x))) ; Not legal for let.
(x x y))

; Returms 200.

102

Chapter 7

Functions 1

7.1 Introduction to mathematical functions

A function is a relation between a set of inputs and a set of (potential) outputs where each
clement of the input set maps (i.c. it is related) to exactly one clement of the output sct.
Given a function f: X — Y, where X and Y arc sets, then X is called the domain of f and
Y is called the codomain of f. Tn the expression f(x), x is called the argument and f(x) is
called the walue for the function. The definition of a function is not confined to numbers. In

fact a function may rclate clements of any two scts.

7.2 Defining functions

We can define new functions using defun. A function definition looks like this:

(defun name (formal parameter list)

body)

We will demonstrate function construction through a number of examples.

Example 7.1. Consider function absdiff takes two numbers as arguments and returns

103

their absolute difference:

(defun absdiff (x y)
(if > x y)
(- x y)
(- y x)))

We can execute the function as follows:

> (absdiff 3 5)
2

In the function definition above, absdiff (x y). x and y are the formal parameters of
the function. In (absdiff 3 5), 3 and 5 are the arguments (or actual parameters) to the

function absdiff and they arc bound to its formal paramecters.

Example 7.2. A palindrome is a string which can be read the same way in any direction.
For example abba is a palindrome, but abb is not. Dcfine a function ispalindrome which
receives a list argument list and returns true if list is a palindrome; it returns false

otherwise. Function equal returns true if its arguments have the same value.

(defun ispalindrome (list)

(equal list (reverse list)))

We can execute the function as follows:

> (ispalindrome ’(a b b a))

v

(ispalindrome ’())

v

(ispalindrome ’(a b b))
NIL

Example 7.3. Consider function third2! which takes a list as an argument and returns its

isp provides a number of built-in functions, including third in some implementations. Our naming
convention in the cases where we provide our own implementation as in this and other similar examples must
reflect this fact.

104

third clement. The third clement of a list is the head of the tail of the tail of the original

list.

(defun third2 (1lst)

(car (cdr (cdr 1st))))

We can execute the function as follows:

> (third2 ’(a b ¢ d))

C

> (third2 ’(a (b ¢) (d e £) (g)))
D EF)

7.3 Side effects

In computer science, a function or expression is said to produce a side effect if it modifies
some state in addition to its return value. For example, a function might modify some global
variable, modify onc of its arguments, write data to a display or file, or read some data from

other side-effecting functions. We discuss side cffects in detail in Chapter 8.

7.4 Pure functions

A function may be described as pure if both these statements about the function hold:

1. The function always evaluates the same result value given the same argument value(s).

2. The evaluation of the result does not cause any semantically observable side effect or

output, such as mutation of mutable objects or output to I/O devices.
Consider the following examples:

e A function length(string) is purc because it returns the size of a string.

e A function today() is impure because at different times it will yield different results.

105

e A function print(arg) is impurc because it causes output as an cffect.

Pure functions allow optimization of expressions through a process called common subex-
pression elimination. For example. consider y = f(x) x f(x). The evaluation of f(x) can
be costly. A compiler can perform an optimization by factoring out f(z) if it is pure, trans-

forming the program to

thus climinating the sccond cvaluation of f(x).

If a function is impure, common subexpression climination is not possible. For example, in
y = random() x random(), then the seccond call to random() cannot be climinated, because

its return value will (most likely) be different from that of the first call.

7.5 Referential transparency

An expression is said to be referentially transparent (as opposed to referentially opaque) if
it can be replaced with its value without changing the program (in other words, yielding a
program that has the same effects and output on the same input). Since referential trans-
parcncy involves the concept of determinacy (producing the same result for cach input), all
referentially transparent functions are determinate. If all functions involved in the expres-
sion are pure functions, then the expression is referentially transparent. In pure functional

programming, referential transparency is enforced for all functions.

Examples where referential transparency holds:

e (x 5 5) can be replaced by 25.

e sin(x) will always give the same result for any given .

106

Examples where referential transparency does not hold:

e The expression x++ in languages such as C++ or Java is not transparent, as it changes

the value of x.

e System.out.println("Hello world") cannot be replaced by its value (say, 0) since

Hello world will not be displayed.

e Function today() cannot be replaced by its value (say, “June 27, 2009”) since it will

not yield the same result the day after.

Being side-effect free is necessary but not sufficient for referential transparency. Referential
transparency implies that an expression (such as a function call) can be replaced with its

value; this requires that the expression has no side effects and is determinate.

7.6 Idempotence

The notion of idempotence is a property of a mathematical operation that has the same
effect if used multiple times as it does if used only once. For example, the absolute value.

abs(). function is idempotent, as

abs(x) = abs(abs(x))
= abs(abs(abs(x)))

= ...forall x.

In other words, applying abs exactly once yields the same result as repeatedly applying abs

any number of times.

107

7.7 Higher-order functions
Functions are called higher-order if they do at least one of the following:

1. Take onc or more functions as their arguments.

2. Return a function.

The derivative function in calculus is a common example, since it maps a function to another

function, e.g.

d , .
T (ZL‘Z) =2

As an example, consider function sort which takes as an argument a list, constructed through

function list. and the comparison operator greater-than (>) and returns a sorted list.

>(sort (list 507 3 9 1 4 13 23) #’>)
(231397543 10)

Common higher-order functions in Lisp that take functions as arguments are:

mapcar takes as its arguments a function and onc or more lists and applics the function to

the elements of the list(s) in order.

> (mapcar #’* (2 3) ’(10 10)) ; Multiplication applies to successive pairs.

(20 30)

funcall takes as its arguments a function and a list of arguments (does not require argu-
ments to be packaged as a list), and returns the result of applying the function to the

elements of the list.

> (funcall #’+ 1 3 4) ; Equivalent to (+ 1 3 4).

8

apply works like funcall, but requires that the last argument is a list.

108

> (apply #’+ 3 4 "(1 3 4))
15

Example 7.4. Consider each of the following expressions and their corresponding output:

[

(car (cdr (append (cons (list (x 2 4 2) ’(* 2 4 2)) (list ’(abc) (+ 12
3))))))

> (ABC)

(mapcar #’max (append (cons 9 (list 6 15)) ’(3)) (append ’() (cons 10 ’(4
17 3)3))

> (10 6 17 3)

(funcall #’min (- 96) 1 (+ 2 3 5))

> 1

(apply #’+ 3 5 (append ’() ’(4) (cons 4 (list 3 2))))
> 21

(apply #’+ 4 (mapcar #’*x (2 4) (3 2)))

> 18

7.8 Anonymous functions

An anonymous function is one that is defined, and possibly called, without being bound to an

identifier. Unlike functions defined with defun, anonymous functions arc not stored in mem-

ory. The general syntax of an anonymous function in Lisp (also called lambda expression)

18

(lambda (formal parameter list) (body))

where body is an expression to be evaluated.

An anonymous function can be applied in the same way that a named function can, e.g.

109

> ((lambda (x) (x x x)) 3)
9

Example 7.5. In this example we combine a higher-order function with an anonymous
function. Consider a function that takes a list as an argument and returns a new list whose
elements are the elements of the initial list multiplied by 2. We can perform the multiplication
with an anonymous function, and deploy mapcar to apply the anonymous function to the

clements of the list as follows:

> (mapcar (lambda (n) (* n 2)) (2 35 7))
(4 6 10 14)

Essentially, a lambda expression is a non-reusable inline function. We can deploy lambda

expressions when we want to avoid having one-line functions which are unlikely to be reused.

7.8.1 Equivalence between let and lambda

We can demonstrate the equivalence between let and lambda through the following example:

> (let ((x a)) (list x x))

(A B

> (setf 1lst ((lambda (x) (list x x)) ’a))
(A B

where x is called a bound variable within the function.

7.9 Parameter lists

In this section we will discuss rest, optional and keyword parameters.

7.9.1 Developing variable arity functions with rest parameters

So far, we developed functions that would take a predetermined number of arguments. We

should, however, be able to write a function of variable arity and we can do this through a

110

rest paramecter. The token &rest before the last parameter in the parameter list, makes this

last parameter a list that will contain all the remaining arguments.

In the following example, we define function construct-list that takes any number of
arguments and places them in a list. Notice that in the case where no second (or third cte.)

argument is provided, the list represented by args is empty.

(defun construct-list (thing &rest args)

(cons thing args))

We can execute the function as follows:

> (construct-list ’a)

(A)

> (comnstruct-list ’a *())

(A NIL)

> (construct-list ’a ’b ’c¢ ’d)
(A BCD)

> (construct-list ’a ’(b c))

(A (B C))

7.9.2 Optional parameters

As the term suggests, an optional parameter (as opposed to required) is one that can be
omitted. Additionally. an optional parameter can have a default value. The implicit default

value is nil, but we can provide an explicit default.

In the next example, we leave the default implicit value for the optional parameter arg:

(defun make-quote (thing &optional arg)

(1list thing arg))

>(make-quote ’all)

(ALL NIL)

111

Let us now modify the function slightly and also provide an explicit default value to param-

cter arg which we specify by enclosing it in a list with the parameter:

(defun make-quote (thing &optional (arg ’die))

(list thing ’men ’must arg))

We can execute the function as follows:

> (make-quote ’all)
(ALL MEN MUST DIE)
> (make-quote ’all ’serve)

(ALL MEN MUST SERVE)

7.9.3 Keyword parameters

A more flexible kind of optional paramecter is the keyword parameter. In a paramcter list,
all paramecters after the &key symbol arc optional. Additionally, they can be identified not

by their position in the parameter list. but by symbolic tags that precede them.

In the following example, function make-pairs takes four optional paremeters that combines

into a list of two pairs:

(defun make-pairs (&key a b ¢ d)

(list (list a b) (list ¢ d)))

We now can execute the function by passing arguments under symbolic tags that would

correspond to the function paramecters:

> (make-pairs :¢ 3 :a 5 :d 1 :b 9)
((5 9) (3 1))

As the implicit default is nil, consider the following example:

> (make-pairs)

((NIL NIL) (NIL NIL))

112

Consider another execution where we combine implicit defaults and symbolic tags:

> (make-pairs :a 7 :d 6)

((7 NIL) (NIL 6))

To specity explicit defaults we have to modify our function:

(defun make-pairs (&key a b ¢ (d ’last))

(list (list a b) (list ¢ d)))

Finally, consider the example where we combine implicit and explicit defaults, and symbolic

tags:

> (make-pairs :a 7)

((7 NIL) (NIL LAST))

Example 7.6. In the following example, we build a utility function, fn, that will read an
argument and return a function based on the type of the argument. If the argument is a
number, then the function will return +, otherwise if the argument is a list, then the function

will return append.

(defun fn (x)
(cond
((numberp x) #7’+)

((1listp x) #’append)))

Function combine takes any number of arguments (note that the assumption is that all
arguments arc of the same type and arc cither numbers or lists). It will call the utility
function fn to read in the first argument and return a function that will in turn be used to
combine all arguments accordingly: If the arguments are numbers, then they will be added.

If the arguments are lists, then they will be concatenated.

(defun combine (&rest args)

(apply (fn (car args)) args))

113

Figure 7.1: Example of function composition.

> (combine 2 3 4)

9

> (combine ’(a b) ’(c d))
(A BCD)

7.10 Function composition

We can construct a new function by combining simpler functions. Many times we use com-
position of functions even though we may not refer to it explicitly as such. The composition

of two functions f and ¢ is the function denoted by f o ¢ is defined as

(fog)x)= flg(x))

The composition makes sense only for values of z in the domain of g such that g(z) is in the

domain of f.

Example 7.7. In Figure 7.1. X is the domain of g and Y is the codomain of g. Values of

g{x) arc in Y which is the domain of f. For example, g(z) = a, and f(g(z)) = 2.

Example 7.8. For the list L = (a.b), head(tail(L)) is a valid function composition, whereas

tail(head(L)) is not a valid function composition because head(L) is an atom.
Example 7.9. For f(z) =z + 2 and g(z) = 2% — 1, then (f o g)(z) yields (2% — 1) + 2.

Example 7.10. Consider function consl? which places an clement to the right of a list, just

as function cons places an element on the left of a list. For example,

114

consR((a,b,c),d) = {(a,b,c,d).

We can provide a recursive computable function definition for consR(L, e) (cither in math-

ematical or in natural language notation).

consR(L.e) =if L = () then (e)

clse concatenate(head(L), consR(tail(L), ¢)).

We can translate the above definition into Common Lisp function consr(1lst elt). Note
that for the purpose of this example. we may not use append or anything equivalent to just

attach an clement to the end of the list.

(defun consr (lst elt)
(if (null 1st) (list elt)

(cons (car 1st) (consr (cdr 1lst) elt))))

Example 7.11. Let us define a Common Lisp function which takes two lists as its arguments
and returns a list whose clements arc the products of the corresponding pairs of its arguments.

For example,

> (product ’(2 3) ’(4 5))

(8 15)

> (product ’(2 2 4) ’(3 4 5))
(6 8 20)

In the case of arguments of different length, the function should ignore any remaining cle-

ments. For example,

> (product ’(2 3) ’(4 56 7))
(8 15)

115

The function is defined as follows:

(defun product (lstl 1st2)
(if (or (null 1st1) (null 1st2))
nil
(let ((a (x (car 1lstl) (car 1st2))))

(cons a (product (cdr 1stl) (cdr 1st2))))))

7.11 Common built-in and predicate functions
A non-cxhaustive list of Common Lisp built-in functions and predicates is shown below:

abs Returns the absolute value of its argument.

> (abs -3)
3

> (abs 5.5)
5.5

atom Returns true if its argument is an atom; Returns false otherwise.

> (atom ’a)

> (atom 1)

> (atom ’())

> (atom ’(a b c))

NIL

equal Returns true if its arguments have the same value; Returns false otherwise. Compare

it with function eq in Chapter 8: Side effects.

116

> (equal ’a ’a)

T

> (equal 3 3.0)
NIL

> (equal 5 5)

T

> (equal ’a ’(a))
NIL

evenp Returns true if argument is an cven integer number; Returns false otherwise. An

crror occurs if the argument is not an integer number.

\

(evenp 2)

v

(evenp 0)
T

> (evenp 3)
NIL

> (evenp -1)
NIL

> (evenp -2)

T

integerp Returns true if its argument is an integer number; Returns false otherwise.

> (integerp 2)

T

> (integerp 2.5)
NIL

> (integerp -2)
T

117

> (integerp (car ’(1 2.5 (0)))
T

listp Returns true if its agrument is a list; Returns false otherwise.

> (listp *O)

T

> (1listp (car (cdr ’(a (be)))))
T

null Returns true if its argument is the empty list; Returns false otherwise.

>(null > 0))

T

> (null ’(a b ¢))
NTL

numberp Returns true if its argument is a number; Returns false otherwise.

> (numberp 0)

T

> (numberp ’a)

NIL

> (numberp ’(1 2 3))

NIL

> (numberp (car ’(1 2 3)))
T

oddp Returns true if its argument is an add integer number; Returns false otherwise. An

error occurs if the argument is not a positive integer number.

118

> (oddp 0)
NIL

> (oddp 1)
T

plusp Returns true if its argument is a positive number; Returns false otherwise.

> (plusp 0)
NIL

> (plusp -3.5)
NIL

> (plusp 2)

T

119

120

Chapter 8

Side effects

Common Lisp is not a purc functional language as it allows side cffects.

8.1 Variables and assignments

A variable is global if it is visible everywhere as opposed to a local variable which is visible
only within the code block in which it is defined. A global variable is accessible everywhere
except in expressions that create a new local variable with the same name. Inside code
blocks, local values are always looked for first. If a local value for the variable does not exist,

then a global value is sought. If no global value is found then the result is an crror.
To define a global variable we use

(defparameter name value)

where name is the name of the global variable and value is an expression to be evaluated
and will set the initial value of the variable. In order to avoid unexpected name conflicts
with local variables, it is conventional to give global variable names that lie within asterisks,

c.g.

> (defparameter *pix 3.14)

*PTx

121

> *pi*

3.14

We can now usc defparameter again to modify the value of the variable.

> (defparameter *pix 3.14159265)

*PT %
> *pi*
3.1415928

To define a global constant we use

(defconstant name value)

where name is the name of the global constant and value is an expression to be evaluated

and will set the value of the constant.

> (defconstant limit 100)

LIMIT
> limit
100

Once a constant is defined, if we attempt to modify it using defparameter, we will receive

all error:

> (defparameter limit 90)

Error: LIMIT is a constant and cannot be set or bound.

To verify whether or not a symbol is alrcady in use to define a global variable or global

constant, we can use

122

(boundp 'name)

For example:

> (boundp ’limit)

T
whereas

> (boundp ’speed)
NIL

We use setf to assign both global and local variables. The general format is

(setf place value)

and it is used to assign a new value to a place (variable). More specifically, setf uses its
first argument to define a memory location. it then evaluates its second argument and stores

the result in this memory location.

> (setf x "(a b ¢))

(A BC

> (car x)

A

> (cdr x)

(B C)

> (cdr (cdr (cdr x)))

NIL

> (setf x (append x ’(d e)))
(ABCDE)

Variables arc essentially pointers. Function eql will return frue if its arguments point to

the same object, whereas function equal returns true if its arguments have the same value.

123

> X
(ABCDE
> (setf y ’(a b c de))
(ABCDE)
> (eql x y)
NIL

> (equal x y)
T

> (setf z x)
(ABCDE)
> (eql x z)

T

\

(equal x z)
T

> (eql vy 2)
NIL

> (equal y z)
T

The function copy-list takes a list and returns a copy of it.

> (setf w (copy-list x))
(ABCDE)

> (eql x w)

NIL

> (equal x w)

T

124

We can define our own function to copy a list, as follows:

(defun copy-list2 (lst)
(if (atom 1lst)
1st

(cons (car lst) (copy-list2 (cdr 1st)))))

> (setf k ’(a b (cd) (e £ g)))
(A B (CD) (EF G))

> (setf 1 (copy-list2 k))

(A B (CD) (EF G))

> (eql k 1)

NIL

> (equal k 1)

T

We can usc setf to modify a list. Consider the example below:

> (setf x "(abc d))

(A BCD)

> (setf (car x) ’(a b ¢))
(A BC

> x

((ABC) BCD)

> (setf (cdr x) "((b ¢ d)))
((B C D))

> x

((ABC) (BCD)

8.2 Shared structure

Lists can sharc structurc. This implics that two variables may share clements. If the value

of an element is modified through accessing one variable, this modification is reflected on

125

the other variable as well as both variables have common (shared) structure.

Example 8.1. Consider the following example:

(setf 1listl ’(a b ¢ d))

(setf 1list2 (cons ’x (cdr 1listl)))

We can verify the contents of the two lists as

> listl

(ABCD)

> list?2

(X B CD)

Let us now modify the value of an clement in 1ist1 as follows:

(setf (car (cdr listl)) ’y)

This has changed 1ist1 but also 1ist2 which can be an undesired result.

> listl

(AYCD)

> list?2

(XY CD

The example is illustrated in Figure 8.1.

Example 8.2. Consider the following:

> (setf 1stl ’(a b ¢))
(A BC)

> (setf 1st2 (cons ’x (cdr 1lstl)))

(X B C)

126

(setf listl "(a b ¢ d)) listl | A B C D|

2 (X[9—

(setf list2 |
{cons 'x (cdr listl)))

> listil
(A B CD)

» 1list2
(X B £ D)

IHm&mmamnmmWMgagm@}
in the current structure of list1,

(setf (car (cdr list1)) 'y) listl | A Y C D

list2 [XE—

> listl
(AY CD)

> list2
(XY CD)

Figure 8.1: Shared structure - Part 1 of 2.

> (setf (cdr 1lstl) ’(y z))

Y 2

> 1stil
(A Y Z)

> 1st2

(X B C)

Why has 1st2 not changed? To answer the question we need to take a closer look at shared
structure through a comparison between the current and the previous examples (Figures 8.1,
and 8.2). Obscrve that since cach clement in a Common Lisp list is a two-compartmental
box (one containing the value and another containing a pointer to the sccond clement), for

1st2 to have been changed, the pointer of the head of 1st2 should be pointing not to B, but

127

(setf 1stl '(a b ¢)) Ist1 | A B (ol

{setf lst2 lst2 X
(cons "x {cdr 1lstl)))
> lstl
(A B C)
> lst2
(X B C)
Here, we are modifying the Y 7
actual structure of Istl.
(setf (cdr 1lstl) '(y z)) Ist1 | A X> B C

st2

> 1stl
(A Y Z)

> 1st2
(X B O)

Figure 8.2: Shared structure - Part 2 of 2.

to the pointer (the second compartment) of the head of 1stl. However, it does not. As a
result, as we break the pointer from the head of 1stl to (B C) and we create a new pointer
from that head to (Y Z), the structurc of 1st2 is not affected. The pointer of the head of

1st2 still points to (B C).

8.3 Control flow

The loop form repeats until some condition is satisfied or when an explicit exit statement is
encountered. This form allows you not to specify a condition, thus creating an infinite loop

as follows:
(loop (print))

The above is obviously bad programming. A return from anywhere inside the loop will

cause control to exit the loop; any value you specify becomes the value of the loop form.

128

The example below will display “Inside a loop” and return 7.

(loop
(print)
(return 7)

(print)

return can also be used in a conditional form to determine when the loop should terminate.

as follows:

(let ((n 0))
(loop
(when (> n 3) (return))
(print n) (write (¥ n n n))

(incf n)))

NIL

The dotimes form repeats for some fixed number of iterations: dotimes (<counter> <limit>

<result>) <body>)

(dotimes (n 3)
(print n)

(write (* n n n)))

129

8.4 Blocks

There arc three basic operations for creating blocks of code: progn, block, and tagbody.
With progn, the expressions within its body are evaluated in order, and the value of the last

is returned:

(progn
(format t)
(format t)
(+ 1 2))

Xy

3

A block is like a progn with a name and an emergency exit. The first argument should be
a symbol and it becomes the name of the block. At any point within the body you can halt
cvaluation and return a value immediately by using return-from with the block’s name.
The second argument to return-from is returned as the value of the block named by the

first. Expressions after the return-from are not evaluated.

(block my-label
(format t)
(return-from my-label Exit)

(format t)

Inside a block.

Exit

Within tagbody you can usc go, a statement which instructs execution to jump to the line
containing an atom which appcars inside the body and interpreted as a label. Consider the

following example:

(tagbody
(setf x 0)

130

top
(setf x (+ x 1))
(format t x)

(if (< x 10) (go top)))

123 45¢6 789 10

NIL

The statement go is found (usually by its semantic synonym goto) in many programming

languages. It causes an unconditional jump of execution to another statement, identified by

a label or a line number (depending on the language).

131

132

Chapter 9

Recursion

Recursion is a fundamental notion in Computer Science. In problem solving, the deployment
of recursion implies that the solution to a problem depends on solutions to smaller instances
of the same problem. Recursion refers to the practice of defining an object, such as a function

or a sct, in terms of itsclf. Every recursive function consists of:
e One or more base cases, and
e Onc or more recursive cases (also called inductive cases).
Each recursive case consists of:
1. Splitting the data into smaller picces (for example, with car and cdr),

2. Handling the picces with calls to the current method (note that every possible chain

of recursive calls must eventually reach a base case), and
3. Combining the results into a single result.

A mathematical function uses only recursion and conditional expressions. A mathematical
conditional expression is in the form of a list of pairs, cach of which is a guarded expression.

Each guarded expression consists of a predicate guard and an expression:

functionName(arguments) = expression; — predicateGuardy, . . .

which implies that the function is evaluated by expression,, if predicateGuard, is true.

133

Example 9.1. Suppose we need to define the function f: N — lists(N) that accepts an

integer argument and returns a list, such that

fn)={(n,n—1,..0)

In this and similar problems, we can transform the definition of f(n) into a computable
function using available operations on the underlying structure (list). We can use cons as

follows:

fn)=(n,n—1,..1,0)
= cons(n, (n —1,...,1,0))

= cons(n, f(n—1)).

We can therefore define f recursively by

70) = (0
f(n)=cons(n, f(n—1)), forn>0.

We can visually show how this works with a technique called “unfolding the definition” (or

“tracing the algorithm™).

134

We can unfold this definition for f(3) as follows:

, f(2)
= cons(3, cons(2, f(1)))

)

(2,

= cons(3, cons(2, cons(1, f(0))))

= cons(3, cons(2, cons(1,{0))))
(2,

= cons(3, cons(2,(1,0)))

— (3,2,1,0).

We can implement function bsequence as follows:

(defun bsequence (n)
(if (= n 0)
(cons 0 ’())

(cons n (bsequence(- n 1)))))

We can execute the function as follows:

> (bsequence 0)
(0)
> (bsequence 3)

3210

Example 9.2. Function factorial : Ny — Ny is defined for non-negative integers by two

guarded expressions as follows:

1 for n=20
factorial(n) =

n x factorial(n —1) for n >0

135

We can implement function factorial as follows:

(defun factorial (n)
(if (= n 0)
1

(¥ n (factorial (- n 1)))))

We can execute the function as follows:

> (factorial 3)
6
> (factorial 5)

120

Example 9.3. The Ackermann function' is defined as follows:

n+1 for m=20

Ack(m.n) = Ack(m —1,1) for m>0,n=0

| Ack(m — 1. Ack(m.n —1)) for m>0.n>0

We can implement function ackermann as follows:

(defun ackermann (m n)
(cond ((zerop m) (+ n 1))
((zerop n) (ackermann (- m 1) 1))

(t (ackermann (- m 1) (ackermann m (- n 1))))))

The function grows very quickly (i.e. many steps) and results in large numbers even for

small arguments. We can execute the function as follows:

> (ackermann 0 1)
2

> (ackermann 0 0)

"After German mathematician Wilhelm Friedrich Ackermann (1896 - 1962).

136

> (ackermann

> (ackermann

> (ackermann

> (ackermann

> (ackermann

> (ackermann

125

0)

1)

2)

3)

3)

4)

Example 9.4. Consider function append2 which takes as its arguments two lists 1st1 and

1st2 and returns a new list which forms a concatenation of 1stl and 1st2.

Basc casc: If 1st1 is empty, then return 1st2.

Recursive case: Return a list containing as its first clement the head of 1stl with its tail

being the concatenation of the tail of 1stl with 1st2.

We can implement function append2 as follows:

(defun append2 (1lstl 1lst2)

(if (null 1stl)

1st2

(cons (car 1stl)

(append2 (cdr 1lstl) 1st2))))

We can execute the function as follows:

> (append2 () ’(a))

(a)

> (append2 ’(a b c) ’(d e £))

(abcde f)

137

We can trace the execution of (append2 ’(a b ¢) ’(d e £)) as follows:

(append?2 ’(a b c) ’(d e £))
= cons (’a (append2 (b ¢) ’(d e £)))

cons (’a (cons ’b (append2 ’'(c) '(d e £))))

cons (’a (cons ’b (cons ’c (append2 ’() ’(d e £)))))

cons (’a (cons ’b (cons ’c ’(d e £))))

=’(abcde 1)

Example 9.5. Consider function sum which takes a list 1st as its argument and returns the

summation of its elements.
Base case: If the list is empty, then sum is 0.
Recursive case: Add the head element to the sum of the elements of the tail.

We can unfold this definition for sum((2,4.5)) as follows:

sum((2,4,5)) = 2 + sum/((4,5))
= 2+ 4+ sum((5))
=2+ 4+5+ sum(())
=2+4+5+0

=11

We can implement function sum as follows:

(defun sum (1lst)
(cond ((null 1st) 0)

(t (+ (car 1lst) (sum (cdr 1st))))))

We can execute the function as follows:

> (sum (1 2 3 4 5))
15

138

We can trace the exceution of (sum (1 2 3 4 5)) as follows:

(sum ’(1 2 3 4 5))
= (+ 1 sum ’(2 34 5))
= (+1 (+ 2 sum ’(3 4 5)))
= (+1 (+2 (+ 3 sum ’(4 5))))
=(+1 (+2(+ 3 (+4sum’(5))N))
= (+1 +2 3 ((+4 (+5sum O
=(+1 (+2 34 E50ND)
= 15

Example 9.6. Consider a function last2 which takes a list 1st as its argument and returns

the last clement in the list.

Basc casc: If the list has onc clement (its tail is the empty list), then return this element.
Recursive case: Return the last element of the tail of the list.

We can implement function last2 as follows:

(defun last2 (lst)
(cond ((null 1st) nil)
((null (cdr 1st)) (car 1st))

(t (last2 (cdr 1st)))))

We can execute the function as follows:

> (last2 (ab 34 cd5 6))
6

> (last2 (a b (c d 1))
(CD 1)

Example 9.7. Consider a recursive function length2 which takes a list 1st as its argument

and returns the length of 1st.

Base case: If the list is empty, then the length of the list is 0.

139

Recursive case: Add 1 to the length of the tail.

We can implement function length2 as follows:

(defun length2 (1lst)
(if (null 1st)
0

(+ 1 (length2 (cdr 1st)))))

We can execute the function as follows:

> (length2 ’(ad c 12 3))

6

> (length2 ’(a (bc) (1 2 3)))
3

Example 9.8. Consider function reverse2 which takes a list as its argument and returns

the reversed list.

Base case: If the list is empty, then return the empty list.

Recursive case: Recur on the tail of the list and the head of the list.

We can implement function reverse?2 as follows:

(defun reverse2 (1lst)
(cond ((null 1st) ’())

(t (append (reverse2 (cdr 1st)) (list (car 1st))))))

We can execute the function as follows:

> (reverse2 ’(a b c d))

(DCB A

Example 9.9. Consider function product which takes a list 1st as its argument and returns

the product of its elements. This function is very similar to sum.

140

Basc casc: If the list is empty, then the product is 1 (by convention).

Recursive case: Multiply the head of 1st to the product of the elements of the tail.

We can implement function product as follows:

(defun product (1lst)
(cond ((null 1st) 1)

(t (¢ (car 1lst) (product (cdr 1st))))))

We can execute the function as follows:

> (product ’(3 5 7))
105

Example 9.10. Consider a function called cube-1ist, which takes as argument a list of

numbers and returns the same list with each element replaced with its cube.

We can implement function cube-1ist as follows:

(defun cube-list (1lst)
(cond ((null 1st) nil)
(t (let ((elt (car 1lst)))
(cons (* elt elt elt)

(cube-list (cdr 1lst)))))))

We can execute the function as follows:

> (cube-list (1 3 5))

(1 27 125)

Example 9.11. Consider function interleave which takes two lists 1stl and 1st2 as
its arguments and returns a new list whose elements correspond to lists 1stl and 1st2
interleaved, i.e. the first element is the from 1st1, the second is from 1st2, the third from

lstl, ctc.

141

Base casces:

1. If 1st1 is empty, then return 1st?2.

2. If 1st2 is cmpty, then return 1stl.

Recursive case: Concatenate the head of 1st1l with a list containing the concatenation of

the head of 1st2 with the interleaved tails of 1stl and 1st2.

We can implement function interleave as follows:

(defun interleave (1lstl 1st2)
(cond ((null 1stl) 1lst2)
((null 1st2) 1stl)
(t (cons (car 1stl) (cons (car 1st2)

(interleave (cdr 1lstl) (cdr 1st2)))))))

We can execute the function as follows:

> (interleave ’() ’(1))

(1)

> (interleave ’(a b c) (1 2 3))
(A1B2C3)

> (interleave ’(a b ¢ d) *(1))

(A1 BCD)

> (interleave ’(a b ¢) (1 2 3 4 5))
(A1 B2C345)

Example 9.12. Consider function remove-first-occurrence which takes as arguments a

list 1st and an clement elt, and returns 1st with the first occurrence of elt removed.
Basc casces:

1. If 1st is empty, then return the empty list.

2. If the head of 1st is the symbol we want to remove then return the tail of 1st.

142

Recursive case: Keep the head of 1st and recur on the tail of 1st.

We can implement function remove-first-occurrence as follows:

(defun remove-first-occurrence (lst elt)
(cond ((null 1st) nil)
((equal (car 1lst) elt) (cdr 1lst))

(t (cons (car lst)(remove-first-occurrence (cdr 1lst) elt)))))

We can execute the function as follows:

> (remove-first-occurrence (a e b ¢ d e) ’e)

(ABCDE)

Let us trace the exccution of (remove-first-occurrence (a e b ¢ d e) ’e):

(remove—-first-occurrence (a e b ¢c d e) ’e)

(cons ’a ((remove-first-occurrence (e b ¢c d e) ’e))

(cons ’a (b c d e))

@b cde)

Example 9.13. Consider function remove-all-occurrences which takes as arguments a

list 1st and an element elt, and returns 1st with all occurrences of elt removed.

Basc casc: If 1st is empty, return the empty list.
Recursive cases: There are two cases to consider when the list is not empty.

1. When the head of the list is the same as elt. ignore the head of the list and recur

on removing elt from the tail of the list.

2. When the head of the list i3 not the same as elt, keep the head and recur on

removing elt from the tail of the list.

143

We can implement function remove-all-occurrences as follows:

(defun remove-all-occurrences (lst elt)
(if (null 1st)
nil
(if (equal (car 1lst) elt)
(remove-all-occurrences (cdr 1lst) elt)

(cons (car 1lst) (remove-all-occurrences (cdr 1lst) elt)))))

We can execute the function as follows:

> (remove—all-occurrences (zaz bz z ¢c) 'z)

(AB O

Example 9.14. Consider function merge2 which takes as its arguments two sorted lists of

non-repetitive numbers and returns a merged list with no redundancies.
Base cases:

1. If 1st1 is empty, then return 1st?2.

2. If 1st2 is cmpty, then return 1stl.
Recursive cases:

1. If the head of 1st1 equals to the head of 1st2 then ignore this element and recur

on the tail of 1stl and 1st?2.

2. If the head of 1st1 is less than the head of 1st2, then keep this clement and

recur on the tail of 1stl and 1lst2.

3. Otherwise keep the head of 1st2 and recur on 1stl and the tail of 1st2.

We can implement function merge?2 as follows:

(defun merge2 (lstl 1lst2)
(cond ((null 1stl) 1st2)
((null 1st2) 1stl)

((= (car 1stl) (car 1lst2)) (merge2 (cdr 1lstl) 1st2))

144

((< (car 1lstl) (car 1st2))
(cons (car 1lstl) (merge2 (cdr 1lstl) 1st2)))

(t (cons (car 1lst2) (merge2 1lstl (cdr 1st2))))))

We can execute the function as follows:

> (merge2 (3 4 6 8) *(3 45 6))
(3456 8)

> (merge2 () ’(6 7 8))

(6 7 8)

> (merge2 ’(2.5 6 7.5) *(6))
(2.5 6 7.5)

9.1 Higher-order recursion

When a recursive call is the last step in the definition of a recursive method, this is referred
to as tail recursion. All the above examples fall into this category. When a recursive
function makes more than a single recursive call, we say that the function uses higher-order
recursion. This can be binary recursion (two recursive calls, each to solve two similar halves

of the problem) or multiple recursion (potentially many recursive calls).

145

The Fibonacci sequence

The Fibonacci sequence? is defined as follows:

E) — ()
=1

FL' = Fi,1 + FL',Q f()T’ 1 Z 2.

We can unfold this definition for Fy as follows:

Fs = Fy+ F3
=(F+ F)+ (I + F)

=((Fo+ [+ (F+ F) + ((Fy+ Fy) + 1)

(FL+Fo)+ F)+ (FL+ Fy)+ (FL+ Fo) + 1)

d

We can now define function fibonacci which takes as its argument a non-negative integer

k and returns the & Fibonacci number F.

We can implement function fibonacci as follows:

(defun fibonacci (k)
(if (or (zerop k) (= k 1))
k

(+ (fibonacci (- k 1)) (fibonmacci (- k 2)))))

2 After Italian mathematician Leonardo Pisano Bigollo, also known as Leonardo Fibonacci (c. 1170 - c.
1250).

146

We can execute the function as follows:

> (fibonacci 5)

5

The above program is correct but rather slow, the reason for this is that both Fj and Fj_

must compute Fj_o. A iterative solution would be our best choice.

Example 9.15. Suppose we need to define function max : lists(N) — N which accepts a
list of integers and returns an integer which represents the maximum clement in that list.

The function is not defined for an empty list and the function should issue false in that case.

Let us transform the definition into a recursive computable function:

false it st is empty.

max(lst) = head(lst) if tail(lst) is empty.

greater — of (head(lst), max(tail(lst))) if tail(lst) is not empty.

Let us unfold the definition for maz((3,7,5,2)):

max((3,7,5,2)) = greater — of (3, max({7,5,2)))

= greater — of (3, greater —of (7, max((5,2))))

)
(
= greater — of (3, greater — of (7, greater — of (5, maz((2)))))
= greater — of (3, greater — of (7, greater — of (5, 2)))

(

= greater — of (3, greater — of (7, 5))

= greater — of (3, 7)

=T.

147

We can implement the mathematical function max as function max2:

(defun max2 (1lst)
(cond ((null 1st) nil)
((null (cdr 1st)) (car 1lst))
(t (let ((a (car 1lst))
(b (max2 (cdr 1st))))
(if (> a b) a bl)))))

Let us trace the execution of the function with the following sample input data:

e The list (3 7 5 2):

(max2 (3 7 5 2))
1. a =3, b =max(7 5 2)
2. a=7, b =max(b 2)
3. a=25, b=max(2)
4. singleton list
4. return 2
3. (6 > 2) is true, return 5
2. (7 > 5) is true, return 7

1. (3 > 7) is false, return 7

e The empty list: For the empty list the code is straightforward: The function returns

false (NIL).

e The list (3): For any singleton list (i.c. onc that has only one clement) the function

returns its only clement.

Example 9.16. Let us define a recursive definition and an implementation for function min2

which takes a list 1st of integers as its argument and returns the minimum element of the

list.

148

The recursive definition of min2 is as follows:

Base case:

1. If 1st is empty, then return nil.

2. If 1st contains one element, then return that element.

Recursive case: Return the smaller between the head of the list and the minimum of the

tail of the list.

We can implement function min2 as follows:

(defun min2 (1lst)
(cond ((null 1st) °’())
((null (cdr 1st)) (car 1lst))
(t (let ((a (car 1lst))
(b (min2 (ecdr 1st))))
(if (< b a) b a)))))

> (min2 ()

NIL

> (min2 ’(3))

3

> (min2 (6 7 2 4 1))

1

> (min2 > (13 24 2 6 8 23))
2

Example 9.17. Consider function swap which takes as an argument a list and returns a new
list which represents the argument list where cach two consecutive clements arc swapped.

Example runs are as follows:

> (swap *())
NIL

149

> (swap ’(a))

(A)

> (swap ’(a (b))

((B) A)

> (swap ’(1 "two" -3 "four"))

("two" 1 "four" -3)

We can implement function swap as follows:

(defun swap (1lst)

(if (or (null 1st) (null (cdr 1lst)))

1st
(cons (car (cdr 1st))

(cons (car 1st) (swap (cdr (cdr 1st)))))))

Example 9.18. Consider function guess below.

(defun guess (argl arg2)
(cond ((null argl) arg2)
((null arg2) argl)
((< (car argl) (car arg2)) (cons (car arg2)

(guess (cdr argl) (cdr arg2))))
(t (cons (car argl) (guess (cdr argl) (cdr arg2))))))

Let us execute the function with different arguments and from the output we will try to

provide a brief description on what the function does.

> (guess (4 6 8 92) "(51))
(6 6 89 2)

> (guess (34 5) (12 3))
(3 4 5)

> (guess () ’(6 1 9))

(6 1 9)

150

The function takes two lists as arguments and returns a list constructed by the maximum
clements after a pairwise comparison, i.c. it compares the corresponding first clements, then

it compares the corresponding second elements, etc.

Example 9.19. Provide a recursive definition and implementation of function compress
which takes a list as its argument and returns a new list where all consecutive duplicates
of its argument arc replaced with a single copy of the clement. The order of the clements

should not be changed. As example runs, consider the following:

> (compress '(aaaabccdeecee))
(ABCDE)
> (compress ’(a abcccaa))

(ABC A
The recursive definition of compress is as follows:

Base case: If 1ist is empty, or if 1list has one element then return the list as is.

Recursive case: If the first element is equal to the second element, then ignore the first
clement and recur on the tail of the list. If the first clement is not equal to the second,

then keep the first clement and recur on the tail of the list.

We can implement function compress as follows:

(defun compress (1lst)
(cond
(Cor (null 1st) (null (cdr 1lst))) 1lst)
((equal (car 1st) (car (cdr 1lst))) (compress (cdr 1lst)))

(t (cons (car 1lst) (compress (cdr 1lst))))))

Example 9.20. Provide the implementation of function pairs that returns a list of pairs

of corresponding clements from two lists of equal length. For example,

pairs({a.b.c). (x.y. 2)) = ((a. x). {b.y), {¢. 7))

151

The function is defined as follows:

(defun pairs (1lstl 1lst2)
(if (or (null 1stl) (null 1st2))
nil

(cons (list (car 1stl) (car 1st2)) (pairs (cdr 1stl) (cdr 1lst2)))))

Example 9.21. Provide the implementation of function insert that takes an integer n and
a sorted list [st of integers and inserts n in its proper position. By convention we assume
that the empty list is sorted. Assume that Ist does not include duplicates, and does not
already contain n.

The function is defined as follows:

(defun insert (n 1lst)
(cond ((null 1st) (list n))
((< n (car 1lst)) (comns n 1lst))

(t (cons (car 1lst) (insert n (cdr 1st))))))

Example 9.22. Provide the implementation of function dist that accepts an atom n and
a non-empty list [sf, and returns a list composed of lists of two elements, the first being n

and the sccond being cach successive clement of Ist. For example,

dist(a, (b,c.d)) = {{a, b}, (a,), (a, d))

To detect recursion, we can re-write the cquation by splitting up the list into its head and

its tail;

i i

dist(a, (b,c,d)) = ((a,b), (a,c), {a,d))
= ((a, b), dist(a, (c,d))).

152

We can therefore provide the following computable function definition:

d?;St(,’I}./ <>) = <>*
dist(x, (L)) = cons({x, head(L)), dist(z, tail(L))).

We can now unfold the definition as follows:

dist(w, (z,y)) = cons({w, x), dist(x, (y)))
= cons({w, x), cons((w,y), dist(z,{))))

= ((w, z). (w.y)).

The function is defined as follows:

(defun dist (n 1lst)
(if (null 1st)
nil

(cons (list n (car 1st)) (dist n (cdr 1st)))))

We can trace the execution of function dist as follows:

(dist ’a (b ¢ 4)) (cons (1list ’a ’a) dist (Ca (b ¢)))
= (cons ’(a a) (cons ((1list ’a ’b) dist (Pa ’(c)))I)M)
= (cong ’(a a) (cons ’(a b) (cons (list ’a ’c) OO

= (cons ’(a a) (cons ’(a b) (cons ’(a c) >O))N

= ((a a), (ab) (ac))

Example 9.23. Provide the implementation of function front that returns the list obtained

by removing the last clement of a non-cmpty list. For example front({a,b,c)) = (a,b).

153

The function is defined as follows:

(defun front (lst)
(cond ((null 1st) nil)
((null (cdr 1st)) QO))

(t (cons (car 1lst) (front (cdr 1lst))))))

Example 9.24. Provide the definition of a function that takes a list of integers as its argu-

ment and returns the maximum integer among them.

This problem can be addressed in a number of ways. One possible solution is provided
by function max2 that deploys let bound variables. Other possible solutions include the

following;:

(defun max3 (lst)
(cond ((null 1st) nil)
((null (cdr 1st)) (car 1lst))
((> (car 1st) (car (cdr 1st)))
(max3 (cons (car 1lst) (cdr (cdr 1st)))))

(t (max3 (cdr 1st)))))

(defun max4 (lst)
(cond ((null 1st) nil)
((null (cdr 1st)) (car 1st))

(t (greater (car 1lst) (max4 (cdr 1st))))))

(defun greater (a b)
(if (> a b)
a

b))

154

(defun maxb5 (1lst)
(cond ((null 1lst) nil)
((null (cdr 1st)) (car 1st))
((> (car 1lst) (maxb (cdr 1lst))) (car 1st))

(t (maxb5 (cdr 1st)))))

(defun max6 (lst)
(cond ((null 1st) nil)
((null (cdr 1st)) (car 1lst))
((< (car 1lst) (max6 (cdr 1lst))) (max6 (cdr 1lst)))

(t (max6 (comns (car 1st) (cdr (cdr 1st)))))))

Example 9.25. Let us define function diff that takes two non-cmpty lists of equal length as
arguments and produces a list whose clements correspond to the cubed differences between
the corresponding elements of the two arguments. We may assume that non-empty list

arguments contain only numeral clements. Example executions are as follows:

> (diff ’3 (5 1 -4))
NTL

> (diff > (OO ’(3 4))
NIL

> (diff (5 7) (1 37 9))
NTL

> (diff (35 -2) (51 -4))
(-8 64 8)

155

(defun diff (lstl 1st2)
(cond
(Cor
(not (and (listp 1lstl) (listp 1st2)))
(or (null 1st1) (null 1st2))
(not (= (length 1lstl) (length 1st2)))) nil)
(t (let
((d (-~ (car 1stl) (car 1st2))))

(cons (expt d 3) (diff (cdr 1stl) (cdr 1st2)))))))

Let us trace the exccution of the function for (diff (4 2 -2) (2 -1 -4)).

> (diff (4 2 -2) (2 -1 -4))
-> (cons ’8 (diff (2 -2) ’ (-1 -4)))
-> (cons ’8 (cons ’27 (diff ’(-2) ’(-4))))
-> (cons ’8 (cons ’27 (cons ’8 (diff O 0)))))
-> (cons ’8 (coms ’27 (coms ’8 *())))
-> (8 27 8)

Example 9.26. Let us define function remove-all-odds that takes a list as its argument
and returns a new list which containg all the elements of its argument with all odd numbers
removed. We may assume that a non-cmpty list argument contains only numeral clements.

Example exccutions arc as follows:

> (remove—all-odds ’7)

NIL

> (remove-all-odds ’())

NIL

> (remove-all-odds ’(3))
NIL

156

> (remove-all-odds (1 2 34567 89 10))
(2 4 6 8 10)

(defun remove-all-odds (1lst)
(cond
((not (listp 1st)) nil)
((null 1st) *O))
((oddp (car 1st)) (remove-all-odds (cdr 1lst)))

(t (cons (car lst) (remove-all-odds (cdr 1st))))))

Let us trace the execution of the function for (remove—all-odds (10 9 8 12 14 3 11)).

> (remove-all-odds ’(10 9 8 12 14 3 11))
-> (cons ’10 (remove-all-odds ’(9 8 12 14 3 11)))
-> (cons ’10 (remove-all-odds ’(8 12 14 3 11)))
-> (cons ’10 (cons ’8 (remove-all-odds (12 14 3 11))))
-> (cons ’10 (cons ’8 (cons ’12 (remove-all-odds (14 3 11)))))
-> (cons ’10 (cons ’8 (cons 12 (cons ’14 (remove-all-odds ’(3 11))))))
-> (cons ’10 (cons ’8 (cons ’12 (cons 14 (remove-all-odds ’(11))))))
-> (cons ’10 (cons ’8 (cons ’12 (cons 14 (0))))
-> (10 8 12 14)

Example 9.27. Let us define function (mins list! list? list3) that takes three non-empty
lists of equal length and produces a list whose elements correspond to the cubed minimum
between the corresponding elements of the three arguments. We may assume that non-empty

list arguments contain only numeral elements. Example executions are as follows:

> (mins ’1 (3 1 1) (2 3 4))
NTL

> (mins ") (1 27) (2 3 4))
NIL

157

> (mins ’(2) (1 2 4) ’(2 3 4))
NIL

> (mins (2 1 5) (1 2 4) (2 3 4))
(1 1 64)

(defun mins (lstl 1lst2 1lst3)
(cond
(Cor
(not (and (listp lstl) (listp 1st2) (listp 1st3)))
(or (null 1st1) (null 1st2) (null 1st3))
(not (= (length 1stl) (length 1st2) (length 1st3)))) nil)
(t (let
((m (min (car 1stl) (car 1st2) {(car 1st3))))

(cons (expt m 3) (mins (cdr 1stl) (cdr 1st2)(cdr 1st3)))))))

Let us trace the execution of the function for (mins (2 3 5) (4 2 4) °(7 3 3)).

(mins ’(2 8 3) ’(2 4 2) ’(7 3 3))
-> (cons ’8 (mins ’(8 3) ’(4 2) ’(3 3)))
-> (cons ’8 (coms ’27 (mins ’(3) ’(2) (3))))
-> (cons '8 (comns ’27 (coms ’8 () ") "))
-> (8 27 8)

Example 9.28. Let us define function (filter list numeral) that takes two arguments, a)
a non-cmpty list of integers, and b) a positive integer, and produces a list whose clements
arc thosc clements of the first argument that arc larger than the sccond argument. We may
assume that a non-empty list argument contains only numeral elements. Fxample executions

are as follows:

> (filter ’5 3)
NIL

158

> (filter () 5)
NIL

> (filter (7 9 11) ’(2))
NTL

> (filter (3 4 5) ’0)
NIL

> (filter ’(3 4 5) ’2.5)
NIL

> (filter ’(3 4 5) ’0)
NIL

> (filter (5 9 3 2 11) ’7)
(9 11)

(defun filter (lst el)
(cond
((not (listp 1lst)) nil)
((null 1st) *O))

((not (atom el)) nil)

((or (<= el 0) (not (integerp el))) nil)
((<= (car 1lst) el) (filter (cdr 1lst) el))

(t (cons (car 1lst) (filter (cdr 1lst) el)))))

Let us trace the execution of the function for (filter (12 9 3 2 7)

> (filter (12 93 2 7) ’6)

-> (cons ’12 (filter (9 32 7)

’6))

159

’6).

-> (cons ’12 (coms ’9 (filter (3 2 7) ’6))
-> (cons ’12 (coms ’9 (filter (2 7) ’6)))
-> (cons ’12 (coms ’9 (filter ’(7) ’6)))
-> (cons ’12 (cons ’9 (coms ’7 (filter ’() ’6))))
-> (cons ’12 (cons ’9 (cons ’7 ())))

-> (12, 9, 7)

Example 9.29. Let us define a function list2set (1st) that takes a list ag an argument,

and returns a set representation of the list. Example executions of the function are as follows:

> (list2set ()

NIL

> (list2set ’3)

NIL

> (list2set ’(a b c 1 4 f))
(ABC14F)

> (list2set ’(aaaaabbbbccaabc))

(A BC)

> (list2set ’(a b b a))

(B 4)

(defun list2set (1lst)
(cond
((not (listp 1lst)) nil)
((null 1st) *O))
({(member (car 1st) (cdr 1lst)) (list2set (cdr 1lst)))

(t (cons (car 1lst) (list2set (cdr 1lst))))))

160

Let us trace the exccution of the function for (1ist2set (a b b a)).

(1ist2set '(a b b a)
-> (list2set ’(b b a))
-> (list2set ’(b a))
-> (cons ’b (list2set ’(a)))
-> (cons ’b (cons ’a ’()))
-> (cons ’b ’(a))

-> (b a)

Example 9.30. Let us define function setp (1st) that takes a list as its argument and
returns true if the list represents a set, and it returns false otherwise. Example executions

of the function are as follows:

> (setp ’3)
NIL

v

(setp *0O))

v

(setp 7 (9))

v

(setp (4 57 8))

> (setp (326 8 2))
NIL

161

(defun setp (lst)
(cond
((not (listp 1lst)) nil)
((null 1st) t)
((not (member (car 1st) (cdr 1lst))) (setp (cdr 1lst)))

(t nil)))

Example 9.31. Let us define function cartesian (1stl 1st2) that takes as arguments
two lists that represent sets and returns the Cartesian product of the two sets. The function

deploys setp (1st) as auxiliary function. Example executions of the function are as follows:
> (cartesian '3 ’(4))

NIL

> (cartesian ’() ’(a b c))

NIL

> (cartesian (1 1 2) ’(a b ¢))

NIL

> (cartesian (1 2) ’(a b c))

NIL

> (cartesian (1 2 3) ’(a b c))

((1A) (1B (1C) (24 (2B) (2C) (34) (3B) (30

(defun distribute (el 1st)
(cond
((null 1st) nil)
(t (cons (list el (car 1lst)) (distribute el (cdr 1st))))))

;; (distribute ’1 ’(a b)) => ((1 A) (1 B))

162

(defun cartesian-aux (lstl 1lst2)
(cond
((null 1st1) *Q))
(t (append (distribute (car 1lstl) 1st2)

(cartesian-aux (cdr 1lstl) 1st2)))))

(defun cartesian (lstl 1st2)
(cond
(Cor
(or (mot (listp 1stl)) (mot (listp 1lst2)))
(not (and (setp 1lstl) (setp 1lst2)))
(not (= (length 1stl) (length 1st2)))) nil)

(t (cartesian-aux 1lstl 1st2))))

Let us trace the execution of the function for (cartesian (1 2 3) '(a b ¢)).

(cartesian (1 2 3) (a b c))
-> (cartesian-aux (1 2 3) ’(a b ¢))
-> (append ’((1 A) (1 B) (1 C)) (cartesian-aux ’(2 3) ’(a b c))))
~> (append ’((1 A) (1 B) (1 C))
(append ’((2 A) (2 B) (2 C))
(cartesian-aux ’(3) ’(a b ¢)))))
-> (append ’((1 A) (1 B) (1 C))
(append ’((2 &) (2 B) (2 ©))
(append ’((3 4) (3 B) (3 C))
(cartesian-aux () ’(a b ¢))))
-> (append ’((1 A) (1 B) (1 C))
(append ’((2 4) (2 B) (2 C))
(append ’((3 4) (3 B) (3 C)) O
~> (append ’(1 A) (1 B) (1 C))
(append *((2 A) (2 B) (2 C)) ((34) (3B) (3CMHN

163

-> (append ((1 A) (1 B) (1 C)) "((24) (2B) (20
(3 A) (3B) (30)))
-=> ((1 A) (1 B) (1C) (24 (2B) (2C) (34 (3B) (3¢

Example 9.32. Let us define a pure function that accepts a non-empty binary tree as an
argument and returns a list of nodes that represents the pre-order traversal of the tree. Note
that in doing that your function may invoke auxiliary purc functions. The function must

reject any other argument as invalid by returning nil.

(defun btreep (btree)
(cond

((null btree) t)
((not (listp btree)) nil)
((not (= (length btree) 3)) nil)
((listp (car btree)) nil)
((not (btreep (car (cdr btree)))) nil)
((not (btreep (car(cdr (cdr btree))))) nil)
(t t)))

(defun preorder (btree)
(if (btreep btree)
(pre btree)

nil))

(defun pre (btree)
(cond
((null btree) nil)
(t (append (list (car btree))
(pre (car(cdr btree)))
(pre(car (cdr (cdr btree))))))))

164

9.2 From specification to code: summary and guide-
lines

Below is a summary of steps involved in the definition of a computable function starting

from a specification:

1. We obtain a specification (definition) in a plain natural language. For example, consider

a function f that accepts an integer n and returns the list < n,n —1,...,0 >.

2. We transform the definition into a computable function. To do that, we reuse available
(i.e. built-in, or previously defined) operations (functions). Most likely we would also

have to deploy recursion, i.e.

f(n) = (cons (n, f(n—1))

3. We unfold the definition by tracing the algorithm from the previous step. i.e.

f(3) = cons(3, f(2)
= cons(3, cons(2, f(1)))

)
(2,
= cons(3, cons(2, cons(1, f(0))))
(2
(2

= cons(3, cons(2, (1,0)))

(3,
(3,
(3,
= cons(3. cons(2, cons(1.(0))))
(3,
(3,

= cons(3,(2,1,0))

— (3,2,1,0).

4. Now that we are confident that our function definition (from step 2) produces the

desired output, we can translate it into (Common Lisp) code, i.e.

165

(defun f (n)
(if (= n 0)
(cons 0 (D)
(cons n (£(- n 1)))))

5. We now can trace the execution of the Common Lisp function with sample input data,

c.g.

£(2) (1))

(cons

= (cons (cons 1, £(0O)))

(cons 1, (0)))
(1 00

(cons

2,
2,
= (cons 2, (cons 1, (cons 0, ())))
2,
2,

(cons

(210).

9.2.1 Additional guidelines for defining functions

We list some additional general guidelines below:

e Unless the function is trivial, we can break the logic into cases (multiple sclection) with

cond.

e When handling lists, you would normally adopt a recursive solution. Treat the empty

list as a base case.

e Normally you would operate on the head of a list (accessible with car) and recur on

the tail of the list (accessible with cdr).
e To skip the head of the list, simply recur on the tail of the list.

e To keep the head of the list as is, use cons to place it as the head of the returning list

(whose tail is determined by the recursive call).

e Use else (or t) to cover remaining (and to protect against forgotten) cases.

166

Chapter 10

Structures

Structures are collections that hold data and they can be unordered or ordered.

10.1 Unordered structures: Sets and bags

A set is a collection of objects, called its elements (also: members). If S is a set and = is
an element in S, then we write 2z € S. If x is not an element of S we write 2 ¢ S. The set
of no elements is called the empty set (also: null set), denoted by {} or 0. Sets have two

characteristics:

1. No clement repetition is allowed.

2. The ordering of the elements is not important.

One way to define a set is to explicitly list all its elements, separated by commas and enclosed
within braces ({...}). Two scts arc equal if they have the same clements. We denote the
fact that two sets A and B are equal by A = B. If sets A and B are not equal. we write

A# B.
Note that since order is not important,

{a,b,c} = {c,a, b}

167

as opposed to

{a,b,c) # {c,a.b)

Note also that

a # {a} # {{a}}

since a is a single object, {a} is a set with one element, namely a, whereas {{a}} is a set

with one clement, namely the set {a} which contains onc clement, a.

If A and B are sets and every element of A is also an element of B. then we say that A is a
subset of I3, denoted by A C B. It follows. from the definition, that every set is a subset of
itsclf. It also follows that the empty set is a subsct of any set A, i.c. § € A. We can usc the

notion of subscts to define sct equality A = B to mean A C B and B C A.

The cardinality of a sct A, denoted by |A|, is a measure of how many clements A has.

10.1.1 Operations on sets

We can define the following operations on scts:

The union of two scts A and B, denoted as A U B, is given by

AUB={z:x € Aorz € B}

The intersection of two scts A and B, denoted as AN B, is given by

ANB={z:x€ Aand x € B}

The difference between two sets A and B, denoted as A\B (or A — B), is given by

AB={r:xcAand x ¢ B}

168

The symmetric difference of two scts A and B, denoted as A ¢ B, is given by

A& B={x:z € Aorxec B but not both}
= A\B U B\A

Two sets A, B are called disjoint iff their intersection is empty, i.e.

ANB=10

Example 10.1. Consider function issubsetp which takes as arguments two lists represent-
ing scts, setl and set2, and returns truc if setl is a subsct of set2. Otherwise, it returns

false (nil).
Base case: If setl is empty, then return true.

Recursive case: If the first clement of setl is a member of set2, then recur on the rest of

the clements of setl, otherwise return false (nil).

We can implement function issubsetp as follows:

(defun issubsetp (setl set2)
(if (null setl)
t
(if (member (car setl) set2)
(issubsetp (cdr setl) set2)

nil)))

We can now run the function as follows:

\

(issubsetp O ’(a))

v

(issubsetp ’(a b ¢) ’(a b ¢ d))
T

Example 10.2. Consider function setunion which takes as its arguments two lists 1stl

and 1st2 representing sets and returns the set union.

169

Base casces:

1. If 1st1l is empty, then return 1st2.
2. It 1st2 is empty, then return 1stil.

Recursive cases:

1. If the head of 1st1 is a member of 1st2, then ignore this element and recur on

the tail of 1st1, and 1st2.

2. If the head of 1st1 is not a member of 1st2. return a list which is the concate-

nation of this element with the union of the tail of 1stl and 1st2.

We can implement function setunion as follows:

(defun setunion (lstl 1lst2)
(cond
((null 1stl) 1st2)
((null 1st2) 1stil)
((member (car 1lstl) 1lst2)(setunion (cdr 1stl) 1st2))

(t (cons (car 1lstl) (setunion (cdr 1stl) 1st2)))))

We can execute the function as follows:

> (setunion ’(a b c d) ’(a d))

(B CAD)

Example 10.3. Consider function setintersection which takes as its arguments two lists
1stl and 1st2 representing sets, and returns a new list representing a set which forms the

intersection of its arguments.
Basc casc: If cither list is cmpty, then return the empty set.
Recursive cases:

1. If the head of 1st1 is a member of 1st2, then keep this element and recur on the

tail of 1stl and 1st2.

170

2. If the head of 1stl is not a member of 1st2, ignore this clement and recur on

the tail of 1stl and 1st2.

We can implement function setintersection as follows:

(defun setintersection (lstl 1lst2)
(cond
((null 1st1) Q)
((null 1st2) Q)
((member (car lstl) 1lst2)
(cons (car 1lstl) (setintersection (cdr 1lstl) 1st2)))

(t (setintersection (cdr 1lstl) 1lst2))))

We can execute the function as follows:

> (setintersection ’(a b ¢) *())
NIL

> (setintersection (a b ¢) ’(a d e))

(A)

Example 10.4. Consider function setdifference which takes as its arguments two lists

1stl and 1lst2 representing scts and returns the set difference.

Base case: If 1st1 is empty. then return the empty set. If 1st2 is empty, then return 1st1.
Recursive cases:

1. If the head of 1stl is a member of 1st2, then ignore this clement and recur on

the tail of 1stl, and 1st2.

2. If the head of 1st1 is not a member of 1st2, keep this clement and recur on the

tail of 1stl and 1lst2.

171

We can implement function setdifference as follows:

(defun setdifference (lstl 1st2)
(cond
((null 1st1l) ()
((null 1st2) 1stl)
((member (car lstl) 1lst2)(setdifference (cdr 1lstl) 1lst2))

(t (cons (car 1lstl) (setdifference (cdr 1lstl) 1st2)))))

We can execute the function as follows:

> (setdifference (a b c) (ad e £))

(B ©)

Example 10.5. Consider function setsymmetricdifference which takes as its arguments
two lists representing sets and returns a list representing their symmetric difference. We can

define this function as the difference between the union and the intersection sets, i.e.

A®B=(AUB)\ (AN B)

We can implement function setsymmetricdifference as follows:

(defun setsymmetricdifference (lstl 1st2)

(setdifference (union 1lstl 1st2)(intersection 1lstl 1lst2)))

Alternatively we can say

ACB = (A\B) U (B\A)

We can implement function setsymmetricdifference?2 as follows:

(defun setsymmetricdifference2 (1lstl 1st2)

(union (setdifference lstl 1st2)(setdifference 1lst2 1stl)))

We can now run the function as follows:

> (setsymmetricdifference ’(a b cd e f) (d e f g h))

172

(HGABC)

> (setsymmetricdifference2 ’(a b cde f) ’(de f gh))
(HGABOC

> (setsymmetricdifference ’(a b (cd) e) ’(e (f h)))
((F H) A B (CD))

> (setsymmetricdifference2 ’(a b (cd) e) ’(e (f h)))

((F H) A B (CD))

10.1.2 Bags

A bag (or mulliset) is a structurc which contains a collection of clements. Like a set, the

ordering of the clements in not important in a bag. However, unlike a sct, repetitions arce

allowed in a bag.

Note that since order is not important and repetitions are allowed,

{a,b,b,c} = {c,a,b.b}

{a.b,c} # {c,a,b,b}

Example 10.6. Consider function bag-to-set which takes as its argument a list represent-

ing a bag and returns the corresponding set.

Basc casc: If the list is empty, then return the empty list.
Recursive cases:

1. If the head of the list is a member of the tail of the list, then ignore this clement

and recur on the tail of the list.

2. If the head of the list is not a member of the tail of the list, keep the head element

and recur on the tail of the list.

173

We can implement function bag-to-set as follows:

(defun bag-to-set (bag)
(cond ((null bag) ()
((member (car bag) (cdr bag)) (bag-to-set (cdr bag)))

(t (cons (car bag) (bag-to-set(cdr bag))))))

We can execute the function as follows:

> (bag-to-set '(a a b ¢))

(A BC

> (bag-to-set ’(aaabbcba))
(C B A)

> (bag-to-set ’(a b ¢ d))
(ABCD)

10.2 Ordered structures: Tuples

We have already seen an ordered structure, namely the list. A tuple is a structure which
contains a collection of elements. Unlike sets and bags, the ordering of the elements matters
in a tuple. Unlike a set repetitions arc allowed in a tuple.

Note that since order is important and repetitions are allowed,

(a,b,b,¢) # (c,a,b,b)

(a,b,¢) # (c,a,b,b)

174

Summary

We can summarize the restrictions imposed by the collections discussed in this chapter as

follows:
Collection Order | Repetitions allowed
Set No No
Bag (multiset) | No Yes
Tuple Yes Yes

175

176

Chapter 11

Trees

We can use a list to represent a non-empty binary tree as {(atomn,l — list,r — list), where
atom is the root of the tree, and [—list and r — list are lists that represent the left and right

subtrees respectively. For an empty binary tree, the list representation can be ().

Example 11.1. Consider the binary tree in Figure 11.1. Let us translate this representation

into Lisp.

’ (40 ; Root.
C...0) ; Left subtree.
(... ; Right subtree.
)

The left subtree of 40 can be represented as

(30 ; Root of left subtree of 40.
C...)
(...

)

with the left and right subtrees of 30 can be represented as

(26 O O) ; Left subtree of 30.
35 O O) ; Right subtree of 30.

177

40

30 60

25 35 50

Figurc 11.1: Binary tree.

where their respective left and right subtrees are null, represented by the empty list.

The right subtree of 40 can be represented as

(60
C...0) ; Left subtree of 60.
O ; Right subtree of 60.
)

where the left subtree of 60 can be represented as
(50 OO)

We can now put ceverything together and represent the entire tree as one list:

7 (40 ; Root.
(30 ; Root of left subtree.
(26 O O)
35 O O)
)
(60 ; Root of right subtree.

50 O O) O

178

or > (40 (30 (25 () OX@E5 O OGO 5O O OMYON

Recall that the entire tree is represented by the list (atom,l — list, r — list). We can obtain

the root of the tree by getting the head of the list:

> (car (40 (30 (25 () OY@B5 O OMGO B0 O YO
40

We can obtain the left subtree, [— list, of the tree by getting the head of the tail of the list:

> (car (cdr ?(40 (30 (25 O O)(B5 O OO B0 O OYOMON
(30 (25 NIL NIL) (35 NIL NIL))

We can obtain the right subtree, r — list, of the tree by getting the head of the tail of the

tail of the list:

> (car (cdr (cdr (40 (30 (256 () O)X(@E5 O OB B0 O OYOINN)
(60 (50 NIL NIL) NIL)

Example 11.2. Consider the binary tree in Figure 11.2. The height of this tree is 3. Recall

that the height of an empty tree, or the height of a tree with a single node is zero.

50

‘ 40 ‘ ‘ 70 ‘ Level 1

30 60 75| Level2

‘ 65 ‘ Level 3

Figure 11.2: A binary tree of height 3.

179

We can represent the tree as follows:

» (50
(40 (30 O O)Y O
(70 (60 OO (65 O O)) (75 O OYN

Consider function tree-height, which takes as an argument a list representing a tree and

returns the height of the tree.

We can provide a recursive definition of tree-height is as follows:

Basc case: If tree is empty, or if the tree has one node (root) then return 0.

Recursive case: Add one to the maximum of the heights of the left and right subtrees.

We can implement function tree-height as shown below. Note that the implementation

needs an auxiliary function take-max.

(defun tree-height (tree)
(if (or (null tree)
(and (null (car (cdr tree)))
(null (car (cdr (cdr tree))))))
0
(+ 1 (take-max (tree-height (car (cdr tree)))

(tree-height (car (cdr (cdr tree))))))))

(defun take-max (nl n2)
(if (> nl1l n2)
nl

n2))

180

We can exccute tree-height as follows:

> (tree-height ’(50 (40 (30 OO) O) (70 (60 O (65 O 0O)) (75 O 0OI)))

3

Example 11.3. Let us define and implement function count-nodes which takes as argument

a list representing a binary tree and returns the total number of (non-null) nodes. We can

transform the above problem specification into a recursive computable function definition in

mathematical notation and in English notation as follows:

count — nodes(()) = 0.
count — nodes({atom, | — list,r — list)) = 1+
count — nodes(l — list)+

count — nodes(r — list).

Basc casc: If tree is empty, then return 0.

Recursive case: Add one to the number of nodes of the left and of the right subtrec.

We can implement function count-nodes as follows:

(defun count-nodes (tree)
(if (null tree)
0
(+ 1
(count-nodes (car (cdr tree)))

(count-nodes (car (cdr (cdr tree)))))))

Let us execute count-nodes with the tree of the previous example:

> (count-nodes ’(50 (40 (30 OO) O) (70 (60) (65 O O)) (75 O
7

181

0N

For the tree of Figure 11.3 we can trace count-nodes as follows:

50

40 65

20 45 55

Figure 11.3: Binary tree.

(count-nodes ’(50 (40 (20 OO) (45 () O)) (65 (55 O OYO))

(+ 1 count-nodes(40 (20 ()) (45 () ())) count-nodes(65 (55 OQO) O))

(+ 1 (+ 1 count-nodes (20 () ()) count-nodes{4b () O))

(+ 1 count-nodes (55 () ()) count-nodes(()))
(+1 (+ 1 (+ 1 (count—nodes(()) count—nodes(()))
(+ 1 count-nodes(()) count-nodes(()))

(+ 1 (+ 1 count-nodes(()) count-nodes(())) 0))))

1 +1((H+100 (+100 (+1100)))

182

Chapter 12

Numbers

12.1 Exponentiation

The exponentiation operation. a”. involves two numbers. the base a and the exponent n.
When n is a positive integer, exponentiation corresponds to repeated multiplication. We can

define power(a,n) as follows:

power(a.0) =1
power(a, 1) = a = a x power(a,0)

power(a,2) = a x a = a x power(a, 1)

We can then define a recursive pattern as follows:

Basce casc: power(a,0) =1

Recursive case: power(a,n) = a X power(a,n — 1)

183

We can unfold the definition of power(3,4) as follows:

power(3,4) = 3 X power(3,3)
= 3 X 3 x power(3.2)
=3 % 3 x 3 x power(3,1)
=3 % 3 x 3 x 3 x power(3,0)
=3X3Ix3Ix3Ix1

= 81.

We can now define function power as follows:

(defun power (a n)
(if (zerop n)
1

(* a (power a (- n 1)))))

We can execute the function as follows:

\

(power 3 0)

v

(power 3 2)

v

(power 3 4)
81

12.2 Cartesian system

For two points (x,y;) and (z3,ys), the distance between them is given by

d= /(1 — 22)2 + (1 — y2)%

184

Example 12.1. A point on the Cartesian planc can be represented as a two-clement list.
The first clement of the list represents the x coordinate and it can be obtained by the head
of the list. The second element of the list defines the y coordinate and it can be accessed as
the head of the tail of the list. We can define function second2 to take as its argument a

Cartesian point and return the y coordinate:

(defun second2 (lst)

(car (cdr 1st)))

We can now use second2 as an auxiliary to function distance. which takes as arguments
two two-atom lists, cach one representing a point on the Cartesian plane. The function
returns the distance between the points. To improve readability, we will use first in place

of the (admittedly less readable) car.

(defun distance (pl p2)
(sqrt (+ (expt (- (first pl) (first p2)) 2)
(expt (- (second2 pl) (second2 p2)) 2))))

We can execute the function as follows:

> (distance ’(0 0) ’(2 2))
2.828427

12.3 Factorial of a number
The factorial of an integer number is defined as follows:

Base case: If the number is zero, return 1.

Recursive case: Return the product between n and the factorial of n - 1.

185

Consider the unfolding of the definition for f(5) as follows:

X factorial(4)

(@

factorial(b) =

X 4 X factorial(3)

I
(@

X 4 x 3 % factorial(2)

I
[

I
[

X 4 x 3 x2x factorial(1)

X 4x3x2x1x factorial(0)

I
(@

X4x3x2x1x1

I
(@

= 120.

We can now define function factorial as follows:

(defun factorial (n)
(if (= n 0)
1

(* n (factorial (- n 1)))))

We can now exccute the function as follows:

>(factorial 5)

120

12.4 Prime numbers

An integer p > 1 is called prime if it cannot be the product of two integers greater than 1,
or alternatively if its only positive factors arc 1 and itsclf. Positive integers which can be

expressed as the product of two integers greater than 1 are called composite.

186

12.5 Greatest common divisor

The greatest common divisor (ged) of two integers a and b (not both zero) is the largest

integer d that is a divisor both of a and of b. We can implement function ged as follows:

(defun gecd (a b)
(cond ((equal a b) a)
((> a b) (gcd (- a b) b))
(t (gcd a (- b a)))))

12.6 Relative primality

Two numbers arc relatively prime (or coprime) if their greatest common divisor (ged) is
1. We can implement a predicate function coprimep which determines whether or not two

positive integer numbers a and b are coprime.

(defun coprime (a b)

(equal (gcd a b) 1))

We can now run the function as follows:

>(coprime 35 64)
T

12.7 Division remainder

Example 12.2. Consider function remainder. which takes as arguments two positive non-

zero numbers, n and m, and returns the remainder of the division n/m.

Base case: If n < m then return n.

Recursive case: Return the remainder of (n —m) and m.

187

(defun remainder (n m)
(cond ((< n m) n)

(t (remainder (- n m) m))))

We can now run the function as follows:

v

(remainder 3 5)

> (remainder 5 3)

188

Chapter 13

Sorting

Sorting is a technique that puts the elements of an unordered collection in a certain order.

13.1 Bubble sort

Bubble sort is based on successive pairwise comparisons between clements of a collection
performed possibly over many iterations. Each iteration results in a single clement eventu-

ally ending up in its proper position (like a bubble moving up).

We can demonstrate this with an example: Consider the collection (9, 8,13,6). The first

iteration will work as follows:

Collection Observations and actions

(, 13,6) | Compare 1st with 2nd. Not in order. Swap them!

,, 6) | Compare 2nd with 3rd. In order.

(8
(8,9,) Compare 3rd with 4th. Not in order. Swap them!
(8

,9,6,13) | One element (13) has reached its proper position.

We have reached the end of the collection and

the end of the current iteration.

Note that the collection is not yet sorted and more iterations are required.

189

Example 13.1. Consider the implementation of function bubble-sort which takes as its
argument a list, and returns the same list with its clements sorted in ascending order. We
first need to build some auxiliary functions, the first one is bubble which performs one

iteration, thus placing one element in its proper position.

(defun bubble (lst)
(cond ((or (null 1st) (null (cdr 1st))) 1lst)
(C < (car 1st) (car (cdr 1st)))
(cons (car 1st) (bubble (cdr 1lst))))
(t (cons (car (cdr 1st))

(bubble (cons (car 1lst) (cdr (cdr 1st))))))))

We can test the function as follows:

> (bubble ’(3 2 1))
(2 13)

Another auxiliary function is is-sortedp which returns True or False based on whether or

not its list argument is sorted.

(defun is-sortedp (lst)
(cond ((or (null 1st) (null (cdr 1lst))) t)
((< (car 1lst) (car (cdr 1lst))) (is-sortedp (cdr 1lst)))

(t nil)))

We can test the function as follows:

> (is-sortedp (2 1 3))
NIL

> (is-sortedp (1 2 3))
T

190

We can now put everything together and define bubble-sort as follows:

(defun bubble-sort (lst)
(cond ((or (null 1lst) (null (cdr 1st))) 1lst)
((is-sortedp 1lst) 1lst)

(t (bubble-sort (bubble 1st)))))

We can execute the function as follows:

> (bubble-sort (4 2 7 5 9))
(2457 9)

191

192

Chapter 14

Searching

Searching is a technique to locate a given element from a sorted collection of elements. We

will deploy a list to represent a collection of clements.

14.1 Linear search

If clement elt appears in list 1st then we would like to return its position in the list.

Consider the following function:

(defun search (1lst elt pos)
(if (null 1st)
nil
(if (equal (car 1lst) elt)
pos

(search (cdr 1st) elt (+ 1 pos)))))

(defun linear-search (lst elt)

(search 1lst elt 1))

We can execute the function as follows:

> (linear—-search (46 158 9) 9)
6

193

> (linear-search ’(a (bc) d) ’(bc))
2

14.2 Binary search

Recall that we can use a list to represent a non-cmpty tree as (atom,l — list, r — list), where
atom is the root of the tree and [— list and 7 — list represent the left and right subtrees

respectively.

(defun binary-search (lst elt)
(cond ((null 1st) nil)
((= (car 1lst) elt) t)
((< elt (car 1lst)) (binary-search (car (cdr 1lst)) elt))

((> elt (car 1lst)) (binary-search (car (cdr (cdr 1st))) elt))))

We can execute the function as follows:

> (binary-search ’ () 9)

NIL

> (binary-search "(7 (3 (1 O O)) (9 O ON 1
T

> (binary-search (7 (3 (1 () O)) (9 O O)) 9
T

> (binary-search (7 (3 (1 O O)) (9 O O 7
T

> (binary-search (7 (3 (1 () O)) (9 O O)) 6)
NIL

194

Part 111

Procedural Programming with C

195

196

Chapter 15

Functions 11

15.1 Functions

We have already seen that similarly to its mathematical counterpart, a computing function
is a (named) block that normally receives some input, performs some task and normally
returns a result. Unlike its mathematical counterpart, a computing function may receive no
input or may produce no output. A function call implies transfer of control of execution
to the function. When a function completes its task and terminates, control of execution is

transferred back to the client.

Synonyms for function exist in various languages (such as method, procedure, ov subroutine).
It is also important to note that some languages make a distinction between functions that

return a result and those that do not, the latter ones being referred to as procedures.

We will use the C programming language to discuss procedural programming. The general
form of a function definition in C is

return-type function-name (parameter-list) { body }

where return-type is the type of the value that the function returns, function-name is the
name of the function, and parameter-list is the list of parameters that the function takes,

defined as

197

(typel parameterl, type2 parameter2, ...)

If no type is in front of a variable in the parameter list, then int is assumed. Finally, the

body of the function is a sequence of statements.

If the function will be accessed before it is defined, then we must let the compiler know

about the function by defining the function’s prototype (or declaration) as follows:
return-type function-name (parameter-type-list);

where return-type and function-name must correspond to the function definition. The
parameter-type-list is a list of the types of the function’s paramcters. Function main()

requires no prototype.

15.2 Recursion

C supports recursion. Like its mathematical counterpart and very similarly to the Lisp

functions that we have seen, a function in C can call itself.

Example 15.1. Consider the program below that computes the factorial of a non-negative
integer. The program is composed by two functions: main() and factorial(..). The

statement
long factorial(int);
defines the prototype for function factorial. The code below

long factorial(int n) {

is the actual function definition. In C, exccution always starts from main() which calls all

other functions, directly or indirectly.

198

#include<stdio.h>
long factorial(int);

int main () {

int n;
long f£;
printf ();
scanf (, &n);
if (n < 0)
printf ()
else {
f = factorial(n);
printf (, n, f);
}

return O;
}
long factorial (int n) {
if (n == 0)
return 1;
else

return(n * factorial(mn-1));

In long factorial(int n) .., nis called the parameter (or formal argument, also dummy
argument) of the function. The result of a function is called its return value and the data
type of the return value is called the function’s return type. The return type of main() is
int (integer), whereas the one of factorial is long (long integer). A function call allows us to

use a function in an expression. In
f = factorial(mn);

the function on the right-hand-side executes and the value that it returns is assigned to the
variable £ on the left-hand-side. We refer to n as the actual argument (or just argument if

the distinction is clear from the context). Obviously the actual argument(s) to a function

199

would normally vary from one call to another. The values of the actual arguments are copied

into the formal paramecters, with a correspondence in number and type.

Let us exccute the program:

Enter an non-negative integer: 5

50 = 120

Example 15.2. In this example we are writing a program whose main function requests and
receives the value of the fahrenheit temperature to be converted to celsius and proceeds to
call function £2c () to perform this conversion. The function £2¢ () will apply the conversion

formula and return its result to the caller (function main()).

#include <stdio.h>
int f2c¢ (int fahrenheit);
int main (void) A
int fahrenheit;
printf ();
scanf (, &fahrenheit);
printf (;
f2c(fahrenheit));
return O;
}
int f2c¢ (int fahrenheit) {
int celsius;
celsius = (5.0/9.0) * (fahrenheit-32);

return celsius;

Let us exccute the program:

Enter the temperature in degrees fahrenheit: 30

The corresponding temperature in celsius is -1

200

15.3 Global and local variables

We distinguish between global and local variables. A global variable is defined at the top
of the program file and can bhe accessed by all functions. A local variable is accessed only
within the function which it is declared, called the scope of the variable. Though not a good
programming practice, in the case where the same name is used for a global and local variable
then the local variable takes preference within its scope. This is referred to as shadowing.

Global variables have default initializations, whereas local variables do not.

Consider the following program that contains a global and a local variable with the same
name. Within function func(..) the global variable a is not visible as the local variable a

takes precedence.

#include<stdio.h>
int a = 3;
int func() {

int a = 5;

return a;

}

int main() {
printf (> al;
printf (, func());
printf (, al;

The output is:

From main: 3
From func: 5

From main: 3

201

15.4 Variable and function modifiers

Two modifiers are used to explicitly indicate the visibility of a variable or function: The
extern modifier indicates that a variable or function is defined outside the current file,
whereas the static modifier indicates that the variable or function is visible only from
within the file it is defined in. The default (i.e. no modifier) indicates that the variable or
function is defined in the current file and it is visible in other files. A summary is given

below:

MODIFIER | DESCRIPTION

extern Variable /function is defined outside of current file.
Variable/function is defined in current file and vis-
<blank>
ible outside.
static Variable/function is visible only in current file.

Consider a program that rcads in a collection of clements and proceeds to sort them by
calling a function bubbleSort () that is defined outside the current file and thus must be

declared extern.

#include <stdio.h>
extern void bubbleSort(int[], int);
int main() {

int array[10], numberOfElements;

printf ()

scanf (, &number0fElements);

printf (, number0fElements) ;

for (int 1 = 0; 1 < numberOfElements; i++)
scanf (, &arrayl[il);

bubbleSort (array, numberOfElements);

printf ();
for (int 1 = 0 ; 1 < numberOfElements ; i++)
printf (, arrayl[i]l);

return O0;

202

Function bubbleSort (), defined in some other file, makes use of function swap() that swaps
two clements. As function swap() nced not be visible outside the file in which it is defined,

it is declared static:

static void swap(int =*a, int *b) {

int temp = *a;
*a = *b;
*b = temp;

void bubbleSort (int numbers[], int array_size) {
int i, j;
for (i = (array_size - 1); 1 > 0; i--) {
for (j = 1; j <= 1i; j++) {
if (numbers[j-1] > numbers[j]l)

swap (&numbers [j-1], &numbers([j]);

The output of the program is as follows:

Enter number of elements: 10
Enter 10 integers: 4 6 8 12 45 66 23 43 11 2

Sorted list (ascending order): 2 4 6 8 11 12 23 43 45 66

15.5 The C standard library

An application programming interface (API) is a protocol that constitutes the interface of
software components. In the C language this is a collection of functions grouped together
according to their domain. We can access this API (called the C standard library) by adding

the #include directive at the top of our program file. Perhaps the most common is the

203

group of functions that support input-output and arc accessed by <stdio.h>. This and

other common header files are listed in the table below:

HEADER DESCRIPTION
<math.h> Defines common mathematical functions.
<stdio>.h | Defines core input and output functions.

Defines numeric conversion functions, pscudo-
<stdlib.h> | random number generation functions, memory al-
location, process control functions.

<string.h> | Defines string manipulation functions.

15.6 Formatted output

You may be surprised to know that the C language defines no input /ouput functionality. The

printf function is part of the standard library. The following is a list of format specifiers:

SPECIFIER | DISPLAYS | EXAMPLE

%i or %d int %3d displays as a decimal integer with a width of at least 3 wide.

he char

A float %4t displays as a floating point with a width of at least 4 wide.
%. 1f displays as a floating point with a precision of one
character after the decimal point.
%2.2f displays as a floating point at least 2 wide and
a precision of 2 characters after the decimal point.

W1t double

%s string

The \n we used in some printf statements is called an escape sequence and it represents a

newline character. The following are common escape sequences:

204

ESCAPE SEQUENCE | DESCRIPTION
\n newline

\t tab

\v vertical tab

\f new page

\b backspace

\r carriage return
\n newline

Example 15.3. The following program demonstrates some of the formatting rules:

#include<stdio.h>
main () {
int a, b;

float c, d;

a = 7;

b =a/ 2;

c = 10.5;

d = ¢ / 2;

printf (» b);
printf (, b);
printf (» €);
printf (,d);

return O0;

The output is:

10.50

5.250

205

206

Chapter 16

Data types

A program is composed by constructs, such as functions and variables. A data type (or sim-
ply a type) is a description of the possible values that a construct can store or compute to,
together with a collection of operations that manipulate that type, c.g. the set of integers
together with operations such as addition, subtraction, and multiplication. Common types

among most programming languages include booleans, numerals, characters and strings.

16.1 Classes of data types

The Boolean type contains the values true and false. The numeral type includes integers
that represent whole numbers and floating points that represent real numbers. The character
type is a member of a given set (ASCII) and, finally, strings are sequences of alphanumeric
characters. We can distinguish between simple types and composite (or aggregate) types
based on whether or not the values of a type can contain subparts. As an example, we can
say that integer is a simple type, whereas record is composite. A data item is an instance

(also: a member) of a type.

207

16.2 Primitive data types

With respect to a given programming language. a primitive type is one that is built in
(provided by the language). The C language supports two different classes of data types,
namely numerals and characters, which are divided into four type identifiers (int, float,

double, char), together with four optional specifiers (signed, unsigned, short, long):

IDENTIFIER | TYPE RANGE

int integer —32,768 to 32, 767

float real 1.2 x 10738 to 3.4 x 108
double real 2.2 x 10738 t6 1.8 x 103%®
char character | ASCII

16.2.1 Optional specifiers: Short, long, signed and unsigned

The four specifiers define the amount of storage allocated to the variable. We distinguish
between short and long numeral data types that differ in their range. The amount of storage
is not spcecified, but ANSI places the following rules:

short int < int <long int

and

float < double < long double

Further, we can distinguish between signed and unsigned numeral data types. Signed vari-
ables can be cither positive or negative. On the other hand unsigned variables can only be

positive, thus covering a larger range.

208

OPTIONAL SPECIFIER | RANGE

short int —32,768 to 32,767

unsigned short int 0 to 65,535

unsigned int 0 to 4,294,967, 295

long int —2,147.483, 648 to 2,147,483, 647

16.2.2 Type conversion

Type conversion is the transformation of one type into another. In C, implicit type conver-
sion (or coercion) is the automatic type conversion done by the compiler. In the following
example, the value of a float variable is assigned to an integer variable which in turn is

assigned to another float variable.

#include <stdio.h>
int main() {
int intvar;
float floatvar = 3.14;

float floatvar?2;

intvar = floatvar;
floatvar2 = intvar;
printf (, intvar, floatvar, floatvar?2);

return 0;

The output of the program is as follows:

3 : 3.14 : 3.000

209

16.2.3 Defining constants

A constant defines a data type whose value cannot be modified. We can define a constant

either with the const keyword as in

float comnst pi = 3.14

or with #define as in

#define TRUE 1

#define FALSE 0

16.2.4 Constant declarations in function parameters

A constant declaration in a function parameter states that the function is not going to change

the value of the parameter.

16.3 Composite data types

A composite type is onc that is composed by primitive types or other composite types.
Normally a composite type is called a data structure: a way to organize and store data so
that it can be accessed and manipulated efficiently. Common composite types include arrays

and records.

16.4 Arrays

An array is a collection of values (called its clements), all of the same type, held in a specific
order (and in fact stored contiguously in memory). Arrays can be either static (i.e,. fixed-
length) or dynamic (i.e. expandable). An array of size n is indexed by integers from 0 up to
and including n — 1. The composition of primitive (and possibly other composite) types into
a composite type results in a new type. For example, integers can be composed to construct

an array of integers.

210

Example 16.1. In the following program, we declare and initialize an array, numbers, and
then pass it as an argument, together with its size, to function getAverage() that will

compute and return the average of the elements of the array.

#include<stdio.h>
float getAverage(float[], int);
int main() A{
float numbers[5] = {1, 2.5, 9, 11.5, 23.5};
printf (, getAverage (numbers, 5));
return O;
}
float getAverage(float list[], int size) A
int 1i;
float sum = 0.0;
float average = 0.0;
for (i=0; i<size; 1i++)
sum = sum + list[i];
average = (sum/size);

return average;

The output is:

Array average: 9.5.

16.5 Pointers

A pointer is a type that references (“points to”) another value by storing that other value’s
address. A pointer variable (also called an address variable) is declared by putting an asterisk

*in front of its name, as in the following statement that declares a pointer to an integer.
int *ptr;

There arc two operators that arc used with pointers, namely “dereferencing” and “obtaining

the address of.”

211

* The “dereference” operator: Given a pointer, obtain the value of the object referenced

(pointed at).

& The “address of” operator: Given an object, use & to point to it. The & operator returns

the address of the object pointed to.

Example 16.2. The following code segment declares an integer variable a which is assigned
to 42 (linc 3), and a pointer p that points to an integer object (line 4). In line 5, the pointer
p is assigned the address of variable a, and in line 6 we display the contents of the object
pointed to by p. Accessing the object being pointed at is called dereferencing the pointer.

An illustration of this is shown in Figure 16.1.

1 #include <stdio.h>
int main () {
int a = 42;

int *p;

printf (» *p);

2

3

4

5 p = &a;
6

7 return O0;
8

The output of the program is p: 42.

Example 16.3. In this example an integer pointer ptr points to an integer variable my var.
We then proceed to modify the contents of my var through ptr and finally we verify that

the value of my var has indeed been modified. An illustration of this is shown in Figure 16.2.

#include<stdio.h>

int main () {

int my_var = 13;

int *ptr = &my_var;

*ptr = 17;

printf (, my_var);

212

int a = 42;
aisaninteger variable, assigned
the value 42.

int *p;

p isis an integer pointer.

p = &a;

p is assigned the address of a.

printf("p: %d\n", *p);

Displays the contents of the object
pointed to by p: 42.

Address: 0x1000

Type:int

Name: a

Value: 42

Address: 0x1000

Address: 0x1004

Type:int

Type:int

Name: a

Name:p

Value: 42

Value:

Address: 0x1000

Address: 0x1004

Type:int

Type:int

Name: a

Name:p

Value: 42

Value: 0x1000

Figure 16.1: An initial illustration of pointers.

Note that a statement such as *my var would have been illegal as it asks C to obtain the
object pointed to by my var. However, my var is not a pointer. Similarly, a statement such
as &ptr though legal is rather strange as it asks C to obtain the address of ptr. The result

is a pointer to a pointer (i.e. the address of an object that contains the address of another

object).

16.5.1 Aliasing

Aliasing is a situation where a single memory location can be accessed through different

variables. Modifying the data through one name implicitly modifics the values associated to

all aliased names. Consider the program below:

##include<stdio.h>
int main() {
int a = 7;

int *ptr;

213

int my var = 13;
my_varisan integer variable,
assigned the value 13.

int *ptr = &my_var;
ptrisisaninteger pointer,
assigned the address of my_var.

Address: 0x1000

Type:int

Name: my_var

Value: 13

Address: 0x1000

Type:int

Address: 0x1004

Name: my_var

Type:int

Value: 13

Name: ptr

Value: 0x1000

Address: 0x1000

Address: 0x1004

3 = .

ptr 175 Type:int Type: int
The object pointed to by ptris Name: my_var Name: ptr
assigned the value 17. Value:1_7 Value: 0x1000

printf("my var: %d\n", my var);

Displays the contents of my_var:17.

Figure 16.2: Mlustration of pointers.

ptr = &a;

printf (, al;
printf (, *ptr);
a = 9;

printf (, al;
printf (, *ptr);
*ptr = 11;

printf (, al;
printf (, *ptr);

return 0; }

In this example, we create an integer variable a and an integer pointer ptr that points to a.
We then verify that the two variables contain the same value:

int a = 7;

int *ptr;

ptr = &a;

214

printf (» ad;

printf (, *ptr);

This will display

We then proceed to modify the value of a. first directly

a = 9;
printf (, oal;
printf (, *ptr);

and then through the pointer

*ptr = 11;
printf (» ad;
printf (, *ptr);

This will display

a: 9
a: 9
a: 11
a: 11

16.5.2 Constant pointers and pointers to constants

In this subsection we will discuss three things: Constant pointers, pointers to constants and

constant pointers to constants. Consider the statements below

int a = 3;

int const b = b;

int ¢ = 7;

int * const ptrl = &a;

215

where ptrl is a constant pointer of integer type, initialized to the address of variable a. As
its name suggests, the content of a constant pointer once assigned cannot change. In other
words, the pointer cannot change the address it holds. If we attempted to do that, as for

example with
ptrl = &c;

we would get an error from the compiler:

error: Assignment to const identifier ‘ptrl-.

The statement
int const * ptr2 = &b;

declares and initializes a pointer of constant integer type. This implics that we cannot modify
the value of the object pointed to by the pointer. If we attempted to do that as for example

with
xptr2 = 7;

we would get an error from the compiler:

error: Assignment to const location.

We can change the content of this pointer but we cannot modify the value of the object

pointer to. In the statements below

ptr2 = &a;

*ptr2 = 11;

we first point the pointer to variable a which is accepted, but when we attempt to modity

the value of a we get an crror from the compiler:

error: Assignment to const location.

The statement

int const * const ptr3 = &b;

216

declares and initializes a constant pointer of constant integer type. We can change neither
the address the pointer holds nor the value of the object it is pointed at. The following

statements result in errors:

ptr3 = &a; >>>error: Assignment to const identifier ‘ptr3’.

*ptr3 = 9; >>>error: Assignment to const location.

Let us put everything together:

#include <stdio.h>

int main () {

int a = 3;

int const b = b5;

int ¢ = 7;

int * const ptrl = &a; /* a constant pointer of integer type */
int const * ptr2 = &b; /* a pointer of constant integer type */

/* a constant pointer of constant integer type */

int const * const ptr3 = &b;

printf ()
*ptrl, *ptr2, *ptr3);

return O;

The output of the program is

Pointers: ptrl: 3, ptr2: 5, ptr3: 5.

16.5.3 Pointers and arrays

The clements of an array arc assigned consecutive addresses. We can use a pointer to an

array in order to iterate through the array’s elements. Suppose we have the following:

int arr [5];

int *ptr;

In the following statement, we assign the first element of the array as the value of the pointer:

217

ptr = &arr[0];
Pointer arithmetic makes *(ptr + 1) the same as arr[1].
Example 16.4. In this example we explore pointer arithmetic to assign an array to a pointer,

and then use the pointer to display the values of the first three elements of the array. We

say that we arc displaying the contents of the array by dereferencing the pointer.

#include <stdio.h>
int main() A{
int arr[5] = {1, 3, 5, 7, 11};
int *ptr;
ptr = &arr[0];
printf (>
*ptr, *(ptr + 1), *x(ptr + 2));

return O;

The output is:
arr[0]: 1, arr[l]l: 3, arr[2]: 5

Note that *(ptr + 1) is not the same as *(ptr) + 1. In the latter expression the addition
of 1 occurs after the dereference, and it would be the same as arr[0] + 1. In the above

program, the statement
printf (, *(ptr) + 1);

will display

arr[l]: 2

16.5.4 Pointers as function parameters

In the program that follows, we deploy function swap that defines two integer formal param-

eters, and with the help of a temporary variable it swaps their values:

218

#include <stdio.h>

void swap(int a, int b) {

int temp = a;
a = b;
b = temp;

}
int main () {

int first, second;

printf ();
scanf (, &first, &second);
printf (, first, second);
printf ()

swap(first, second);
printf (, first, second);

return O0;

Let us exccute the program:

Enter two integers: 5 7
First: 5, Second: 7.
Swap 1in progress...

First: 5, Second: 7.

What is wrong with the program? In C. arguments are passed by wvalue, i.e. a copy of the
value of each argument is passed to the function. As a result, a function cannot modify the
actual argument(s) that it receives. To make the function swap the actual arguments we

must pass the arguments by reference, i.e. pass the addresses of the actual arguments.

219

The correct program is shown below:

#include <stdio.h>

void swap(int *a, int *b) <
int temp = *a;
xa = *b;
*b = temp;

}

int main() {

int first, second;

printf ()

scanf (, &first, &second);

printf (, first, second);
printf ()

swap (&first, &second);
printf (, first, second);

return O;

We can exccute the program as follows:

Enter two integers: 5 7
First: 5, Second: 7.
Swap in progress...

First: 7, Second: 5.

16.5.5 Function pointers

Pointers to variables and arrays are examples where a pointer refers to data values. A pointer
can also refer to a function, since functions have addresses. We refer to these as function

pointers. Consider the following (rather cryptic) declaration:

long (*ptr) (int);

220

This declares a function pointer; It points to a function that takes an integer argument and
returning a long integer. We could now initialize the pointer by making it point to an actual

function as follows:
ptr = &factorial;

This makes ptr point to function factorial(..). The function can be invoked by dercfer-
encing the pointer while passing arguments as any regular function call, only in this case we

refer to this as an indirect call. We can put everything together as follows:

#include <stdio.h>
long factorial(int);
int main() A{

int n;

long f£;

long (*ptr) (int);

ptr = &factorial;

printf ()
scanf (, &n);
if (n < 0)
printf ()
else

f = ptr(n);
printf (, n, £);
return O;
}
long factorial(int n) {
if (n == 0)
return 1;
else

return(n * factorial(n-1));

221

We can exccute the program as follows:

Enter a non-negative integer: 5

50 = 120

16.6 Records

A record, or structure, is a collection of clements, fields (or members), which can possibly of

different types. The syntax of declaring a structure in C is

struct <name> {
field declarations

};

Record initialization and assignment

To create a structure to represent a coordinate on the Cartesian plane, we can say:

struct coordinate A
float x;
float y;

+s

To create a coordinate variable we can now say
struct coordinate p;

We can eliminate the word struct every time we declare a coordinate variable by declaring

coordinate as a new type with typedef.

typedef struct {
float x;
float y;

} coordinate;

We can now create a coordinate variable with

coordinate p;

222

In the following program we define a new type coordinate to be a record (struct) with two
float members. We declare and initialize four variables of type coordinate. Members of the

coordinate type can be initialized during declaration either inline as in
coordinate pl = {0, 0};

or by designated initializers, as in

coordinate p2 = {.x = 1, .y = 3};

Members of a record can also be assigned values as in

p3.x = 2;

p3.y = 7;
or by assigning the value of one record to another, as in

p4 = p3;

that copics the member values from p3 into p4.

#include<stdio.h>
typedef struct {

float x;

float y; } coordinate;

int main () {

{0, 0};
{.x =1, .y = 3};

coordinate pl

coordinate p2
coordinate p3;

coordinate p4;

p3.x = 2;
p3.y = 7;
p4 = p3;
printf (» pl.x, pl.y);
printf (s P2.x, p2.y);
printf (» P3.x, p3.y);
printf (» P4.x, pd.y);

return 0; 7}

223

The output of the program is

pl = (0, 0)
p2 = (1, 3)
p3 = (2, 7)

p4 = (2, 7)

16.6.1 Records and pointers

A pointer can be deployed to point to a record as in

coordinate p = {0, 0};

coordinate *ptr = &p;
The pointer can subsequently be dereferenced using the * operator as in
(xptr).x = 3;

An alternative binary operator exists (=>): The left operand dereferences the pointer, where

the right operand accesses the value of a member of the record:
ptr->y = 3;

Let us put everything together in the program below and an illustration of this is shown in

Figure 16.3.

#include<stdio.h>
typedef struct {
float x;
float y;
} coordinate;
int main() {
coordinate p = {0, 0};
printf (s P-X, P-Y);
coordinate *ptr = &p;
(*ptr).x = 3;

ptr->y = 3;

224

printf (» P-X, P.Y);
return O;
}
The output of the program is
p = (0, 0)
p = (3, 3)
typedef struct { Type: coordinate
float x;
float y; Name:p
} coordinate; X=0:
coordinate p = {9, 0}; y=0;
) Type: coordinate
coordinate *ptr = &p; ptr
Name:p
x=0;
y=0;
(*ptr).x = 3; otr ——| Type: coordinate
ptr->y = 3; Name: p
X =3;
y=3;

Figure 16.3: A pointer to a record.

225

Example 16.5. Consider the following program:

#include<stdio.h>
/* Declare ’coordinate’, a data type that */
/* can hold a cartesian point */
typedef struct {
float x;
float y;
} coordinate;
int main() {
/* We will create three points of type coordinate, and */
/* use three alternative ways to assign them to values */
/* Inline declaration and initialization */
coordinate pointl = {0, 0};
/* Declaration with designated initializers x*/
coordinate point2 = {.x = 1, .y = 0};
/* Declare ’point3’ */
coordinate point3;
/% Assign ’point3’ to (1,5) */
point3.x = 1;
point3.y = 5;
/* Declare ’collection’, an array of coordinates x*/
coordinate collection[3];

/* Enter the three points into the array */

collection[0] = pointl;
collection[1] = point2;
collection[2] = point3;

/* Declare ’ptr’, a pointer to type coordinate */
coordinate *ptr;
/* Point ptr to array ’collection’ */

ptr = &collection[0];

226

/* We will use

two alternative ways to display the three points.

The ezact output should be:

Point1: (0,
Point2: (1,
Point3: (1,
*/
/% Display the
printf (
/% Display the
printf (
/* Display the
printf (

return O0;

0)
0)
5)

first coordinate by dereferencing the pointer */
, (xptr).x, (xptr).y);

second coordinate by dereferencing the pointer */
, (kx(ptr+1)).x, (x(ptr+1)).y);

third coordinate using the binary operator -> */

, (ptr + 2)->x, (ptr + 2)->y);

16.6.2 Records and arrays

In the program below we make use of an array of records. More specifically, 1ine[] is an

array of type coordinate, itself defined as a record. The elements of the array are initialized

at the time of declaration. We use the dot (.) operator to access fields of individual records.

For example 1ine[0] . x accesses the x field of the first clement (record) of line.

#include<stdio.h>

typedef struct A
float x;
float y;

} coordinate;

int main () {

coordinate line[2] = {

{0, 0},
{11, 19}
}s

227

printf (

line [0].x, line[0].y, line[1].x, linel[l1]l.y J;

The output of the program is

Line points: (0, 0), and (11, 19).

16.7 Unions

A union is a variant of a record (structure). Unlike a record where there exists a separate
memory location for cach of its ficlds, the union associates all of its ficlds to a single memory
location. In other words, union fields share the same space. This implies that only one field
of a union can be accessed at a time, and modifying trhe value of one field results in the

modification of the values of the rest of the ficlds.

Example 16.6. In this example we declare a union type called package that contains two

fields: int label is of type integer and char label is of type char.

#include <stdio.h>

typedef union {
int int_label;
char char_label;

} package;

int main() {
package p;

p-int_label = 12;

printf(, p.int_label);
p.char_label = ;

printf (, p-char_label);
printf(, p.int_label);

return O0;

228

The following scgment

p.-int_label = 12;

printf (, p-int_label);

will display 12. We subsequently assign a value to char label and then proceed to display

the values of both fields. The following segment

p-char_label = ;
printf (, p-char_label);
printf (, p-int_label);

will display

C

99

the second line of which is the value of int_label which corresponds to an unexpected result.

99 is the ASCII number for the character ‘c.’

16.8 Enumerated data types

Consider the case where a variable contains only a limited set of values which are referenced
by name. For example, week takes the values Monday, Tuesday, ..., Sunday, or boolean
takes the values true, false. The cnumerated data type supports such variables, where the

compiler assigns each name (called a tag) an internal integer value. For example,

enum boolean { TRUE, FALSE};

enum boolean bool; /* a wvariable of type boolean */

The general form of an ennumeration statement is
enum enum-name { tag-1, tag-2, ... }

where the tags are normally in uppercase. It is important to note that cven though tags

look like strings, they arc not. Tags constitute keywords that we define for our program.

229

230

Chapter 17

Memory management

We have already scen that when declaring an array, we have to specify not just the type of
its elements but also the size of the array. This allows the system to allocate the appropriate
amount of memory. Once specified. we cannot change the size of the array dynamically, i.e.
during the execution of the program. Through one of its standard librarics, the C language
offers a number of functions that allow us to circumvent this problem and manage memory

dynamically. Consider the program below:

#include<stdio.h>
#include <stdlib.h>

int main () {

int *array = malloc(3 * sizeof (int));
if (array == NULL) {
printf ()

return 1;
+
xarray = 1;
*(array + 1) = 3;

x(array + 2) = 5;

printf (, *array);
printf (, *(array + 1));
printf (, *(array + 2));

231

free(array);

return O;

In the first statement
int *array = malloc(3 * sizeof (int));

we request the allocation of enough memory for an array of three clements of type int. We
stress the fact that this is merely a request and the allocation of memory is not guaranteed
to succeed. If successtull, function malloc returns a pointer to a block of memory. If not
successfull, malloc will return the special value NULL to indicate that for some reason the
memory has not been allocated. As a result, to indicate success we now have to verify that

our array pointer is not NULL.
if (array == NULL) {...}

We then proceed to assign values to the clements of the array and subsequently display
them. Once we no longer need the array, we have to release the allocated memory back to

the system. We do this with function free:
free(array);

Memory that is no more needed but it is not deallocated cannot be reused by the system.
This waste of resources can accumulate and can lead to allocation failures when resources
arc nceded but have been exhausted. Even though memory not relecased with free is au-
tomatically released once the program terminates, it is a good practice to ensure that we

explicitly release memory once it is not needed. The output of the program is

All memory management functions are listed in Table 17.1.

232

FUNCTION | DESCRIPTION

malloc Allocates the specified number of bytes.

realloc Increases or decreases the size of the specified block of memory.
calloc Allocates the specified number of bytes and initializes them to zero.
free Releases the specified block of memory back to the system.

Table 17.1: Memory management functions and their corresponding descriptions.

233

234

Chapter 18

Data structures and abstract data

types I

18.1 ADTs vs. data structures

An abstract data type (ADT) is a definition for a data type solely in terms of the set of values
and a set of operations on that data type. The behavior of each operation is determined by

its inputs and outputs. This implics that an ADT is implementation-independent.

A data structure is a specific implementation of an ADT. The implementation details are
hidden from the clients of the ADT. This is referred to as information hiding. Clients of the
ADT are unaffected by any changes to the implementation as long as they conform to the
interface of the ADT. The choice of a data structure for the implementation of a particular
ADT involves benefits and costs. Because of these trade-offs, rarely (if at all) onc data
structure is better than another in all situations. In identifying the trade-offs for a data

structure to implement a particular ADT, we need to consider the following requirements:

e The space for each data item it stores.
e The time to perform cach basic operation.

e The programming cffort involved.

235

18.2 Data structures vs. data types

In a previous chapter we discussed data types and we distinguished between primitive and
composite. We can view composite data types as data structures. As an example, arrays
and records arc both composite data types as well as data structures, whercas integers and

characters are primitive data types and not data structures.

18.3 The linked list data structure

The linked list is among the most common data structures. It can be used to implement
several common abstract data types, including stacks, and queues. Among the different
variants, the singly linked list is the simplest: It represents a chain of elements, called nodes,
where cach node contains a minimum of two fields: the data field (or value field) and the
next link (or next pointer) that points to the next node in the chain. Additionally, the head
of a list is the list’s first node and the tail either points to the rest of the list (thus following
the corresponding mathematical structure), or it can sometimes point to the last node in

the list.
Example 18.1. In this example, we will construct a linked list with two nodes. A node is
represented as a record:

struct node {
int data;
struct node *next;
+s
Initially the list is empty, thus the head of the list points to NULL:

struct node *head = NULL;

We are now ready to request memory for the head of the list:

head = malloc(sizeof (struct node));
if (head == NULL) <
printf ();

return 1;7}

236

Once memory has been allocated we need to a) have the head’s next field point to null and

b) assign some value to the data field:

head->data = 5;

head->next = NULL;

We follow the same procedure with the second node of the list, but at the end we need to
make sure that a) the next field of the new item points to the node currently pointed to by
head and b) the new item becomes the new head, i.c. the head pointer is updated to point

to the new node:

new->next = head;

head = new;

An illustration of this is shown in Figure 18.1.

#include<stdio.h>
#include <stdlib.h>
struct node {
int data;
struct node *next;
+;
int main() {
struct node xhead = NULL;

struct node *new;

head = malloc(sizeof (struct node));
if (head == NULL) {
printf ();

return 1;

}

head->data = b5;

head ->next = NULL;

new = malloc(sizeof (struct node));

237

printf ()

return 1;

+

new->data = 11;

new->next = head;

head = new;

printf(, head->data);

printf (, (head->next)->data);

return O0;

node *head = NULL;

head = malloc(sizeof(struct node));

head->next NULL;

head->data

]
i
(o

new = malloc(sizeof(struct node));
new->data = 11;

new->next = head; head
data:

head = new; »— 11 next

head @—NULL
head
& — data next
head
®— data next —> NULL
head :
® dasta' next ——> NULL
new .
*»— ditla' next
head ,
®— dasta' next ——> NULL
dasta: next ——> NULL

Figure 18.1: The creation of a linked list.

238

Example 18.2. In this example we will construct a linked list of several items. Once the

list hag been created, we start at the head

current = head;

and as long as we do not encounter the NULL value, we iterate through the list, displaying

the value of cach node’s data field:

current = head;
while (current) A{
printf (, current->data);

current = current->next;

#include<stdio.h>
#include <stdlib.h>
struct node {
int data;
struct node *next;
+;
int main() {
struct node *head = NULL;
struct node *current;
int counter;

for (counter=1; counter<=10; counter++) A

current = malloc(sizeof (struct node));
if (current == NULL) {
printf ()

return 1;

}
current ->data = counter;
current ->next = head;
head = current;

}

current = head;

239

while (current) {
printf (, current->data);
current = current->next;

}

return O;

The output of the program is

10 9 8 76 5 4 3 21

240

Chapter 19
File 1/0

The general form to access a file is
file-pointer = file-I/0-function (file-name, mode);

Assume that we need to specify that we want to open a file, out.txt, in order to write. We

can do this as follows:

FILE *fp;

fp = fopen(,)

where fp is a pointer that will keep track of this file, fopen() is a function to open a file

(from the stdio library), and w is the writing mode.

Function fopen() returns a pointer. It would return NULL if for some reason the system has
been unable in creating the file. No matter how unlikely this may be, it is a good practice
to handle abnormal conditions:
if (fp==NULL) {

printf ()

return 1;

In order to write to a file, we use the function fprintf () (part of stdio) where the first

argument is the file pointer, fp.

241

fprintf (fp, s)

We should not forget to close the file upon completion of our task. Function fclose() takes

as argument a file pointer and closes the file referenced by the pointer:
fclose (fp);

Putting everything together, we have the following example program that writes the sentence

Sample text. into file out . txt.

#include <stdio.h>
int main() {
FILE =*fp;
fp = fopen(s)
if (fp==NULL) {
printf ();
return 1;
}
fprintf (fp, ,)
fclose (fp);

return O;

A list of file I/O functions is shown in Table 19.1 and a list of the different file opening modes

18 shown in Table 19.2.

242

FUNCTION | DESCRIPTION

fopen
fclose
feof
fscanf
fprintf
facts
fputs
feete
fpute

opens a text file.

closes a text file.

detects end-of-file marker in a file.
reads formatted input from a file.
prints formatted output to a file.
rcads a string from a file.

prints a string to a file.

reads a character from a file.
prints a character to a file.

Table 19.1: File functions and their corresponding descriptions.

STRING LITERAL

MODE

W

r

a
r+
w+
a-+

open for writing (file need not exist)

open for reading (file must exist)

open for appending (file need not exist)

open for reading and writing, start at beginning
open for reading and writing (overwrite file)

open for reading and writing (append if file exists)

Table 19.2: String literals and their corresponding modes.

243

244

Part 1V

Object-oriented programming with

Java

245

246

Chapter 20

Object-oriented programming with

message passing 1

20.1 Object creation and initialization

A class is both a type and a factory. As a type, it defines the kind of data any element of this
type can hold. As a factory, it provides facilities for its clients to instantiate it. Consider

the class definition below:

public class Book {
private String author;
private String title;
private String year;
public Book (String author, String title, String year) A
this.author = author;

this.title = title;

this.year = year;
}
public void display () {
System.out.println (+ author + +
+ title + +
+ year + DI

247

A constructor is a special method which automatically initializes an object immediately
upon creation. A Java constructor has the exact same name as the class in which it resides

and it has no return type (not even void).

20.1.1 Order of initialization

We will use the terms attribute, (data) ficld and variable interchangeably. The distinction
between instance vs. class scope attributes (see later) and between local vs. non-local
variables will be made clear from the context and only mentioned explicitly when it would

be necessary. The set of attributes and methods is referred to as the set of features of a class.

During instantiation, all attributes are set to their default values (integers to zero, booleans
to false and objects to null). The attributes with initializers are set in the order in which

they appear in the class definition. Following that, the constructor body is exccuted.

20.2 Field shadowing

The assignment statement this.author = author; in the constructor of the class, dis-
tinguishes between the attribute author (on the left-hand side of the statement) and the
argument with the same name (on the right-hand side). Assume that we had the statement
String author = author; in the constructor. This would not compile since the left-hand
side would define a local variable author, and the compiler would have no way of distin-

guishing it with the attribute of the same name.

Now, agsume that we have the following class definition:

public class Book {
private String author;
private String title;
private String year;

public Book (String authorl, String title, String year) {

248

this.author = authorl;
String author = ;

this.title = title;

this.year = year,;
System.out.println(+ author);
+
public void displayAuthor () A
System.out.println (+ author);
+
+
The statement String author = "Jill"; defines a local variable which shadows the at-

tribute of the same name. We have changed the name of the first parameter to authori to
avoid duplication with the local variable of the same name and allow the code to compile.
Hence, the output of the print statement in the constructor is Author: Jill. Howcever,
once the body of the constructor terminates, the local variable author is discarded and the

attribute author is Budd. The main method will display Author: Budd.

20.3 Parameter passing

Objects are passed by reference, wherecas primitive types are passed by value i.c. modifica-
tions are made on copies of the actual parameters. Note, however, that not all classes are

equal: wrapper classes are immutable (they have no mutator methods).

Example 20.1. In the following example, an instance of the wrapper class Integer is passed
as an argument to method inc() and its value is incremented by one. This, however, has

no cffect on the actual object. The output of the program will be 7.

249

public class WrapperClassTest A
public static void inc(Integer in) {
in = in + 1;
+
public static void main(Stringl[] args) {
Integer i = 7;
inc(1i);

System.out.println(i);

20.4 Type signature

The type signature of a method (or a constructor) is a sequence that consists of the types of
its parameters. Note that the return type, parameter names, and possible final designations

of paramcters arc not part of the type signature.

In class Book, the type signature of the constructor is (String, String, String) whereas

the type signature of method display is O.

20.5 Static features

Instance features (parameters and methods) can be accessed only through an object ref-
erence. Static features are used outside of the context of any instances and they may be

accessed through either the class name (preferred method) or an object reference.

ClassName.staticMethod (parameterList)
ClassName.staticVariable
objectReference.staticMethod(parameterList)

objectReference.staticVariable

250

Example 20.2. In the following example, cach time a Counter object is created, the static
variable number0fInstances is incremented by one. Unlike instance attributes which can
have a different value for each instance of Counter, the static attribute numberOf Instances

1s universal to the class.

public class Counter A
private int value;
private static int numberOfInstances = 0;
public Counter () {
numberOf Instances ++;
+
public void reset () {
value = 0;
+
public int getValue () {
return value;
+
public void click () {
value ++;
+
public static int howMany () {

return numberOfInstances;

+
+
Counter c¢1 = new Counter ();
Counter c¢2 = new Counter ();
cl.click();
cl.click();
c2.click ();
System.out.println(+ cl.getValue ());
System.out.println(+ c2.getValue ());
System.out.println(+ Counter .howMany ());

251

The output will be as follows:

cl value 2

c2 value =1

Number of Counter objects: 2

20.5.1 Static blocks

Static blocks run once as soon as the class is loaded and before the main() method executes.

Example 20.3. Consider the following program:

public class StaticBlockTest {
static int a = 2;
static int b;
static void method (int x) {
System.out.println(+ x);
+
static {
System.out.println()
b = a x 3;
System.out.println(b);
+
public static void main (Stringl[] args) {

method (13); }}

The output will be as follows:

Static block.
6

Static method: x = 13

252

20.5.2 Initialization of static attributes

Static attributes can be initialized in three ways:

1. With their default values as in private static int numberOfInstances;
2. With an explicit initializer as in private static int globalMoveCount = 0;

3. By the static initialization block:

private static int numberOfInstances;
static {

number0fInstances = 0;

253

254

Chapter 21

Inheritance

Inheritance is a mechanism under which one abstraction can be defined in terms of another.
Inheritance supports the reuse of implementation and interface, normally to model an is-a
relationship. With inheritance defined, we can now define Object-Oriented Programmang

(OOP) as:

OOP = ADTs + Inheritance

We can define a new class from other classes (called its superclasses or component classes).
The newly defined class is called a subclass® of its superclasses. A subclass inherits both
structure and behavior from its superclasses. The immediate superclass(-es) of a class is
called its direct superclass(-es), or parent class(-es), (as opposed to other component classes
which are indirect superclasses). The newly defined class is a direct subclass of its direct su-
perclass. Note that inheritance is transitive, i.e. a class can inherit features from superclasses
many levels away. This implies that a class is built not only from its direct superclass(-es),

but also from cach of their direct superclasses, and so on.

21.1 Single vs. multiple inheritance

In single inheritance all classes considered have only one direct superclass. The collection

of classes extending from a common superclass is called an inheritance hierarchy. The path

'Some authors use the term extended, which is not always true for subclasses.

255

from a particular class to its ancestors in the inheritance hicrarchy is called its inheritance
chain. In multiple inheritance a class has more than onc direct superclags. In Java, all public

and protected features of a superclass are accessible in all subclasses.
Example 21.1. Consider the following class definitions which specify an inheritance hier-
archy:

class Person {...}

class Student extends Person {...3}

class Professor extends Person {...}

class UndergraduateStudent extends Student {...}
class GraduateStudent extends Student {...}

class TeachingAssistant extends GraduateStudent {...}

If we start from TeachingAssistant, the inheritance chain includes: TeachingAssistant,

GraduateStudent, Student, Person, Object (the latter is implicitly included).

21.2 Swubclass initialization

The initialization of a subclass consists of two phases:

1. The initialization of the attributes inherited from the superclass (one of the constructors

of the superclass must be invoked).

2. The initialization of the attributes declared in the subclass.

21.3 Modifiers

Classes, class features, interface features, method parameters, and local variables can be

qualified with modifiers.

A public class is visible to all classes everywhere. If a class has no modifier (the default,

also known as package-private), then it is visible only within its own package. Class features

256

that arc package-private arc not accessible to classes defined outside the package, including

subclasses of the class.

21.3.1 Modifiers and inheritance

What happens to inherited features? Based on the types of modificrs attached to features,

we can distinguish between the following cases:

Public features can be accessed outside the class definition including outside the package
in which they arc declared. This is the default modifier for all features declared in an

mterface.

Protected features can be accessed within the class definition in which they appear, or

within other classes in the same package. or within the definitions of subclasses.

Private features can be accessed only within the class definition in which they appear.

21.3.2 Preventing inheritance: Final classes

We can use the final modifier in a class definition to prevent a class from being subclassified.
We can also make a specific method in a class final in which case no subclass can modify the

behavior of this method (see later on overriding).

21.3.3 Enforcing inheritance: Abstract classes

An abstract class (as opposed to concrete) cannot be directly instantiated. An abstract class
defines a specification and possibly partial implementation to be inherited. Any class that
containsg an abstract method must itself be declared abstract. Any concrete subclass of an
abstract class must implement all of the abstract methods defined in the superclass. Alter-
natively, if a subclass implements some (but not all) of the inherited abstract functionality,
or if it additionally defines its own abstract functionality, then that subclass must itsclf be

declared abstract.

257

21.4 Method overloading

If two methods or constructors in the same class or in related classes i.c. in a superclass-
subclass pair have different type signatures, then they may share the same name. We say that
they are overloaded on the same name with multiple implementations. When an overloaded
method is called, the number and the types of the arguments arc used to determine the
signaturce of the method that will be invoked. Overloading is resolved at compile time.
In an inheritance hierarchy, we can overload a superclass method to provide additional

functionality.

21.5 Method overriding

A subclass can modify the behavior inherited from a superclass. This is done through a
mechanism called overriding which refers to the introduction of an instance method in a
subclass that has the same name, same type signaturce and same return type of an inherited
method, but a different implementation. The implementation of the method in the subclass

replaces the implementation of the inherited method from the superclass.

21.6 Overriding vs. hiding

When a subclass declares an attribute or a static feature that is alrcady declared in a super-
class, it is not overridden; it is hidden. When a hidden feature is invoked or accessed, the
copy that will be used is determined at compile time. In other words, hidden features arc

statically bound, based on their declared type.

In comparing hiding to overriding, we note that instance methods can only be overridden.
When an overridden method is invoked, the implementation that will be executed is chosen

at run time.

258

21.7 Static and dynamic type of an object

Consider an assignment statement of the form
type variable = expression;

The type that is explicitly mentioned in the assignment statement next to the variable is
the variable’s declared or static type. On the right-hand side of an assignment statement, a
variable may be assigned an object of a type different to its static type. We call this the run

time or dynamaic type of the variable. Consider the following class definitions:

public class Dog {
public static void describe() {
System.out.println()
+
public void whatIdo () {

System.out.println()

public class Collie extends Dog {
public static void describe () {
System.out.println()
}
public void whatIdo () {

System.out.println()

In the code segment that follows, the declared (static) type of lassie is Dog, and its run

time (dynamic) type is Collie.

Dog lassie = new Collie();
lassie.describe ();

lassie.whatIdo ();

259

21.8 Subtype relationships

Classes and interfaces define types and all instances of a class constitute legitimate values of
that type. The inheritance relationship among classes (and between classes and interfaces)
creates a related set of types (subtype relationship). Type T'1 is a subtype of type T2 if every
legitimate value of T'1 is also a legitimate value of T2. In this case, T2 is the supertype of
T'1. This implies that every instance of a subclass is also an instance of a superclass, but
not vice-versa. A value of a subtype 171 can appear wherever a value of the supertype 12 is
expected. This implies that an instance of a subclass can appear wherever an instance of a
superclass is expected. The type defined by a subclass is a subset of the type defined by its
superclass(-es) as the set of all instances of a subclass is included in the set of all instances
of its superclass(-cs). For example, the pair (shape, triangle) defines a subtype relationship
as cvery triangle is a shape (but not vice versa) and thus the set of shapes is a superset of
the set of triangles. Furthermore, instances of class Triangle can appear in any place where

an instance of class Shape is expected.

Example 21.2. The rclationship between square and quadrilateral in gecometry defines s
subtype relationship, since a square is a special type of quadrilateral. On the other hand, the
relationship between stack and vector doces not define a subtype relationship even though it

may be practical to deploy inheritance and define the former in terms of the latter.

21.9 Compiler and run time system responsibilities

We are now ready to explicitly define the responsibilities of the compiler and of the run time

system?.

The compiler has the following responsibilities:

Check the validity of assignment statements The type of the expression on the right-

hand side (RHS) of an assignment statement must the same or a subtype of that of

2Note that these responsibilities are laid in the absence of explicit casting. In § 21.14 we amend them in
the presence of explicit casting.

260

the variable on the left-hand side (LHS). In other words, the validity of an assignment,
statement is based on the static type of a variable. This is referred to as static type

checking. In the previous example, the compiler asks “Is Collie a subtype of Dog?”

Check the validity of messages (method calls) The compiler needs to verify that the
static type of the object (this includes its declared type and all its supertypes) contains
a method with a name and signature that can match the message (method call). In
the previous example the compiler asks “Is there a method whatIdo() with signature

() in the static type of lassie?”
The run time system has the following responsibilities:

Choice of method invocation A mecthod invocation is determined based on the run time
type of the object, where the run time system will try to match the message with a
method. The run time system will start a lookup from the class definition of the run
time type of the object. If such method exists it will be invoked. Otherwise, the run
time system scarches for a match along the inheritance chain until it finds a matching
method. This procedure is called dynamic binding (or dynamic dispatch). In the above
example, the run time system will start looking for a method to match whatIdo () from

the definition of class Collie, the run time type of lassie.

Example 21.3. Let us trace the code of the main method in the previous example:

Dog lassie = mnew Collie(); The assignment statement is valid as Collie is a subclass

of Dog.
lassie.describe(); The declared type of lassie is Dog. The call to the static method
describe () is resolved statically, i.c. based on the declared type of the variable, hence the

call to describe () invokes method describe () in class Dog which will display I am a dog.

lassie.whatIdo(); The compiler needs to check whether the declared type of lassie

contains a method to match the message whatIdo(). The declared type indeed contains

261

such a method and thus compilation is successful. The run time system will perform a
lookup starting from the run time type of lassie to locate a method that can match the
message. Recall that the whatIdo() method in class Collie overrides the behavior of the
inherited method of the same name and signature from class Dog. The run time system
locates method whatIdo() in class Collie and invokes it, displaying I save people who

are in danger.

Example 21.4. In this example, class Point contains two overloaded constructors. The
one with no arguments is called the default constructor. The keyword this is used inside
instance methods (or constructors) to refer to the receiving object, i.c. the instance of the
clags through which the method is invoked. In this example, the default constructor calls
the constructor Point(double, double) by passing the arguments (0, 0) as the initial
(default) coordinates for any point instance. Note that this cannot be invoked inside static

methods.

public class Point A

protected double x, y;

public final String description = ;

public Point (double x, double y) {
this.x = x;
this.y = vy;

+

public Point () {
this (0, 0);

+

public String toString() A

return + x + + + v,

Class Point3D cxtends class Point and it also contains two overloaded constructors. During
the execution of its default constructor, the instance variable z is initialized, and the default

constructor of its parent class will be invoked. If the parent class contained no default con-

262

structor, an crror would occur.

The counstructor Point3D (double, double, double), initializes the instance variable z.

Instance variables (x, y) are initialized through the constructor of the parent class which

is called by the keyword super. This keyword must be the first statement in the constructor

of the subclass.

public class Point3D extends Point {

private double z;

public final String description = ;

public Point3D (double x,

super (x,

this.z

}

v);

= zZ ;

public Point3D () A

this.z

}

0;

double y, double z) {

public String toString() A

return

+ X

T}

+ + oy 4 + + z;

The code segment that follows simulates the creation and initialization of several objects.

Point pl

Point p2
Point3D p3
Point3D p4
Point pb =
System.out
System.out
System.out
System.out
System.out
System.out

System.out

new Point ();

new Point (1,

1

= new Point3D();

new Point3D (1,

1, 2);

new Point3D();

.println (pl
.println{(p2.
.println(p3.
.println (p4.
.println(pb.
.println(p3.

.println (p5.

.toString () ;

toString ());
toString ());
toString () ;
toString ());
description);

description);

263

Variables p3 and p5 both contain Point3D objects. The statement

System.out.println(p3.description) will display Class Point3D. Consider the state-
ment System.out.println(pb5.description). As fields are statically bound, the variable
description refers to the one in the declared type of pb, which is type Point. Hence the

output will be Class Point.

The output of the program is shown below:

x: 0.0 y: 0.0
x: 1.0 y: 1.0
x: 0.0 y: 0.0 z: 0.0
x: 1.0 y: 1.0 z: 2.0

x: 0.0 y: 0.0 z: 0.0
Class Point3D

Class Point

21.10 Design recommendations for inheritance

You may consider the following design recommendations for inheritance:

1. First and foremost, use inheritance to model an is-a relationship. For example, a linked

list ig a list, but ncither a stack nor a queuc arc vectors.

2. Place common variables and methods in the superclass.

21.11 Types of inheritance

Based on the objective for its deployment, we can identify the following types of inheritance:

Specialization This is the most common use of inheritance. The subclass is a specialized
version of the parent class, and thus satisfies the specification (interface) of the par-
ent class in all relevant aspects, adding any particular behavior through overriding.

Subclasses are subtypes.

264

Specification This type of inheritance is deployed to enforce a specification (interface) on a
subclass. The subclass implements the abstract specification of the parent class. There
are two ways to perform this type of inheritance: through interfaces. and through the

inheritance of abstract classes. Subclasses are subtypes.

Construction There is no logical relationship between the two classes. A subclass inherits

functionality to be reused for practical reasons. Subclasses are not necessarily subtypes.

Extension A subclass mercly adds new behavior and does not modify or alter any of the

inherited features. Subclasses are subtypes.

Limitation The behavior in the subclass is smaller or more restrictive than the behavior

of the parent class. Subclasses are not subtypes.

Combination A subclass is formed by combining features from more than one type. In
Java, we can subclassify from a single class but we can implement one or more inter-

faces.

21.12 Inheritance vs. delegation

What happens when a subclass uses only part of a superclass’ interface or does not need
to inherit data? What do we do when it is very practical to use inheritance, but an is-a
rclationship does not hold? Can we just adopt this scheme? Consider class Stack in the
java.util library which inherits class Vector (which in turn implements interface List)
by extending its functionality with operations that would allow a vector to be treated as
a stack. In the following example, we create a stack instance and place some items in the

collection.

Stack<String> s = new Stack<String>();

s.push ()
s.push ()
s.push ()

System.out.println(s.elementAt (0));

265

Note that we have managed to violate the Stack ADT protocol by calling method elementAt ()
inherited from Vector. The output of the program is first. In order to avoid this problem,
it is more advisable to deploy delegation where we create a new class Stack with a variable

of a type such as a Vector which will hold the collection of objects to be held in the stack.

import java.util.Vector;
public class Stack {
Vector<String> container = new Vector<String>();
int index;
public void push(String element) {
container.addElement (element);
index++;
}
public Object pop() {

return container.elementAt (index-1);

Stack stack = new Stack();

stack.push()
stack.push ()
stack.push()

System.out.println ((String)stack.pop());

Note that methods in class Stack delegate to the vector variable. The Stack ADT protocol

is now enforced. The output of the program is third.

Classes formed with inheritance are assumed to be subtypes of their superclasses. No as-
sumption of substitutability is present during delegation. The interface of a subclass is
(usually) a superset of that defined in the superclass. Delegation more clearly indicates
exactly the interface of the subclass. Furthermore, inheritance does not prevent users from
sending inappropriate messages to the subclass (invoking operations from the superclass).

With delegation this is not possible.

266

In the delegation example, the fact that class Vector is used is an implementation detail.
It would be casy to reimplement class Stack to make use of a different technique (such as a
linked list) with minimal or no impact on the users of the stack abstraction. If users counted
on the fact that a stack is merely is specialized form of vector, such changes would be more

difficult to implement.

21.13 Interfaces

An interface defines a type and it provides an encapsulation of (abstract) methods and

constants. The general form of an interface is:

interface inter face Name

{

returnType method, (parameter List);

type final wvariable Name = value;

Interface methods cannot be static and they have a default public visibility as opposed to
methods in classes which have a default package-private visibility. An interface can extend

other interfaces (but not classes).

A class may implement one or morce interfaces and classes that implement an interface should
provide implementation for all methods declared in that interface. A class that implements

an interface has the following general form:

267

class className [extends superclassName]
[implements inter face, [. interfacey. .]]

class body

}

Example 21.5. In the following example, we have two classes: class Counter and its subclass
LockableCounter. The subclass implements the interface LockIF. Class LockableCounter

inherits all methods from Counter and implements all methods declared in LockIF.

public class Counter A
private static String description =
int value;
public void reset () {
value = 0;
+
public int getValue () {
return value;
+
public void click () {

value ++;

public interface LockIF {
void lock ();
void unlock ();

boolean isLocked ();

268

public class LockableCounter extends Counter implements LockIF {
static String description = ;
private boolean lock;
public void lock () {
this.lock = true;
+
public void unlock () {
this.lock = false;
+
public boolean isLocked () {
return this.lock;
+
public void click() A

this.value = this.value + 2;

Consider the following code segment:

Counter c¢1 = new LockableCounter ();
LockableCounter c2 = new LockableCounter ();
LockIF ¢3 = new LockableCounter ();
cl.click();
System.out.println(cl.getValue ());
System.out.println(cl.description);
c2.click();
System.out.println(c2.getValue ());
c2.unlock ();
System.out.println(c2.isLocked ());
System.out.println(c2.description);
c3.click();

c3.unlock ();

269

System.out.println(c3.isLocked ());

System.out.println(c3.description);

Let us dissect the code segment by considering its statements one by one. In each case, we
will describe and distinguish between the responsibilities of the compiler and those of the

run time system.

The statement Counter ¢l = new LockableCounter () ; will be checked (statically) by the

compiler. Class LockableCounter is a subclass and therefore a subtype of class Counter.

Similarly, the statements

LockableCounter c2 = new LockableCounter ();

LockIF ¢3 = new LockableCounter ();

are valid and type checking will be successtul.

For the statement ¢1.click(); the compiler will check to see if a matching method to mes-
sage click() is defined in the declared type of the object, namely Counter. As a result,
method invocation is valid. In the case such as this example where the subelass overrides the
method being called, the run time system will make a decision which method to call based
on the dynamic type of the variable. In the example, the dynamic type of the variable is

LockableCounter and the run time system will invoke the overriding method click ().

The statement System.out.println(cl.getValue()); is statically valid because method
getValue () is defined in the declared type of the variable, namely class Counter. The state-
ment will display 2 because the overriding method click() increments the variable value

by 2.
The statement System.out.println(cl.description); accesses a static variable. The

binding is based on the declared type of the variable and this will display “The foundation

of all counters.”

270

The statement c2.click(); will be successtully statically checked as there is a method match
to the message click () in the declared type of the variable, namely LockableCounter. The

run time system will call the method of the dynamic type, namely the one in LockableCounter.

The statement System. out. println(c2.getValue()) ; will be successfully statically checked

and display 2.

The statement c2.unlock(); will be successtully statically checked as there exists a matched

method to unlock () in the declared type of the variable, namely the interface LockIF.

Similarly the statement System.out.println(c2.isLocked()); will display false.

The statement System.out.println(c2.description); is an example of hiding. As the
binding of a static variable is done on the declared type of the variable, the statement ac-

cesses and displays the value of description variable in class LockableCounter.

The statement ¢3.click(); will fail type checking because there is no matching method in

the declared type of the variable ¢3, namely the interface LockIF.

The statement ¢3.unlock () ; will be successfully statically checked as there is a matching

method to the message unlock () in the declared type of the variable c3.

The statement System. out. println(c3.isLocked()) ; will be successfully statically checked

and it will display false.

The statement System.out.println(c3.description); will fail.

271

Resolving name collisions of interface features

To avoid problems associated with multiple inheritance, Java allows only single inheritance
for class extension but allows multiple inheritance for interface implementation. This does
not guarantce that no potential problems may show up, as name collisions may exist between

features of different interfaces or between features of interfaces and classes.

If two inherited methods have the same name, then:

If they have different signatures, they arc overloaded.

o [f they have the same signature and the same return type, they are considered to be

the same method.

e If they have the same signature but different return types, then a compilation error

will occur.

e If they have the same signature and the same return type but throw different excep-
tions, they are considered to be the same method, and the resulting throws list is the

union of the two throws lists.

If two constants have the same name, then they are considered two separate constants and

a distinction is made by using the interface name with dot (.) operator.

Example 21.6. Consider the two interfaces IF1 and IF2 below:

public interface IF1 {
void methodl (int 1i);
void method?2 (int 1i);

void method3 (int 1);

272

public interface IF2 {
void methodl (double d);
void method?2 (int 1i);

double method3 (int 1i);

The method void method3(int 1) from interface IF1 and the method double method3(int
i) have the same name and signature but different return types, hence a compilation error

QCCUrs.

Consider a class C which implements both interfaces:

public class C implements IF1, IF2 {

public void methodl (int i) {
System.out.println/();

}

public void methodl (double i) A
System.out.println/()

}

public void method2(int i) {

System.out.println()5 3}

The two implementations of method1 () arc inherited from interfaces IF1 and IF2. They have
the same name but different signatures, hence they are overloaded. Furthermore, method?2
is inherited from both interfaces with the same name, signature and return type, hence the
two interfaces essentially declare the same method. Consider the following program:

C ¢ = new C();

c.methodl (3);

c.methodl1 (5.0);

c.method2 (5);

273

The output of the program is as follows:

Signature: methodl (int)
Signature: methodl (double)

Signature: method2 (int)

21.14 Casting

We can convert between types as follows: the conversion of a subtype to one of its super-
types is called widening and it is carried out implicitly whenever necessary. In other words,
a reference to an object of class C can be implicitly converted to a reference to an object of

one of the superclasses of C.

On the other hand, the conversion of a supertype to one of its subtypes is called narrowing.
Narrowing of reference types requires explicit casts. As an example, consider class Parent,
being the superclass of Child and object p being an instance of Parent. Let Child define

method calculate(). In the following statement
((Child)p) .calculate();

both the compiler and the run time system arc involved in validating the explicit casting as

follows:

The compiler will obtain the static type of p, namely Parent. Next, the compiler needs to
cnsure that the object is (in the case of downcasting) casted downwards in its inheritance
chain which is indeed the case in this example. In other words, one cannot cast an object
to a non-rclated type. If, in our cxample, we had class Friend that contained method

calculate () and we attempted to do
((Friend)p).calculate();

the compiler will issuc an crror.

274

Back to our initial example, the compiler will proceed to check if a method signature exists
that matches the message calculate() in the static type of the object, that includes the
now “forced” type, namely Child and all its supertypes. Compilation is successful in this

example.

The run time system must ensure that the dynamic type of object p is Child (or one of
its subtypes). Once this validation is successful, the run time system will invoke method
calculate() in the class that corresponds to the dynamic type, in this case class Child. If

not successful, the run time system will throw an exception.

What is the motivation for narrowing? Recall that the functionality of a superclass is
available to all subclasses and that the subclasses normally contain extended functionality.
Narrowing allows us to temporarily achieve the opposite: to extend the functionality of a

superclass with that of a subclass.

Example 21.7. Consider the class definitions below:

public class Parent { }
public class Child extends Parent {
public String greet () {return ;T
}
public class Grandchild extends Child {
public String greet () {return i+
}
public class Friend {

public String greet () {return i

275

Scenario Compilation | Run time and

output
Parent p = new Child(); Not successful.
System.out.println(((Friend)p).greet());
Parent p = new Child(); Successtul. Good morning!
System.out.println(((Child)p).greet());
Parent p = new Parent(); Successful. Exception
thrown:
System.out.println(((Child)p) .greet()); Parent cannot

be cast to Child.

Grandchild p = new Child(); Not successful.
System.out.println(((Child)p).greet());

Parent p = new Grandchild(); Successtul. I want ice cream.
System.out.println(((Child)p).greet());

Parent p = new Child(); Successful. Exception
thrown:

System.out.println(((Grandchild)p) .greet()); Child cannot be
cast to Grand-
child.

Table 21.1: Demonstrating explicit casting.

In Table 21.1 we demonstrate various scenarios where explicit casting is used, and list the

result of the compilation and the run time processes, together with any possible output.

Example 21.8. In the Java built-in hicrarchy, class LinkedList is an ordered list, and it is
a subclass of List, offering more functionality such as removeFirst (). Other subclasses of
List include ArrayList and Vector. Consider method trim() which takes a parameter of
type List (or any of its subclasses) and proceeds to delete its first element by downcasting it
to LinkedList and calling removeFirst (). In the main method we instantiate a LinkedList
object and add two clements to it. We then pass it to method trim(). To verify whether
trim() performed as expected. we proceed to check whether our linked list object contains

either element.

276

import java.util.x;
public class CastingTest {
public static void trim(List 1lst) {
((LinkedList)1lst).removeFirst ();
}
public static void main(Stringl] args) {
LinkedList<String> list = new LinkedList<String>();
list.add()
list.add()5
trim(list);
System.out.println(list.contains()

System.out.println(list.contains()Y

The output of the program is as follows:

false

true

We indeed did not expect to see element "a" in the list.

Example 21.9. What would happen if in the previous example we replaced the LinkedList

type with an ArrayList?

public static void main(Stringl] args) {
ArraylList<String> list = new ArraylList<String>();
list.add()
list.add()
trim(list);
System.out.println(list.contains()5

System.out.println(list.contains()5

277

Recall that the validity of explicit casting is checked not at compile time but at run time.
The program will successfully compile. However, the explicit casting in method trim() is
not valid since types LinkedList and ArrayList are siblings, and thus incompatible for

type conversion. As a result, the run time system will throw an exception:

Exception in thread "main" java.lang.ClassCastException:

java.util.ArrayList cannot be cast to java.util.LinkedList

21.15 Additional examples

Example 21.10. Consider the definitions of the following classes. We will use the code
in method main() to describe all explicit responsibilities of the compiler and the run time
system. If a statement does not compile, we will provide a brief explanation why and we

will consider it as being commented out.

public interface MyIF {

public void callback ();

public class C1 A
public void call(int i) {System.out.println(+1i);}

public void callme(String s) {System.out.println(s);}

public class C2 extends C1 implements MyIF {
public void call{int i) {System.out.println(+i);}

public void callback() {System.out.println()i}

public class C3 extends C2 {

public void callme(String s) {System.out.println(+ 8)3}

278

public class Test A
public static void main(String args[]) {
Cl objl = new C1();
C2 obj2

new C2();

C2 obj3 new C3(0);
MyIF obj4 = new C3();
objl.call(0);
obj2.call(1);
0bj3.call(2);
obj4.call(3);
obj4.callback ();
((C2)objd).call (4);

((C2)objl).callback ();

Cl objl = new C1(); Compilation successful: The right-hand side (RHS) and the left-

hand side (LHS) are of same type, namely C1.

C2 obj2 = new C2(); Compilation successtul: RHS and LHS arc of same type, namely

C2.

MyIF obj4 = new C3(); Compilation successful: The RHS (C3) is a subtype of the LHS

(MyTF).

C2 obj3 = new C3(); Compilation successful: The RHS (C3) is a subtype of the LHS

(C2).

objl.call(0); Compilation successful: Method call(int) is defined in the static type

of obji1, namely C1. The run time system exccutes successfully method call(int) in

class C1 (the dynamic type of obj1) and the output is: i1: 0.

279

obj2.call(1); Compilation successful: Method call(int) is defined in the static type

of obj2, namely C2. The run time system exccutes successfully method call(int) in

class C2 (the dynamic type of obj2) and the output is: i2: 1.

obj3.call(2); Compilation successtul: Method call(int) is defined in the static type of

obj3, namely C2. The run time system checks if the dynamic type of obj3, namely
C3 has method call(int) but fails to locate it. Consequently, a check is performed to
the parent class, namely C2. Since the method exists, it is executed and provides the

following output: 12: 2.

obj4.call(3); Compilation crror: The declared type of obj4 namely MyIF does not con-

tain a definition for method call(int).

obj4.callback(); Compilation successful: Method callback() is defined in the static

type of obj4 namely MyIF. The run time system checks if the dynamic type of obj4
namely C3 has mecthod callback() but fails to locate it. Consequently, a check is
performed to the parent class namely C2. Since the method exists, it is executed and

provides the following output: bbb.

((C2)obj4) .call(4); Compilation successful: The static type of obj4, namely MyIF, is

a supertype of the class to which the object is casted (C2) and class C2 contains a
definition for method call(int). The run time system checks if the actual reference
of obj4 is of type (or subtype of) C2 (i.c. the type to which the object is casted). The
check is successful. Next, the run time system checks if the dynamic type of obj4,
namely C3 includes method call(int) but fails to locate it. Consequently, a check is
performed to the parent class, namely C2. Since the method exists, it is executed and

provides the following output: i2: 4.

((C2)obj1) .callback(); Compilation successful: The static type of obj1, namely C1, is

a supertype of the class to which the object is casted (C2) and class C2 contains a def-
inition for method callback(). The run time system throws a ClassCastException
exception, since the dynamic type of obj1 is C1 but C1 is not of type (or a subtype of)

C2 as expected from the cast.

280

Example 21.11. Consider the class definitions below:

interface MyIF {
public static String name= ;

public String call(int x);

+
class C1 {
private static String name= ;
public Object callme () {
return ;
+
+

class C2 extends C1 implements MyIF{
public String callme () {

return ;

public class Dispatch {
public static void main(String args[]) {

MyIF i = new C2();
C1 ¢l = new C2Q);
C2 c2=(C2)new C1();
System.out.println(i.callme ());
System.out.println(cl.callme());
System.out.println(i.name);

System.out.println(cl.name);

1. There are possibly multiple compilation crrors in class C2. Provide a description of

them and modify only class C2 in a way that compilation can be successful.

281

2. For cach subscquent method, describe 1) Whether this introduction can be character-
ized by overloading or overriding and 2) Whether this introduction will result in an

error. Justify your answers.

public Object call{int x) {

return 5

+
String call(int x) {
return 5

}
public int call(double d) A
return Math.floor (d)*5;

}
public String callme(String str) A

return + str;

1. Class C2 must implement the inherited method MyIF.call(int). There is no such

method in C2. We must add the following method in C2:

public String call (int x) {

return "C2.call called";

2. Consider the following:

public Object call(int x) A

return 5

The attempt to override MyIF.call(int) will fail because Object is not a subtype of

String.

String call(int x) {

return ;o

282

The attempt to override MyIF.call(int) will fail since the visibility is reduced from

public to package-private (default).

public int call(double d) <

return Math.floor (d)*5;

Overloading MyIF.call(int).

public String callme(String str) {

return + str;

Ovcerloading C2.callme().

Example 21.12. The Observer design pattern supports a many-to-onc dependency from
a number of observer objects to one subject object where observers attach themselves to a
subject. The objective is for observers to maintain the same state as the subject. Upon
a change of state in the subject, the subject must deploy a notification mechanism for its

observers. The pattern can support two models of notification: 1) Pull and 2) Push.

Pull model: In the pull model, upon a change of state in the subject, the subject activates
a notification mechanism wherehy it sends a message to all observers indicating that
a change of state has occurred. The observers will then explicitly request the details

of the change.

Push model: In the push model, upon a change of state in the subject, the subject activates
a notification mechanism whereby it sends its own state to all observers (whether they

want it or not).

Consider the code segment that follows, the computation that it performs, and its output.

Provide an implementation of all definitions involved using the pull model.

283

Subject subject = new Subject ();

Observer observerl
Observer observer?2

Observer observer3

// assign state to subject

subject.setState (

// by this
System.out.
System.out.

System.out.

point, subject must have mnotified all

println (observerl

println(observer?2.

println(observer3.

subject.setState (

System.out.println (observerl

System.out.println(observer2.

System.out.println(observer3.

new Observer (subject);
new Observer (subject);

new Observer (subject);

)

.getState ());

getState ());
getState ());

)

.getState ());

getState ());

getState ());

The output of the program is as follows:

Best

Best

Best

Best

Best

Best

band:
band:
band:
band:
band:
band:

Pink Floyd
Pink Floyd
Pink Floyd
The Doors
The Doors

The Doors

The definitions are as follows:

observers

public interface SubjectIF {

public void attach (Observer observer);

public void detach (Observer observer);

public void update ();

284

public interface ObserverIF <

public void update ();

import java.util.Vector;
public class Subject implements SubjectIF {
private int count = O;
private Vector<Observer> ocobservers;
private String subjectState;
public Subject () A
observers = new Vector (0);
}
public void attach (Observer observer){
observers.addElement (observer);
}
public void detach (Observer observer) {
observers.removeElement (observer);
}
public void update () {
for (Observer observer: observers) A
observer .update () ;
}
/*
* For earlter wersions of Java:
*
Observer tempUbserver;
for (int © = 0; 4 < observers.size(); i++) {
tempObserver = (Observer)observers.elementdt (i);
tempObserver.update (); }
*/

285

public String getState() {
return subjectState;

}

public void setState(String newState) {
subjectState = newState;

this.update ();

public class Observer implements ObserverIF {

private Subject subject;

private String observerState;

public Observer (Subject subject) A
this.subject = subject;
this.subject.attach(this);

+

public void update () {
observerState = subject.getState ();

+

public String getState () {

return observerState;

286

Example 21.13. Consider the class definitions below:

public class Counter {
private static String description = ;
int element,;
public void click() A
element ++;
+
public int getValue() {
return element;
+
public void reset () {
this.element = 0;
+
public static String getDescription() {

return description;

public interface Lockable {
void lock ();
void unlock ();

boolean isLocked ();

public class LockableCounter extends Counter implements Lockable {
static String description = ;
private boolean lock;
public void lock () {
this.lock = true;
+
public void unlock () A

this.lock = false; }

287

public boolean isLocked() A
return this.lock;
}
public void reset () {
this.element = this.element % 5;
}
public static String getDescription() {

return description;

public class LockableCounterTest A
public static void main(Stringl[] args) {
Counter lockl = new LockableCounter ();
Lockable lock2 = new LockableCounter ();
System.out.println(lockl.getDescription());
lockl.click ();

lock2.click ();

1. Trace the body of the main method, and for cach statement in that method describe the
explicit responsibilities of the compiler and the run time system. In case a statement

fails compilation, consider it as being commented out.

2. What is the output of the program?

Counter lockl = new LockableCounter(); Compilation successful: The type of the ex-

pression on the right-hand side of the assignment statement is a subtype of the type

of the variable on the left-hand side.

Lockable lock2 = new LockableCounter(); Compilation successful: The reasoning is

similar to the above.

288

System.out.println(lockl.getDescription()); This is an cxample of hiding. The
choice of static features is resolved based on the declared type of the object. The

declared type of lockl is Counter. The method will display A counter.

lockl.click(); Compilation successful: There exists a method (click()) in the declared

type of the object (Counter) that matches the message. The run time system will start
from the dynamic type of the object (the actual reference held) to see if a method exists
that can match the message. Such a method doces not exist in LockableCounter. As
a result, the run time system will perform a look-up in the immediate supertype of the

object and find a matching method click() in class Counter.

lock2.click(); Compilation crror: There is no method in the declared type of lock2 to

match the message.

Example 21.14. Consider the class definitions below. For cach statement in method main ()
describe the responsibilities and tasks undertaken by the compiler and by the run time
system, and describe the outcomes. If you have to refer to a property of some clement, make

surc you distinguish between static vs. dynamic propertics.

public interface Behavior {
public String act();

public String reason();

public class Human implements Behavior {
public String type = ;
public boolean empathy = true;
public String act() A
return
+
public String reason() A
return
+
public boolean hasEmpathy () {return empathy;l}}

289

public class Bladerunner extends Human {
public String type = ;
public String rank;
Bladerunner () {}
Bladerunner (String r) A
this.rank = r;
String rank = ;
System.out.println(rank);
+
public String reason() A

return ;

public abstract class Machine implements Behavior {

public static String type = ;

public class Android extends Machine A{

public int version;

Android (int version) {
this.version = version;

+

public String whatIhave () A
return 5

+

public static String whatIneed () {
return 5

+

public String act() A

return 3

290

public String reason() {

return ;

public interface Behavior2 {
public boolean empathy = true;
public boolean memories = true;
public boolean hasEmpathy ();

public boolean hasMemories ();

public class Android2 extends Android implements Behavior2 {
Android2 (int version) {
super (version);
}
Android2 () {
super (8);
}
public String whatIhave () {
return)
}
public boolean hasEmpathy () A
return empathy;
}
public boolean hasMemories () A

return memories;

291

© 0 N o oo W N

—
o

11
12
13
14
15
16

public static void main(Stringl[] args) A
Machine Leon = new Android(7);
System.out.println{(Leon.whatIneed ());
Android Roy = new Android2(7);
System.out.println (((Android2)Roy).whatIlhave ());
Behavior2 Pris = new Android2(11);
System.out.println(Pris.whatIhave ());
Android2 Zohra = new Android ();
Behavior2 Hodge = new Android2();
System.out.println(Hodge.whatIhave ());
Android Rachel = new Android (7);
System.out.println (((Android2)Rachel).hasMemories ());
Human Gaff = new Bladerunner ();
System.out.println(Gaff.type);
System.out.println(+ Gaff.hasEmpathy ());
System.out.println{(Gaff.reason());

Bladerunner Harry = new Bladerunner (DT

Let us trace the program:

1. Machine Leon = new Android(7); Compilation successful: Type checking succeeds

as the static type of the expression on the RHS is a subtype of the static type of the

variable on the LHS.

2. System.out.println(Leon.whatIneed()); Compilation error: Static features are ac-

cessed based on the declared (static) type of the object (Machine). Method whatIneed ()

docs not cexist in the declared type.

3. Android Roy = new Android2(7); Compilation successful: Type checking succeeds

as the static type of the expression on the RHS is a subtype of the static type of the

variable on the LHS.

4. System.out.println(((Android2)Roy) .whatIhave()); Compilation successful: Static

type of Roy (Android) is a supertype of Android2. The run time system will perform

292

[

9.

11.

12.

the following: a) it checks the validity of explicit cast. This is successful since the
run time type of Roy (Android2) is the same or a subtype of Android2, and b) it will
invoke the dynamic dispatcher to call method whatThave() defined in the run time

type of the object, namely Android2, and it will display “I have an infinite time.”

Behavior2 Pris = new Android2(11); Compilation successful: Type checking suc-

ceeds as the static type of the expression on the RHS is a subtype of the static type of

the variable on the LHS.

System.out.println(Pris.whatIhave()); Compilation error: Method whatIhave()

does not exist in declared type (Behavior2).

Android2 Zohra = new Android(); Compilation crror: Static type checking fails:

Static type of expression on RHS is not a subtype as the static type of variable on

LHS.

Behavior2 Hodge = new Android2(); Compilation successful: Type checking suc-

ceeds as the static type of the expression on the RHS is a subtype of the static type of

the variable on the LHS.

System.out.println(Hodge.whatIhave()); Compilation error: Method whatIhave ()

does not exist in the declared type of Hodge (Behavior2).

. Android Rachel = new Android(7); Compilation successful: Type checking succeeds

as the static type of the expression on the RHS is the same as the static type of the

variable on the LHS.

System.out.println(((Android2)Rachel) .hasMemories()); Compilation successtul:

The static type of Rachel, namely Android, is a supertype of Android2. However,
the run time system will not verify the explicit cast since the dynamic type of Rachel,

namely Android is not a subtypc of Android2.

Human Gaff = new Bladerunner (); Compilation successful: Type checking succeeds

as the static type of the expression on the RHS is a subtype of the static type of the

variable on the LHS.

293

13. System.out.println(Gaff.type); Variables arc accessed based on the declared (static)

type of the object (Human). It will display HUMAN.

14. System.out.println("Gaff has empathy?: " + Gaff.hasEmpathy());

Compilation successful: Type checking succeeds as method hasEmpathy () cxists in

the declared type or one of its supertypes (Human). The run time system invokes
the dynamic dispatcher and performs a search for a method to match the message
starting from the definition of Bladerunner. An appropriate method is not found.
The dispatcher continues its scarch and finds a matching method in the superclass.

The method returns true and the statement displays Gaff has empathy?: true

15. System.out.println(Gaff.reason()); Compilation successful: Type checking suc-

ceeds as method reason() exists in the declared type of the object (Human). The run
time system invokes the dynamic dispatcher and performs a scarch for a method to
match the message starting from the definition of Bladerunner and it is successful. It

will display I am bladerunner and I can reason.

16. Bladerunner Harry = new Bladerunner ("CHIEF."); Compilation successful: Type

checking succeeds as the static type of the expression on the RHS is the same as the
static type of the variable on the LHS. The class constructor displays the value of its

local variable (“OFFICER”) because of shadowing.

Let us provide the definition of class Bladerunner2 who is an Android2 but also bchaves

exactly like a Bladerunner and can be instantiated as follows:
Bladerunner?2 Deckard = new Bladerunner2();

We can model this requirement with a combination of inheritance (of class Android2) and

delegation (to class Bladerunner).

public class Bladerunner2 extends Android2 A{
Bladerunner b = new Bladerunner ();
public String act() A

return b.act(); }

294

public String reason() {
return b.reason();

}

public boolean hasEmpathy () {

return b.hasEmpathy ();

What is the output of the code below and why?
System.out.println(Deckard.reason{());

The output is I am bladerunner and I can reason. since message reason() sent to ob-

ject Deckard was captured and delegated to class Bladerunner.

Let us provide a statement to verify whether object Deckard is human. The statement is

System.out.println(Deckard.type); and it will display MACHINE.

Last, let us identify 1) a pair of overloaded features, 2) a pair of overriding features, 3) a

pair of shadowed features, and 4) a pair of hidden features.

Overloaded features: Constructors of class Bladerunner, or method whatThave() in in

classes Android and Android2.
Overriding features: Methods reason() in classes Human and Bladerunner.

Shadowed features: Instance variable rank and local variable of the same name in the

constructor of Bladerunner.
Hidden features: String variable type in classes Human and Bladerunner.
Example 21.15. Provide brief answers to the following:
1. In the context of Java, comparc inheritance to delegation in terms of type substitutabil-

ity, interface, and security.

295

3.

Many OOP textbooks, refer to subclasses as extended classes where an is-a relation-
ship holds between subclass and superclass. Does this provide a full description of

inheritance? Justify your answer.
In OOP, what type of reuse is provided by inheritance?

Type substitutability: Classes formed with inheritance are assumed to be subtypes
of their parent class. No assumption of substitutability is present during delegation.
Interface: Delegation more clearly indicates exactly the interface of the subclass. Se-
curity: the protocol of the subclass can be violated with inheritance in case where
the subclass is not a subtype of the superclass. With delegation this is normally not

possible.

Not every form of inheritance is for extension and not all forms create subtype rela-
tionships. For example, in inheritance by construction, There is no logical relationship
between the two classes. A subclass inherits functionality to be reused for practical

reasons. Subclasses are not necessarily subtypes.

With inheritance we can reuse a) implementation and b) specification.

Example 21.16. Consider the following classes:

public interface Hunter {

String goAfter (String str);

public interface Guide <

void navigate ();

void work();

public class Animal A

String name;

public Animal () {}

public Animal (String name) {this.name = name;}

296

public String toString() A

return this.name;

public class Cat extends Animal implements Hunter {
String description = ;
protected int lifeSpan = 14;
public Cat () {
this ()
}
public Cat (String name) A
super (name) ;
}
public void describe () {
System.out.println(description);
}
public void whatIdo () {
System.out.println()
}
public String goAfter (String str) {

return str;

public class Dog extends Animal implements Hunter {
String description =
static int lifeSpan = 12;
public Dog () {}
public Dog (String name) {

super (name) ;

297

public void describe () A
System.out.println(description);

}

public String whatIdo(String str) {
return + str + ;

}

public String goAfter (String str) {

return str;

public class Labrador extends Dog implements Guide {

String description = ;
static int lifeSpan = 14;
public Labrador () {}
public Labrador (String name) {

super (name) ;
}
public void describe () {

System.out.println(

super .description);}

public void whatIdo () {

System.out.println(
}
public void navigate () {

System.out.println(

)5}

public void work () {

System.out.println(

)5}

public String goAfter O {

return N

298

For cach of the statements below, let us describe in detail the explicit responsibilities of the
compiler and the run-time system as well as the outcome of cach of their tasks. Whenever
applicable we will write down and underline the exact output. Additionally. we will indicate

any other event such as hiding, overloading, overriding, or shadowing.

1 Dog Max = new Labrador()

2 Labrador Duke = new Animal ()

3 Guide Buddy = new Labrador()
4 Cat Molly = new Cat()

5 Hunter Oscar = new Cat()

6 Hunter Bella = new Dog()

7 Hunter Rocky = new Labrador()
8 Hunter MyCat = new Cat ();

9 Labrador Luna = new Labrador()
10 Guide Roxy = new Labrador()

11 Hunter Zeus = new Labrador()
12 Animal Bobby = new Labrador ()
13 Guide Honey = mnew Dog()

14 System.out.println(Max.lifeSpan);

15 Max.describe ();

16 System.out.println(Max.whatIdo (D)
17 System.out.println(Max.description);

18 Buddy.whatIdo ();

19 Buddy .work () ;

20 ((Labrador)Buddy) .whatIdo ();

21 ((Labrador)Molly).whatIdo ();

22 ((Labrador)0Oscar).whatIdo ();

23 Bella.goAfter ();

24 System.out.println (((Dog)Bella).whatIdo()
25 System.out.println/(+ Rocky.toString() +
+
((Labrador)Rocky).goAfter () +)

299

26 System.out.println(MyCat.toString ());

27 System.out.println(+ Luna.goAfter() o+);
28 System.out.println(Roxy.gohAfter ());

29 Zeus .work () ;

30 ((Labrador)Bobby).whatIdo ();

1 Dog Max = new Labrador("Max"); Compilation is successful. The compiler validates
the assignment statement as the type of the RHS expression is a subtype of the LHS

variable.

2 Labrador Duke = new Animal("Duke"); Compilation is not successful. The compiler
does not validate the assignment statement as the type of the RHS expression is not

the same or a subtype of the LHS variable.
For lines 3-12, compilation is successful as all assignment statements arc validated.

13 Guide Honey = new Dog("Honey"); Compilation is not successful. The compiler docs

not validate the assignment statement

14 System.out.println(Max.lifeSpan); The choice of attribute is based on the static
type of Max, namely Dog, and the binding is done at compile-time. This is an example

of hiding. The statement will display 12.

15 Max.describe(); Compilation is successful. The compiler validates the method call
since there exists a method describe() in the static type of Max, namely Dog. The
run-time system has the responsibility to choose the appropriate method to invoke. It
will perform a scarch starting from the run-time type of Max, namcly Labrador where
it will locate the overriding method describe () which displays

I am athletic and playful and I am the first domesticated animal.

16 System.out.println(Max.whatIdo("retrieve")); Compilation is successful. The
compiler validates the method call since there exists a method whatIdo(String) in
the static type of Max, namely Dog. The run-time system has the responsibility to

choose the appropriate method to invoke. It will perform a search starting from the

300

run-time type of Max, namcly Labrador where it will not locate such method. The
run-time system will continue its secarch up the inheritance chain and it will locate the

overloaded method whatIdo(String) in Dog which displays I like to retrieve.

17 System.out.println(Max.description); The choice of attribute is based on the
static type of Max, namely Dog, and the binding is done at compile-time. This is

an example of hiding. The statement will display I am the first domesticated animal.

18 Buddy.whatIdo(); Compilation is not successful. The compiler does not validate the
method call as there does not exist a method whatIdo() in the static type of Buddy,

namecly Guide.

19 Buddy.work(); Compilation is successful. The compiler validates the method call since
there exists a method work () in the static type of Buddy, namely Guide. The run-time
system has the responsibility to chose the appropriate method to invoke. It will perform
a search starting from the run-time type of Buddy, namely Labrador where it will locate

such method which displays I can track, I can detect and I can do therapy work.

20 ((Labrador)Buddy) .whatIdo(); Compilation is successful since the static type of
Buddy, namely Guide, can be downcast to Labrador. Additionally, the compiler vali-
dates the method call since there exists a method whatIdo () in the casted type, namely
Labrador. The run-time system has the responsibility to validate the explicit cast.
This will succeed as the run-time type of Buddy is Labrador. The run-time system
also has the responsibility to choose the appropriate method to invoke, performing a
search starting from the run-time type of Buddy, namely Labrador where it will locate

the overloaded method whatIdo() which displays I retrieve game for a hunter.

21 ((Labrador)Molly) .whatIdo(); Compilation is not successful, as the static type of

Molly, namely Cat, cannot be downcasted to Labrador.

22 ((Labrador)0scar) .whatIdo(); Compilation is successful as the static type of Oscar,
namely Hunter can be downcasted to Lambrador. Additionally, the compiler validates

the method call as there exists method whatIdo() in the casted type. However, the

301

run-time system will not validate the explicit cast since the run-time of Oscar, namecly

Cat, cannot be casted to Labrador.

23 Bella.goAfter(); Compilation is not successtul. The compiler does not validate the
method call as there does not exist a method goAfter () in the static type of Bella,

namecly Hunter.

24 System.out.println(((Dog)Bella).whatIdo("run in parks")); Compilation is suc-
cessful as the static type of Bella, namely Hunter can be downcasted to Dog. Addition-
ally, the compiler validates the method call as there exists method whatIdo(String) in
the casted type. The run-time system will validate the explicit cast since the run-time
of Bella is Dog. Additionally the run-time system is responsible to chose the appro-
priate method to call, performing a scarch starting from the run-time type of Bella,
namely Dog where it will locate the overloaded method whatIdo(String) which dis-

plays I like to run in parks.

25 System.out.println("I am " + Rocky.toString() + " and I go after " +
((Labrador)Rocky) .goAfter() + "."); Compilation is successfull. The static type
of Rocky, namely Hunter can be downcasted to Labrador. Additionally, the compiler
validates both cases of method call: First, method toString () exists in the static type
of Rocky, namely Animal, and sccond, method goAfter () exists in the casted type,
namely Labrador. The run-time system successfully validates the explicit casting as
the run-time type of Rocky is Labrador. Additionally, the run-time system has the
responsibility to choose the appropriate method to invoke string from the run-time
type of Rocky, namecly Labrador where it locates method goAfter (). The statement

displays I am Rocky and I go after thicves.

26 System.out.println(MyCat.toString()); Compilation is successful. The compiler
validates the method call as there exists method toString() in the static type of
MyCat, namely Object (the root of all classes in the Java system). The run-time system
is responsible to chose the appropriate method to call performing a scarch starting from

the run-time type of MyCat, namely Cat where it invokes method toString() which

302

displays Ella.

27 System.out.println("I go after " + Luna.goAfter("cats") + "."); Compilation
is successful. The compiler validates the method call as there exists method
goAfter (String) in the static type of Luna, namely Dog. The run-time system is
responsible to choose the appropriate method to call performing a scarch starting from
the run-time type of Luna, namely Labrador where it does not locate such method.
The run-time system continues its search up in the inheritance chain, locating and
invoking the overloaded method goAfter(String) in Dog. The statement displays

I go after cats.

28 System.out.println(Roxy.goAfter()); Compilation is not successful. The compiler
does not validate the method call as there does not exist method goAfter() in the

static type of Roxy, namely Guide.

29 Zeus.work(); Compilation is not successful. The compiler does not validate the method

call ag there does not exist method work () in the static type of Zeus, namcly Hunter.

30 ((Labrador)Bobby) .whatIdo(); Compilation is successful. First, the static type of
Bobby, namely Animal, can be casted to Labrador. Second, the compiler validates the
method call as there is method whatIdo() in the casted type. The run-time system
has the responsibility to validate the explicit casting. This is successful as the run-time
type of Bobby is Labrador. Additionally, the run-time system has the responsibility to
choose the appropriate method to call performing a scarch starting from the run-time
type of Bobby, namecly Labrador where it locates and invokes the overloaded method

whatIdo() which displays I retrieve game for a hunter.

Example 21.17. Consider the following classes:

public abstract class Human <
String name;
public static String description = ;

public abstract void speak ();

303

public static void whatAmI() {System.out.println(

description +)}

public class Commoner extends Human {
public void speak () A

System.out.println/()

public class Noble extends Human A

String house;

public Noble(String name, String house) {
this.name = name;
this.house = house;

+

public Noble(String name) {
this.name = name;

+

public void speak () A
System.out.println()

+

public String toString() {

return + this.name + + this.house +

public interface Faceless {
public void declare ();

public String declare(String str);

304

public class Free extends Noble implements Faceless {
public Free(String name) {
super (name ,);
+
public void declare () A
System.out.println()
+
public String declare(String str) {

return str;

public class NightsWatch extends Noble {
public NightsWatch(String name) {
super (name) ;
String house = ;
System.out.println(+ name + + house +)
}
public void speak () {System.out.println/()3T}

Consider the test class below. For each statement in method main(..) let us describe the
explicit responsibilities of the compiler and the run-time system. Whenever applicable write
down the exact output in double quotes. Additionally, we will indicate any other event such

as hiding. overloading, overriding, or shadowing.

public class Test {
public static void face(Noble noble) A

((Free)noble).declare ();

}

public static void main(Stringl[] args) {
1 Human Tyrion = new Noble(,)
2 Noble Arya = new Free()
3 Faceless Jagen = new Free()

305

4 Noble Jon = new NightsWatch()
5 Faceless Syrio = new Noble ();
6 Tyrion.speak ();
7 Tyrion.whatAmI ();
8 ((Free)Arya).declare ();
9 System.out.println(Jagen.declare (D)
10 Jon.speak ();
11 ((Free)Jon) .declare ();
12 face(Tyrion);
13 System.out.println{(Jagen.toString ());
}
}
1. Human Tyrion = new Noble("Tyrion", "Lannister");

The compilier must check the validity of the assignment statement. Compilation is
successfull as the type of the expression of the right-hand-side is a subtype of that of

the variable on the left-hand-side. We have overloading of the constructor.

. Noble Arya = new Free("Arya"); Compilation successfull as above.

Faceless Jagen = new Free("Jagen H’ghar"); Compilation successfull as above.

Noble Jon = new NightsWatch("Jon Snow");
Compilation successfull as above. The constructor displays “I am Jon Snow of The

NightsWatch.” We have shadowing of the attribute house.

Faceless Syrio = new Noble(); We have compilation failure as the assignment state-
ment is not valid. Type Noble is not a subtype of Faceless.
Tyrion.speak();

The compiler successfully validates the method call as there exists a method in the
static type of Tyrion (Human) to match the call (message). The run-time system must

chose which method to invoke starting from the run-time type of the object (Noble)

306

9.

11.

12.

where the lookup is successfull. We have overriding of method speak(). The output
is “Yes, my lord.”

Tyrion.whatAmI();

The compiler binds the static method whatAmI() to the object. The statement will
display “I am human.”

((Free)Arya) .declare();

The compiler successfully validates the method call as there exists a method in Free
to match the call. The run-time system successfully validates the explicit casting since

Arya has a run-time typc Free. The output is “Valar morghulis.”

System.out.println(Jagen.declare("Valar dohaeris."));

The compiler successfully validates the method call as there exists a method in the
static type of Jagen (Faceless) to match the call. We have overloading of method

declare(). The output is “Valar dohaeris.”

. Jon.speak();

The compiler successfully validates the method call as there exists a method in the
static type of Jon (Noble) to match the call. The run-time system must chose an appro-
priate method to invoke, starting from the run-time type of the object (NightsWatch)
where the lookup is successfull. We have overriding of method speak(). The output

is “Winter is coming.”

((Free)Jon) .declare();

The compiler successfully validates the method call as there exists a method in Free
to match the call. The run-time system fails to validate the explicit casting since Jon
has a run-time type NightsWatch which cannot be downcasted to Free.
face(Tyrion);

We have compilation failure as the method expects an argument of static type Noble

(or any of its subtypes). The static type of Tyrion is Human.

307

13. System.out.println(Jagen.toString());

The compiler successtully validates the method call as method toString () is available
in Java’s root class (Object). The run-time system must chose an appropriate method
to invoke, starting from the run-time type of the object (Free) where the lookup is
initially not successfull. The run-time system will go up the inheritance chain where
it will locate and subscquently invoke method toString() in Noble. The output is “I

am Jagen H’ghar of no house.”

308

Part V

Aspect-Oriented Programming with
Aspectd

309

310

Chapter 22

Aspects

22.1 Introduction

“To my taste the main characteristic of intelligent thinking is that one is willing
and able to study in depth an aspect of one’s subject matter in isolation, for the
sake of its own consistency, all the time knowing that one is occupying oneself
with only one of the aspects. The other aspects have to wait their turn, because
our heads are so small that we cannot deal with them simultanecously without
getting confused. I usually refer to it as Separation of Concerns, because one
tries to deal with the difficultics, the obligations, the desires, and the constraints
one by one.”

(E. W. Dijkstra, A Discipline of Programming, 1976, last chapter, In Retrospect)

The principle of separation of concerns refers to the realization of system concepts into sepa-
rate software units and it is a fundamental principle of software development. The associated
benefits include improved readability of code that results in better analysis and understand-
ing of systems, an increased level of reusability and easy adaptability that result in good
maintainability. Despite the success of object-orientation in the effort to achieve separation
of concerns, certain properties in object-oriented systems cannot be directly mapped in a one-
to-onc fashion from the problem domain to the solution space, and thus cannot be localized in

single modular units. Their implementation ends up cutting across the inheritance hierarchy

311

of the system. Examples of such crosscutting concerns (or aspects) include persistence, au-
thentication, synchronization and contract checking. Aspect-oriented programming (AOP)
explicitly addresses those concerns by introducing the notion of an aspect as a modular unit
of decomposition. Currently there exist many approaches and technologies to support AOP.

One such notable technology is AspectJ!, a general-purpose aspect-oriented language, which

has influenced the design dimensions of several other general-purpose aspect-oriented lan-
guages, and has provided the community with a common vocabulary based on its linguistic

constructs. AspectJ is a superset of Java and as such cvery valid Java program is also a

ralid AspectJ program.

22.2 The building blocks: Join points, pointcuts and

advices

In this section we will introduce an aspect definition and we will dissect it into its individual

elements, by following a bottom-up approach on an example.

Consider the implementation of an unbounded stack as shown below. The stack implements
a last-in-first-out (LIFO) protocol. Variable stack is an ArrayList that contains a collec-
tion of clements. Variable top holds the current size of the stack, initialized to —1 implying
that the collection is empty. The interface of clags Stack containg a number of methods.
We can distinguish between those methods that modity the state of an object, referred to
as mutators, and those that access the state but do not modify it, referred to as accessors.
Mecthods push() and pop() arc mutators, wherecas methods top(), isEmpty () and size ()

are accessors.

import java.util.x;
public class Stack {

private Arraylist <String> stack = new ArraylList<String> ();

' Aspect] Documentation and Resources, on-line repository from eclipse.org.
URL: http://wuw.eclipse.org/aspectj/doc/released/

312

protected int top = -1;
public void push (String str) {
stack.add (++top, str);
}
public String pop () {
if ('this.isEmpty ()) {
String result = stack.get(top--);
return result;
by
else

return null;

public String top () {
if ('this.isEmpty ()) {
String result = stack.get(top);
return result;
+
else
return null;
+
protected boolean isEmpty () {
return top == -1;
}
public int size () {

return top;

313

22.2.1 Join points

A join point is a point in the exccution of the program. We can regard join points as events
of interest that can be captured by the underlying language. AspectJ supports a rich set of

join points that includes message sends and ezecution of methods.

In this example, we want to capture all push and pop messages? sent to an object of type

Stack. The following join point

call(void Stack.push{(String))

captures a push message that includes one argument of type String, sent to an object of
type Stack., where the invoked method is not expected to return any value. Note that in
the literature the expression is interpreted in terms of a call to a method as follows: The
join point captures a call to method push() in class Stack, taking a String argument and
returning no value (void). The modifier of the method is not specified, implying that it can

be of any type.

Similarly the following join point
call (String Stack.pop())

captures a pop message that includes no argument, sent to an object of type Stack, where

the receiver object is expected to return a value of type String.

22.2.2 Pointcuts

Since we want to log both push and pop messages, we can combine the two join points into
a single disjunctive expression. A pointcut (or pointcut designator) is a logical expression
composed by individual join points. Additionally, a pointcut may be given and it can sub-
sequently be referred to by an identifier. Consider pointcut mutators() that combines the

two individual join points into a logical digjunction as follows:

pointcut mutators(): call(void Stack.push(String)) ||

2A more elaborate explanation is given in § 22.6.1.

314

call(String Stack.pop());

Since a join point refers to an cvent, we say that a join point is captured whenever the asso-
ciated event occurs. Consequently, we say that a pointcut is captured whenever the logical

expression made up of individual join points becomes true.

Pointcuts can adopt unary and binary logical operators in their definition as follows:

e The conjunction operator (&&) returns true only if both operands (join points) arc

capturcd by the expression. Otherwise it returns false.

e The disjunction operator (||) returns true if either or both operands are captured by

the expression. Otherwise it returns false.

e The negation operator (!) returns true if the expression is not captured by the specified

join point. Otherwise it returns false.

22.2.3 Advice

In this example once a push or pop message is sent, and before any corresponding method
executes, we want to first display some message. An advice is a method-like block, that
associates to a pointcut, defining behavior to be executed. However, unlike a method, an
advice block is never explicitly called. Instead, it is only implicitly invoked once its associated

pointcut is captured. The following advice

before(): mutators () {

System.out.println()

is attached to pointcut mutators(). Once a push() or pop() message is sent to an object
of type Stack, the pointcut mutators() is captured. Before the message can proceed, the

before advice will exceute.

315

AspectJ provides a level of granularity which specifies exactly when an advice block should
be exccuted, such as exccuting before, after, or instead of the code that is associated with

the pointcut. More specifically, an advice block can be:

e before: An advice that runs before the code associated with the pointcut expression.

e after: An advice that runs after the code associated with the pointeut expression (It
may be after normal return, after throwing an exception or after returning cither way

from a join point).

e around: An advice that runs instead of the code associated with the pointcut ex-
pression, with the provision for the pointcut to resume normal execution through a

proceed call (sce later).

22.2.4 Named and unnamed pointcuts

In the example above, mutators() is a named pointcut. As the term suggests, it is an
expression bound to an identifier. On the other hand, an unnamed (or anonymous) pointcut
is an expression not bound to an identifier but instead it is directly attached to an advice as

shown below:

before(): call(void Stack.push(String)) ||
call (String Stack.pop()); {

System.out.println()

The two pointcuts are semantically equivalent. A preference which one to adopt will be based
on coding convention and reusability. We would normally prefer unnamed pointcuts for short
and trivial pointcuts, such as thosc that contain an individual join point, particularly when
it is highly unlikely that such a pointcut will be reused. However, for long and non-trivial

pointcuts, or for pointcuts which we plan to reuse, we would prefer named pointeuts.

316

22.2.5 Putting everything together: An aspect definition

Much like a class, an aspect is a unit of modularity. We can now provide a complete aspect

definition as follows:

public aspect Logger {
pointcut mutators(): call(void Stack.push(String)) ||
call(String Stack.pop());
before (): mutators () {

System.out.println()

Consider the following test program:

public class Test A
public static void main(Stringl] args) {

Stack myStack = new Stack();

myStack.push)
myStack . push ()
myStack.push()

System.out.println(myStack.pop());
System.out.println(myStack.pop());
System.out.println(myStack.pop());

System.out.println(myStack.top());

The output of the program is as follows:

>Message sent to update stack.
>Message sent to update stack.

>Message sent to update stack.

317

>Message sent to update stack.
all

>Message sent to update stack.
your

>Message sent to update stack.
base

null

22.3 A closer view of crosscutting

In the previous example, logging is a crosscutting concern which is explicitly captured and
implemented as an aspect. Crosscutting imposes two symptoms on softwarce development
which arc illustrated in Figure 22.1, where the R's represent individual requirements and
the C’s represent classes as an example of a unit of modularity even though, by principle,

crosscutting can manifest in different paradigms.

1. Code scattering: The implementation of a concern is not being well modularized but

instead it cuts across the decomposition hicrarchy of the system.

2. Code tangling: A module containing implementation clements (code) for more than

O11C concerns.

Code scattering and code tangling describe two different facets of the same problem.

22.3.1 Implications of crosscutting

As a result of crosscutting, the benefits of object-oriented programming cannot be fully

utilized, and developers are faced with a number of implications:

1. Poor traceability of requirements: The mapping from an n-dimensional space to a
single dimensional implementation space implies that any changes in the semantics of
onc crosscutting concern arce difficult to trace among various modules that it spans

over.

318

scattering

-

”’

-~ -

tangling

Requirements Implementation

Figure 22.1: Crosscutting: Scattering and tangling.

319

2. Strong coupling between modular units in classes that are difficult to understand and

change.

3. Low degree of code reusability. Core functionality impossible to be reused without

related semantics, alrcady embedded in component.

4. Lower productivity: Simultaneous implementation of multiple concerns in one module

breaks the focus of developers.

Programs arc more crror prormc.

[

In general, we can say that crosscutting affects the quality of software. In object-oriented
programming, the tendency is to find commonality among classes and push them up (verti-
cally) in the inheritance hierarchy. In AOP, we identify scattered concerns and eject them
horizontally from the object structure into aspect definitions. It is also important to note
that just as object-oriented programming did not discard the idea of block structure and

structured programming, AOP does not reject existing technology.

22.4 Quantification and obliviousness

In an article® that has received a great popularity, authors Filman and Friedman argue that

quantification and obliviousness arc two principles that characterize AOP:

Quantification “In a program P, when condition C' occurs, exccute action A.”

Obliviousness No visibility exists from the components of the core functionality to the

aspect definitions.

In Figure 22.2 the points in components C2 and C3 constitute join points. Note that even
though both components arc enhanced by the aspectual behavior defined by A, neither of

them is aware of this fact (nor have they been implemented to accept such enhancements).

3 Aspect-Oriented Programming is Quantification and Obliviousness. Robert E. Filman. Daniel P. Fried-
man. RIACS Technical Report 01.12. May 2001.

320

CORE ASPECTUAL
FUNCTIONALITY BEHAVIOR

whenever execution reaches
this point...

...or this point...

...execute this code!

C1 C2 C3 A

Figure 22.2: Quantification and obliviousness.

22.5 Dissection of a pointcut

In the previous example, we had defined a named pointcut as follows:

pointcut mutators(): call(void Stack.push(String)) ||

call(String Stack.pop());

The format of a named pointcut is
pointcut <name> ([<object(s) to be picked up>]) : <join point expression>

where a join point expression is any predicate over join points. A join point has the following

format:
<join point type> (<signature>)

In the above example, pointcut mutators() was defined as the logical disjunction of two
join points, both of type call, and picked up no object (see later on context passing). We

discuss different join point types in § 22.6.

The dissection of a (named) pointcut is illustrated in Figure 22.3 and a dissection of a call

join point is illustrated in Figure 22.4.

321

pointcut mutators () : icall(void Stack.push(String)) ||
\call(String Stack.pop());

Figure 22.3: A dissection of a pointcut.

__

e ?

Figure 22.4: A dissection of a call join point.

322

22.6 The join point model

Aspect] provides a rich expression set through which we can build join points. It is referred

to as the language’s join point model. Even though the specification and level of granularity

of the join point model differ from one language to another, join points that capture mes-

sage passing and those that capture the execution of methods are common in most current

languages. The most common join points in Aspectd are the following:

1.

[

9.

11.

12.

13.

14.

Call join points (§ 22.6.1): Capturc messages (or “calls to methods™).
Constructor call join points (§ 22.6.2): Capture calls to constructors.

Exccution join points (§ 22.6.6): Capturc exccution of methods.

. Constructor execution join points (§ 22.6.7): Capture execution of constructors.

. Exception handling join points (§ 22.6.9).

Lexical structure join points (§ 22.6.10).
Object initialization join points (§ 22.6.11).
Class initialization join points (§ 22.6.12).

Control flow join points (§ 22.6.13).

. Ficld access join points (§ 22.6.14). Capture read/write access to class attributes.

Conditional test join points (§ 22.6.15).

Self and target join points (§ 22.10.1). Capture caller and callee objects, executing

objects.
Argument join points (§ 22.10.3). Capture method arguments.

Advice execution join points (§ 22.10.5).

323

JOIN POINT SIGNATURE DESCRIPTION

Captures a protected void method
protected void Vector.removeRange(int, int) | removeRange in class Vector, taking
two arguments of type int.

As above but it also includes sub-

protected void Vector+.removeRange(int, int) .
classes of Vector.

Table 22.1: Join point signatures - 1 of 3.

22.6.1 Call join points

A call join point captures a message that matches a given signature that is sent to an object
with a given static type. For example, the join point call (void Server.attach(..))
captures message attach with any (including zero) arguments sent to an object whose static

type is Server and where the invoked method is not expected to return any value.

The format of a call join point is
call (signature)
where the format of signature is

[<modifier>] <return type> <class>.<method>(<parameter list>)

Join point signatures

In AspectJ, the join point model can adopt wildcards for the definition of expressions. The
most common are the asterisk * that has the meaning of any, and in the case of the parameter
list the double-dot .. means any and of any type. The + next to a class name is interpreted
as this type and all its subtypes. Tables 22.1, 22.2 and 22.3 illustrate examples of expressions
of join point signatures.

Table 22.4 shows examples of expressions of call join points. There is a trade-off in the
expressiveness of the join point model language. On one hand, wildcards and other special
characters can provide shorter expressions but on the other hand they can make expressions
difficult to read. They may also unintentionally capture join points in the program execution.

For example, the following join point

324

JOIN POINT SIGNATURE

DESCRIPTION

* void Vector.removeRange(int, int)

void Vector.removeRange(int, int)

* * Vector.removeElement (Object)

* Vector.removeElement (Object)

* x x . removeElement (Object)

*

* % . x(0Object)

Captures a void method removeRange of any
modifier in class Vector, taking two argu-
ments of type int.

As above (modifier is optional and it was
omitted).

Captures method removeElement of any re-
turn type and any modifier in class Vector,
taking onc argument of type Object.

As above (modifier is optional and it was
omitted).

Capturcs method removeElement of any re-
turn type and any modifier in any class, tak-
ing onc argument of type Object.

Captures any method of any return type and
any modifier in any class, taking one argu-
ment of type Object.

Table 22.2: Join point signatures - 2 of 3.

325

JOIN POINT SIGNATURE

DESCRIPTION

* *x * x(k, int)

* *x % *x(int, ..)

* x k. x(.., int)

* x Vector.removex(..)

Captures any method in any class, returning
any type, of any modifier, taking two argu-
ments, where the first is of any type and the
sccond is of type int.

Captures any method in any class, return-
ing any type. of any modifier, taking an ar-
gument of type int, followed by a sequence
of additional arguments (that can also be
empty) of any type.

As above but an argument of type int is pre-
ceded by a sequence of arguments (that can
also be empty) of any type.

Captures any method in any class, return-
ing any type, of any modifier, taking any (or
7ero) arguments.

As above but taking no arguments.

Capturcs any method whose name starts
with the string remove followed by zcro or
more characters, of any return type and any
modifier, in class Vector, taking any (or
7ero) arguments.

Table 22.3: Join point signatures - 3 of 3.

326

call (* Stack.x*(..))

captures any messages with any (including zero) arguments sent to any object of type Stack,
where the invoked method is expected to return a value of any type (including void). If we
used this join point (as an anonymous pointcut) in the Logger aspect in the Stack example,
ie.

before(): call (x Stack.x(..)) {

System.out.println()

then the pointcut would also capture messages isFull() and isEmpty() as well as any
other messages sent to a Stack object whether existing or introduced in the future, such as

toString(), clone(), etc.

22.6.2 Call to constructor join points

Aspect] distinguishes between regular messages (sent to objects and classes) and messages
that are sent to class constructors. A call to constructor join point captures a call made
to the constructor of a given class. The keyword new is used to identify such join point
signatures. For example, call (Stack.new()) captures a call to the default constructor of
class Stack. Note that signatures of constructor call join points contain no return type. The

format of a call to constructor join point is

call (signature)
where the format of signature is
[<modifier>] <class>.new(<parameter list>)

Table 22.5 shows expressions for call to constructor join points.

22.6.3 Call join points in the presence of inheritance

A call join point captures a message that is sent to an object of a given static type. This
implics that it can capture such message sent to an object of a subtype. We will demonstrate

this with an example.

327

JOIN POINT PATTERN

DESCRIPTION

call(void Buffer.put(String))

call(void Buffer.put(..))

call(* Buffer.put(..))

call(* Buffer.put*(..))

call(x Buffer.put*(String,

)

Matches messages put taking onc argument
of type String, sent to an object of type
Buffer, where the invoked method is not ex-
pected to return any value.

Matches messages put taking any (or zero)
arguments , sent to an object of type Buffer,
where the invoked method is not expected to
return any value.

Matches messages put taking any (or zero)
arguments, sent to an object of type Buffer,
where the invoked method is expected to re-
turn a value of any type (or no value).

Matches any message whose name starts with
put and followed by zcro or more charac-
ters, taking any (or zero) arguments, sent to
an object of type Buffer. where the invoked
method is expected to return a value of any
type (or no value).

Matches any message whose name starts with
put and followed by zero or more characters,
taking an argument of type String followed
by a sequence of additional arguments (that
can also be cmpty) of any type, sent to an
object of type Buffer, where the invoked
method is expected to return a value of any
type (or no value).

Table 22.4: Examples of call join points.

JOIN POINT PATTERN | DESCRIPTION

call(Buffer.new())

call(Buffer.new(..))

Captures calls to the constructor method of class
Buffer taking no arguments.

Captures calls to the constructor method of class
Buffer taking any (or zero) arguments.

Captures all calls made to the constructor of class

call(Buffer+.new(..)) Buffer, or any of its subclasses, taking any (or zero)
argurments.

Table 22.5: Examples of constructor call join points.

328

Example: A bounded stack

We now subclassify Stack to define class BStack that implements a stack of bounded capac-

ity.

import java.util.x*;
public class BStack extends Stack {
private int capacity;
public BStack (int capacity) A
this.capacity = capacity;
+
@0verride
public void push (String str) {
if (!this.isFull())
super.push(str);
+
private boolean isFull() A

return top == capacity;

We need to modify main to accommodate for the construction of a bounded stack object

with a given capacity:

public class Test {
public static void main(Stringl[] args) {

BStack myStack = new BStack(2);

myStack .push ()
myStack.push()
myStack . push ()

System.out.println(myStack.pop());

System.out.println(myStack.pop());

329

System.out.println(myStack.pop());

System.out.println(myStack.top());

Let us run the program:

>Message sent to update stack.
>Message sent to update stack.
>Message sent to update stack.
>Message sent to update stack.
your
>Message sent to update stack.
base
>Message sent to update stack.
null

null

We see that pointcut mutators() is captured. The reason is that the call join point
call(void Stack.push(String))

captures calls to push(String) declared in class Stack or any of its subclasses.

22.6.4 Reflective information on join points with thisJoinPoint

Aspect] provides the special variable thisJoinPoint that contains reflective information
about the current join point. Let us modity aspect Logger, in the bounded stack example,

to access reflective information on all join points captured by mutators():

public aspect Logger A
pointcut mutators(): call(void Stack.push(String)) ||
call(String Stack.pop());

before(): mutators () {

330

System.out.println(+ thisJoinPoint);

We run the test program on the bounded stack and we see that it has the same behavior as

before, but with additional information on each captured join point:

>Message sent to update stack: call (void BStack.push(String))
>Message sent to update stack: call (void BStack.push(String))
>Message sent to update stack: call (void BStack.push(String))
>Message sent to update stack: call (String BStack.pop())

your

>Message sent to update stack: call (String BStack.pop())

base

>Message sent to update stack: call (String BStack.pop())

null

null

22.6.5 Multiple pointcuts

A pointcut may capture a sct of join points. This implies that two (or more) pointcuts may
share join points. We will demonstrate this through an example.
Example: Blade Runner

In this example, we define classes Human and Bladerunner that are related by inheritance

(See Figure 22.5).

public class Human A
public String reason() {

return ;

331

Human

+reason(): String

/A

Bladerunner

Figure 22.5: Classes Human and Bladerunner.

public class Bladerunner extends Human { }

Aspect Logger defines two unnamed pointcuts: call(String Human.reason()) capturcs
messages reason () sent to objects of type Human and call (String Bladerunner.reason())

captures messages reason() sent to objects of type Bladerunner.

public aspect Logger A
before() : call(String Human.reason()) {
System.out.println(+

thisJoinPoint);

}
before() : call(String Bladerunner.reason()) {
System.out.println(+
thisJoinPoint);
}

Counsider the following test program:
g prog

public class Test {
public static void main(Stringl] args) {

Human sebastian = new Human ();

332

Bladerunner deckard = new Bladerunner ();
System.out.println(sebastian.reason());

System.out.println(deckard.reason ());

The output of the program is as follows:

>Captured call to Human.reason(): call (String Human.reason())

I am a human and I can reason.

>Captured call to Human.reason(): call (String Bladerunner.reason())
>Captured call to Bladerunner.reason(): call (String Bladerunner.reason())

I am a human and I can reason.

The statement sebastian.reason() is captured by pointcut call(String Human.reason()).

As a result, the body of the associated advice will execute, displaying
>Captured call to Human.reason(): call(String Human.reason())

On the other hand, the statement deckard.reason() will be captured by both pointcuts.

As a result, both advices will execute, displaying

>Captured call to Human.reason(): call (String Bladerunner.reason())

>Captured call to Bladerunner.reason(): call (String Bladerunner.reason())

22.6.6 Execution join points

As its name suggests, an execution join point captures the execution of a method defined in a
given class. The join point signatures in Tables 22.1 and 22.2 arc also applicable to execution
join points. For example, the join point execution (void Server.attach(..)) captures
the exccution of a void method attach with any (including zero) parameters defined in class

Server, regardless of its visibility.

333

The format of an execution join point is
execution (signature)
where the format of signature is

[<modifier>] <return type> <class>.<method>(<parameter list>)

Example: Blade Runner revisited

We have slightly modified aspect Logger, in the blade runner example, by replacing the call

join points by cxeccution join points and adjusting the messages displayed:

public aspect Logger {
before() : execution(String Human.reason ()) {
System.out.println(+

thisJoinPoint);

}
before() : execution(String Bladerunner.reason()) {
System.out.println(
thisJoinPoint);
}

It is important to sce that the pointcut execution(String Bladerunner.reason()) will
never be captured as there exists no method reason() defined in class Bladerunner. For

the test program shown again below

public class Test {
public static void main(Stringl] args) {
Human sebastian = new Human ();
Bladerunner deckard = new Bladerunner ();
System.out.println(sebastian.reason());
System.out.println(deckard.reason ());

+r

334

the run-time system will invoke method reason() defined in class Human twice. The output

of the program is as follows:

>Captured execution of Human.reason(): execution(String Human.reason())
I am a human and I can reason.
>Captured execution of Human.reason(): execution(String Human.reason ())

I am a human and I can reason.

22.6.7 Constructor execution join points

AspectJ distinguishes between executions of regular methods and executions of constructor
methods. The latter are identified in join point signatures by the keyword new. Note also
that join point signatures of constructor executions contain no return type. The format of a

constructor exccution join point is

execution (signature)

where the format of signature is

[<modifier>] <class>.new(<parameter list>)

22.6.8 Call vs. execution join points

With the aid of examples we will demonstrate the difference between call and execution join

points.

Example: A client and server

Consider the definitions of classes Server and Client below:

public class Server A
public String ping() A
System.out.println()

return ;1)

335

public class Client A

Server server;

public Client (Server server) A{
this.server = server;

}

public String testConnection () {
System.out.println()
String str = server.ping();
System.out.println/();

return str;

When we view such a model we can sce (statically) when two classes are related through
attribute visibility. This implies that an instance of one can send messages to an instance of
the other (or to self if this is a reflexive association). Much like classes are instantiated at run-
time, a call creates an association (at run-time) between two instances. On the other hand,
an execution is an event that takes place within an instance. A summary of these differences
is illustrated in Figure 22.6. Aspect Logger captures calls to String Server.ping() and

exccutions of String Server.ping().

public aspect Logger {

before() : call(String Server.ping()) {

System.out.println(+ thisJoinPoint);
+
after () : call(String Server.ping()) {
System.out.println(+ thisJoinPoint);
}
before () : execution(String Server.ping()) {
System.out.println(+ thisJoinPoint);
}

336

:Client Server

(\ before call : before execution :
/" “once the call is \| “once the method
initiated and before is invoked and
it can proceed” before its body

starts executing”

() after call : (1 Y\ after execution :
“once the call “after the
returns body of the method

completes executing
and returns”

Figure 22.6: Calls and executions.

after () : execution(String Server.ping()) A

System.out.println(+ thisJoinPoint);

Consider the following test program:

public class Test A
public static void main(Stringl] args) {

Server server = new Server ();

Client client = new Client (server);

System.out.println(client.testConnection()); }}

337

Dog

+describe(): void
+whatldo(): void

A\

Collie

+describe(): void

Figure 22.7: Classcs Dog and Collie.

The output of the program is as follows:

About to call server.ping()

>Before: call (String Server.ping())
>Before: execution(String Server.ping())
Inside Server.pingl().

>After: execution(String Server.ping())
>After: call (String Server.ping())

Just called server.ping()
pong.
Example: A dog’s life

Consider the following class definitions, the UML class diagram of which is shown in Fig-

ure 22.7. Initially we define classcs Dog and Collie.

public class Dog {
public static void describe() {

System.out.println()

338

public void whatIdo () {

System.out.println()i}

public class Collie extends Dog {
public static void describe () {

System.out.println()

Aspect Tracer provides pointcuts that capture all messages sent to objects of cither type,

as well as any method executions that occur in either class.

public aspect Tracer {
before(): call(x Dog.*x()) A
System.out.println(+
thisJoinPoint);
}
before(): call(* Collie.*x()) {
System.out.println(

thisJoinPoint);

after () : execution(* Dog.*x()) {
System.out.println(+
thisJoinPoint);
}
after () : execution(* Collie.x*x()) {
System.out.println(+

thisJoinPoint);

339

Consider the test program below:

public class Test A
public static void main(Stringl[] args) {
Dog lassie = new Collie();
Collie bella = new Collie();
lassie.describe ();
bella.describe ();
lassie.whatIdo ();

bella.whatIdo ();

Recall that static features are chosen based not on the dynamic (run-time) type of the object
but based on its static (declared) type. The statement lassie.describe() is captured by

the anonymous pointcut call(* Dog.*()). The before advice will display
>Captured message to object of type Dog: call(void Dog.describe())

The static method in class Dog then executes displaying Dog. The execution of the method is
captured by the anonymous pointcut execution(* Dog.*()). Upon successful termination

of the method, the after advice will display
>Captured execution in class Dog: execution(void Dog.describe())

The statement bella.describe () is captured by the anonymous pointcut call(* Collie.*()).

The before advice will display
>Captured message to object of type Collie: call(void Collie.describe())

The static method in class Collie then executes displaying Collie. The exccution of the
method is captured by the anonymous pointcut execution(* Collie.*()). Upon successful

termination of the method, the after advice will display

>Captured execution in class Collie: execution(void Collie.describe())

340

The statement lassie.whatIdo () is captured by the anonymous pointcut call(* Dog.*()).

The before advice will display
>Captured message to object of type Dog: call(void Dog.whatIdo())

The instance method in class Dog then exccutes displaying I save people from danger.
The exccution of this method is also captured by the anonymous pointcut execution (*

Dog.*()). Upon successful termination of the method, the after advice executes displaying
>Captured execution in class Dog: execution(void Dog.whatIdo())

The statement bella.whatIdo () is captured by two anonymous pointcuts call(* Dog.*())
and call(* Collie.*()) since being of type Collie implies that bella is also of type Dog.
The two corresponding advices will execute according to their lexical ordering (we discuss

advice precedence later) and they will display

>Captured message to object of type Dog: call(void Collie.whatIdo())

>Captured message to object of type Collie: call(void Collie.whatIdo())

The Java run-time system will attempt to locate a method to match the message starting
from the dynamic type of the object, namely class Collie. Such a method doces not exist,
so the run-time system will go up the inheritance chain, locating and invoking such method
in class Dog. The method will display I save people from danger. The execution of this
method is captured by the anonymous pointcut execution(* Dog.*()). Upon successful

termination of the method, the after advice exccutes displaying
>Captured execution in class Dog: execution(void Dog.whatIdo())
Putting cverything together, the output of the program is as follows:

>Captured message to object of type Dog: call(void Dog.describe())

Dog.

>Captured execution in class Dog: execution(void Dog.describe ())
>Captured message to object of type Collie: call(void Collie.describe())

Collie.

341

>Captured execution in class Collie: execution(void Collie.describe())
>Captured message to object of type Dog: call(void Dog.whatIdo())

I save people from danger.

>Captured execution in class Dog: execution(void Dog.whatIdo())
>Captured message to object of type Dog: call(void Collie.whatIdo())
>Captured message to object of type Collie: call(void Collie.whatIdo())
I save people from danger.

>Captured execution in class Dog: execution(void Dog.whatIdo())

22.6.9 Exception handling join points

The after advice provides the option to exccute only when the method throws an exception.

The format of such an expression is

after() throwing, or

after () throwing (ezception type identifier)

22.6.10 Lexical structure join points

Lexical structure join points capture well-defined points inside the lexical structure of classes
or methods. The forms are
within (fype pattern), and
withincode (method signature)
where type patiern may include wildcard characters and must resolve to a class, or a range
of different classes, and method signature may include wildcard characters and must resolve

to a method in a class or to a range of methods. Example patterns of lexical strucure are

shown in Table 22.6.

22.6.11 Object initialization join points

Object initialization join points capturc the call to a constructor that matches a specified

signature. The format is

342

JOIN POINT PATTERN DESCRIPTION

L Matches any join point inside the lexical scope of
within(classNamc)
className.
L « Matches any join point inside the lexical scope of
within(className™) . :
classes with a name that starts with className.
Matches any join point inside the lexical scope of

withincode(* className.methodName(..)
(()) methodName in className.

Table 22.6: Examples of lexical structure join points.
initialization (signature)
where signature is defined as
[<modifier>] <class>.new(<parameter list>)

The signature must resolve to a constructor of an object or of a range of objects.

Example: A point hierarchy

In the following example (Figure 22.8), we capture the initialization of two objects of class

ColoredPoint.

public class Point {
public float x;
public float y;
public Point () A
this (0, 0);
+

public Point (float x, float y) {

this.x X ;

this.y = y;

343

Point

x: float
y: float

A

ColoredPoint

color: String

+toString()

Figure 22.8: Classes Point and ColoredPoint.

public class ColoredPoint extends Point {
public String color;
public ColoredPoint () {
super () ;
System.out.println/();
this.color = ;
System.out.println/()5}
public ColoredPoint (float x, float y, String color) {
super(x, y);
System.out.println()
this.color = color;
System.out.println();
}
public String toString() {

return + this.x + + this.y + + this.color;

344

Aspect InitializationMonitor capturces the initialization of ColoredPoint instances.

public aspect InitializationMonitor {

before() : initialization(ColoredPoint.new(..)) {

System.out.println(thisJoinPoint);

Counsider the following test program:
g prog

public class Test {

public static void main(Stringl] args) {

ColoredPoint p = new ColoredPoint ();

ColoredPoint q = new ColoredPoint (1,

System.out.println(p.toString ());

System.out.println(qg.toString ());

1,)

The output of the program is shown below. Notice that the before advice executes after the

super constructor initializes both inherited attributes and before the body of the constructor

of the current class executes.

initialization(ColoredPoint ())

>Entry: Default constructor.

>Exit: Default constructor.
initialization(ColoredPoint (float, float,
>Entry: Non-default constructor.

>Exit: Non-default constructor.

(0.0, 0.0) : Black

(1.0, 1.0) : Red

345

String))

If we now changed the type of advice from before to after, the output of the program is

as follows:

>Entry: Default constructor.

>Exit: Default constructor.

initialization (ColoredPoint ())

>Entry: Non-default constructor.

>Exit: Non-default constructor.
initialization(ColoredPoint (float, float, String))
(0.0, 0.0) : Black

(1.0, 1.0) : Red

22.6.12 Class initialization join points

Class initialization join points capture the execution of static initialization blocks of specified

types. The format is
staticinitialization (type pattern)
where fype patiern may include wildcard characters and must resolve to a class, or a range

of different classes.

22.6.13 Control flow join points

The term control flow refers to the order in which events, such as messages or method
excecutions, occur. For example, if during cvent; the event causes events which in turn
causes events, then we say that the sequence (event,, events) lies within the control flow of
cventy, as well as {cvents) lies within the control flow of cventy. Recall that in Aspectl,

events are captured by join points and pointcuts. The format of a control flow join point is
cflow (pointcut designator)

where pointcut designator can be any pointcut. Note that cflow (pointcut) captures pointcut

itself as well as all subsequent pointcuts in its control flow. If we want to exclude pointcut and

346

JOIN POINT PATTERN

DESCRIPTION

cflow(call (* Server.attach(..)))

cflowbelow(call (* Server.attach(..)))

Matches any join point in the control flow of
a message attach that includes any (includ-
ing zcro) arguments sent to an object of type
Server, including the message itsclf.

Matches any join point in the control flow of
a message attach that includes any (includ-
ing zcro) arguments sent to an object of type
Server, but excluding the message itself.

Table 22.7: Examples of control flow join points.

capture only those pointcuts that occur subsequently, we must use the following alternative

notation:

cflowbelow (pointcut designator)

Example patterns of control flow are shown in Table 22.7.

Example: Blade Runner revisited

Let us now consider the hierarchy in the Bladerunner example, where aspect Logger contains

two before advices on the exceutions of Human . reason () and Bladerunner.reason(). The

aspect is shown here again.

public aspect Logger {

before() : execution(String Human.reason ()) {

System.out.println(

thisJoinPoint);

}
before() : execution(String Bladerunner.reason()) {
System.out.println(
thisJoinPoint);
}

347

We will proceed to add a new aspect to the project. In ReflectiveLogger the unnamed
pointcut of the after advice captures all method executions made in the program, but not
those made from within itself and not those within the control flow of the Java system. i.e.

execution of library methods.

public aspect Reflectivelogger {
after (): execution(x *(..))
&% !within(ReflectiveLogger)
&& !cflow(execution (* java.x.x.*x(..))) {

System.out.println (+ thisJoinPoint);

The output of the program is as follows:

>Captured execution of Human.reason(): execution(String Human.reason ())
>Executed: execution (String Human.reason())

I am a human and I can reason.

>Captured execution of Human.reason(): execution(String Human.reason ())
>Executed: execution (String Human.reason())

I am a human and I can reason.

>Executed: execution(void Test.main(Stringl]))

22.6.14 Field access join points

Field access join points capture read and write access to the fields declared in a given class.

The formats are

get (field signature), and

set (field signature)
for read and write access respectively, where a field signature is defined as

[<modifier>] <return type> <class>.<field>

348

A field signature may contain wildcard characters and it must resolve to an attribute of a

given class.

Example: Global Positioning System

In the following example, we define class GPSCoordinate that holds a coordinate in the

Global Positioning System (GPS).

public class GPSCoordinate A

private Double latitude = 0.;

private Double longitude = O.;

public GPSCoordinate (Double latitude, Double longitude) {
this.latitude = latitude;
this.longitude = longitude;

+

public void setLatitude (Double latitude) {

this.latitude = latitude;

public Double getLatitude (){
return this.latitude;

}

public void setLongitude (Double longitude) {
this.longitude = longitude;

+

public Double getLongitude () {
return this.longitude;

}

public void moveTo(Double latitude, Double longitude) A
this.latitude = latitude;

this.longitude = longitude; }

349

public String toString() A

return + latitude + + longitude + ;

Aspect FieldAccess defines two unnamed pointcuts to capture read and write access, re-
spectively. to any field of class GPSCoordinate. Note that the join points are able to capture
access to the fields despite the fact that the fields are declared private. It is also important

to note that these join points do not capture inherited ficlds.

public aspect FieldAccess {
before() : get(x GPSCoordinate.*) {
System.out.println(+ thisJoinPoint);
}
before() : set(x GPSCoordinate.x) {

System.out.println(+ thisJoinPoint);

A test program creates and initializes an instance of GPSCoordinate. It then proceeds to

move the instance to a new location and finally it displays its latitute and longitute values.

public class Test A
public static void main(Stringl[] args) {
GPSCoordinate point = new GPSCoordinate (45.220227, -73.564453);
point.moveTo (46.763321, -71.224365);
System.out.println(point.getLatitude ());
System.out.println(point.getLongitude ());

System.out.println(point.toString ());

350

The output of the program is as follows:

>Write access:

>sWrite
>Write
>sWrite
>sWrite
>Write
>Read access:
46.763321

>Read access:
-71.224365

>Read access:
>Read access:

(46.763321,

access:

access:

access:

access:

access:

set (Double GPSCoordinate.latitude)

set (Double GPSCoordinate.longitude)

set (Double GPSCoordinate.latitude)

set (Double GPSCoordinate.longitude)

set (Double GPSCoordinate.latitude)

set (Double GPSCoordinate.longitude)

get (Double GPSCoordinate.latitude)

get (Double GPSCoordinate.longitude)

get (Double GPSCoordinate.latitude)

get (Double GPSCoordinate.longitude)

-71.224365)

Example: Points

Consider the implementation of class Point:

public class

protected double x,

public Point (double x,

this.x =

this.y
+

Point {

Y

double y) {
X;

¥y

public Point () {

this (0,
}

public void move (double x,

this.x

this.y =

0);

double y) {
X;

¥

351

public String toString() A

return + x + + y + ;

We subclassify Point by introducing ColoredPoint that adds attribute color.

public class ColoredPoint extends Point {

String color;

public ColoredPoint (double x, double y, String color) {
super(x, y);
this.color = color;

}

public ColoredPoint () A
super (0., 0.);

this.color = ;

public String toString() {

return + x + + y + + color + ;

In aspect FieldAccess, the two poincuts that are set to capture field access on class

ColoredPoint:

public aspect FieldAccess {
before() : get(x ColoredPoint.*) {
System.out.println(+ thisJoinPoint);
}
before() : set(x ColoredPoint.x) {

System.out.println(+ thisJoinPoint); }}

352

A test program creates and initializes an instance of ColoredPoint. It proceeds to move

the object to a new location and finally it displays the object’s coordinate and color valuces.

public class Test {
public static void main(Stringl[] args) {
ColoredPoint point = new ColoredPoint (3, 5,
point.move (7, 9);

System.out.println(point.toString());

The output of the program is as follows:

>Write access: set (String ColoredPoint.color)
>Read access: get (String ColoredPoint.color)

x: 7.0, y: 9.0, color: white.

We observe that the pointcuts only capture access to atttribute color, but do not capture

access to the x and y attributes. Let us modify the two pointcuts, to capture access to fields

declared in Point and all its subclasses:

public aspect FieldAccess {

before() : get(x Point+.x) {

System.out.println(+ thisJoinPoint);
+
before() : set(x Point+.x*) {

System.out.println(+ thisJoinPoint);
+

The output of the same test program is now as follows:

>Write access: set (double Point.x)

>sWrite access: set (double Point.y)

353

>Write access: set (String ColoredPoint.color)
>Write access: set (double Point.x)
>Write access: set (double Point.y)
>Read access: get (double Point.x)
>Read access: get (double Point.y)
>Read access: get (String ColoredPoint.color)

x: 7.0, y: 9.0, color: white.

22.6.15 Conditional test join points

A conditional test join point captures join points based on some conditional check at the

join point. The format is

if (Boolean expression)

22.7 Around advice

The third type of advice allows us to say “Whenever a pointcut is captured, instead of run-
ning the code associated with the pointcut, execute the body of the advice.” An optional
mechanism allows us to resume execution of the code associated with the pointcut. Visually,

the mechanism of an around advice is shown in the UML sequence diagram of Figure 22.9.

354

Pointcut

Around

Component

proceed

advice
| .
I 1
I 1
I 1
’ I 1
// I 1
’ | 1
,’ I 1
2 I 1
I' I 1
, | 1
// I 1
’ | 1
,/ 1 1
’ ! 1
// I 1
; 1 1
s I 1
| 1
I ’
Whenevera | |
I
pointcut is |
I
captured... !
< - - ---
...instead of executing the)
pointcut code (component)
execute the advice code.

Optionally execution
may resume to the

~

’ -

pointcut code. 7

Upon termination of the
pointcut code, execution will
jump back to the around

advice.

Figure 22.9: Around advice.

355

Example: History protocol

Consider the implementation of a circular bounded buffer:

public class Buffer A
String [] BUFFER;
int putPtr;
int getPtr;
int counter;
int capacity;
String name;
Buffer (int capacity) {
BUFFER = new Stringl[capacity];
this.capacity = capacity; 1}
Buffer (int capacity, String name) <
this(capacity);
this.name = name; 1}
public String getName () {return name;}
private boolean isEmpty () {return (counter == 0);}
private boolean isFull() {return (counter == capacity);}
public void put (String s) {
if (isFull ())
System.out.println()
else {
BUFFER [putPtr++ % (capacity)] = s;
counter++; }}
public String get () A
if (isEmpty ())
return ;
else {
counter ——;

return BUFFER [getPtr++ % (capacity)]l; }}}

356

Consider now the definition of class Buffer2 which introduces method gget (). This method
behaves exactly like get (), but it can only execute after a get (). To implement this require-
ment in Java would imply that Buffer2 would have to re-define methods put () and get ()

to implement a history protocol. Instead, we will implement the history protocol in an aspect.

public class Buffer2 extends Buffer {
Buffer2 (int capacity) {
super (capacity);
}
public String gget () A{

return super.get ();

In defining the aspect, we first need to introduce a variable to serve as a flag that would

indicate which operation has been lastly executed:
private boolean afterGet;

We must update the history flag afterGet appropriately after the execution of both put (O

and get (). Note that both methods have been inherited to Buffer2. Thus, if we say
execution(void Buffer2.put(String))

then this join point would never be caught, since the method is defined (and therefore
executes) from within Buffer. We can capture proper behavior as follows:
after (): execution(void Buffer.put(String)){
afterGet = false;
}

after(): execution(String Buffer.get()) {

afterGet = true;

We now need to write code to say: “Once there is a message gget () sent to an object of

type Buffer2, instead of running the code that should run, check the history of method

357

exccution and if the previous executed method was a get (), then allow execution to go

ahcad; Otherwise, issuc an crror.” We use the around advice for this as shown below:

String around () : call (String Buffer2.gget()) {
if (afterGet == false)
return ;
else {

return proceed();

The call to proceed allows execution to resuimme at the code associated with the pointcut.
One thing to remember is that unlike the two other types of advices, before and after, the
around advice must contain a return type which should be the same as the return type of
the method of the associated pointcut. In this example, as the pointcut is on gget () with a
return type String, then the same return type must be associated with the advice. If there
is more than one method invoved with different return types, then the type of the around

advice should be Object.

We can now put everything together in aspect HistoryProtocol as follows:

public aspect HistoryProtocol {

private boolean afterGet;

after (): execution(void Buffer.put(String)) {
afterGet = false; }

after (): execution(String Buffer.get ()) {
afterGet = true;}

String around () : call (String Buffer2.gget()) {
if (afterGet == false)

return ;

else

return proceed (); }}

358

Counsider the following test program:
g prog

public class Test A
public static void main(Stringl] args) {

Buffer?2 buffer = new Buffer2(5);

buffer.put()
buffer.put ()
buffer.put ()
buffer.put()
buffer.put();

System.out.println(buffer.gget ());
System.out.println(buffer.get ());
System.out.println(buffer.gget ());
buffer.put ()

buffer.put()
System.out.println(buffer.gget ());
System.out.println(buffer.get ());
System.out.println(buffer.get ());
System.out.println(buffer.gget ());
System.out.println(buffer.get ());

System.out.println (buffer.get()); 1}}

The output of the program is as follows:

Error: Cannot execute gget ()
all

your

Error: Cannot execute gget ()
base

are

belong

to

us

359

Example: A Stack protocol enforcement

What happens when a subclass uses only part of a superclass™ interface or does not need
to inherit data? What do we do when it is very practical to use inheritance, but an is-a
rclationship does not hold? Can we just adopt this scheme? Consider class Stack in the
java.util library of the Java Application Programming Interface (API) which inherits class
Vector (which in turn implements interface List) by extending its functionality with oper-

ations that would allow a vector to be treated as a stack.

Consider the following test program where we create a stack instance and place some items
in the collection. We do, however, manage to violate the Stack Abstract Data Type (ADT)

protocol by calling method elementAt () inherited from Vector.

import java.util.x*;
public class StackAPITest A
public static void main(Stringl] args) {

Stack<String> s = new Stack<String>();

s.push ()
s.push ()
s.push ()

System.out.println(s.elementlt (0));

The output of the program is as follows:
first

In aspect StackProtocolEnforcer we intercept and disallow all calls sent to a stack instance

except those that arc legitimate under the appropriate protocol.

public aspect StackProtocolEnforcer {

pointcut allowedcalls ()

360

call (*
call (*
call (*
call (*

Object

java.util.
java.util.
java.util.

java.util.

around () :

Stack.push(..)) ||

Stack.pop()) ||

Stack.empty ()) ||

Stack.peek ());

(call(* java.util.Stack.*(..)) ||
call (* java.util.Stack.*x())) &&

tallowedcalls () {

System.out.println(thisJoinPoint +

return thisJoinPoint + ;

In the following test program we attempt to call methods inherited from Vector which would

essentially violate the Stack ADT protocol.

import java.util.x*;

public class Test A

public static void main(Stringl] args) {

Stack<B8tring> s =

s.push ();

s.push ()

s.push ()
System.out.println(s.
s.push ()

s.push ()
s.push ()
s.push ()
System.out.println(s.
System.out.println(s.
System.out.println(s.
System.out.println(s.

new Stack<String>();

elementlAt (0)); // illegal for a stack

firstElement ()); // illegal for a stack
pop ()
pop ()

pop) ;

361

s.removeElementlt (3);

System.out.

System.out

System.out

s.clear ();

System.out

println(s.pop());
.println(s.pop());
.println(s.pop());

// illegal for a stack

// illegal for a stack

.println(s.pop());

The output of the program is shown below. We see that all illegal calls are successtully

captured by the aspect. We also make the following observation: The around advice will

not return anything if the captured method is of type void.

call (Object
call (Object
call (Object
call (Object
all

your

base

java.
java.
java.

java.

util.
util.
util.

util.

Stack.elementZAt (int)) 1s not allowed for

Stack.elementAt (int)): Illegal operation.

Stack.firstElement ()) 1s not allowed for

Stack.firstElement ()): Illegal operation.

call (void java.util.Stack.removeElementAt (int)) is not allowed

are
belong

to

call (void java.util.Stack.clear())

us

22.8 Advice precedence

a Stack ADT.

a Stack ADT.

for a Stack ADT.

1is not allowed for a Stack ADT.

Sceveral advice blocks may apply to the same join point. In this case the order of execution

is determined by a set of rules of advice precedence specified by the underlying language.

362

There are two cases to consider:
1. Precedence rules among advices within the same aspect.

2. Precedence rules among advices from different aspects.

22.8.1 Precedence rules among advices within the same aspect

There are two ways to describe precedence among advices within the same aspect. One way
is to answer “[In the case of two like advices] which one executes first?” in which case the

answer is “The one defined first execcutes first.”

Another way to describe this is asking a slightly different question: “Which advice has

precedence?” To answer the question we first must define “precedence.”

e In the casc of two or more before advices, “precedence” has the meaning of executing
first.
e In the case of after advice, “precedence” has the meaning of exccuting last.
Thus, to answer the question in terms of precedence, in the case of two or more before
advices, the one that appears earlier in the aspect definition has precedence over the one

that appears later. Otherwise, in the case of two or more after advices, the onc that appears

later in the aspect definition has precedence over the one that appears carlier.

Precedence among before and after advices

We will demonstrate precedence among before and after advices with the test program

below:

public class Test {
public static void main(Stringl[] args) {

System.out.println()

363

public aspect Monitor A
pointcut progmonitor (): execution (public static void *.main(..));
before(): progmonitor () {
System.out.println(
}
before (): progmonitor () A
System.out.println/()
}
after (): progmonitor () {
System.out.println/()
}
after (): progmonitor () {

System.out.println(

The output of the program is as follows:

sbefore; defined first; should have precedence.
>before; defined last.

Inside main{() .

safter; defined first.

>after; defined last; should have precedence.

Precedence among around advices

In the presence of multiple around advices from within the same aspect, the one defined first

has priority. In the example below, our test program is defined as follows:

public class Test A
public static void greet() {

System.out.println()

364

public static void main(Stringl] args) {

greet () ;

We have two around advices without a proceed:

public aspect Monitor A
pointcut progmonitor(): execution (public static void *.greet ());
void around (): progmonitor () A
System.out.println(
}
void around (): progmonitor () A

System.out.println();

The output of the program is as follows:
saround; defined first; should have precedence.

In the next example, we have two around advices with a proceed inside the high-priority one:

public aspect Monitor A
pointcut progmonitor(): execution (public static void *.greet ());
void around (): progmonitor () {
System.out.println(
proceed () ;
}
void around (): progmonitor () {

System.out.println()

365

The output of the program is as follows:

saround; defined first; should have precedence.

>around.

In the last example, we have two around advices, both with a proceed:

public aspect Monitor A
pointcut progmonitor(): execution (public static void *.greet ());
void around (): progmonitor () {
System.out.println(
proceed () ;
}
void around (): progmonitor () A
System.out.println()

proceed () ;

The output of the program is as follows:

saround; defined first; should have precedence.
>around.

Greetings.

Precedence among before, after and around advice

To see how around advice fits into precedence among advices within the same aspect, we

need to run the following cases:

1. around with before

(a) around without a proceed above before.

(b) around with a proceed above before.

366

(¢) around without a proceed beclow before.

(d) around with a proceed below before.
2. around with after

(a) around without proceed above after.
(b) around with proceed above after.
(¢) around without proceed below after.

(d) around with proceed below after.

We will demonstrate all cases with the program below:

public class Test A
public static void main(Stringl] args) {

System.out.println()

Case 1. around with before

We place the around without a proceed above before:

public aspect Monitor A

pointcut progmonitor(): execution (public static void *.main(.

void around (): progmonitor () A
System.out.println()

}

before(): progmonitor () {

System.out.println()

)05

367

The output of the program is as follows:
>around.

indicating that the around advice shadows the before advice (making it inaccessible) as

well as the code that corresponds to the pointcut (i.e. the body of the main method).

Consider now the around with a proceed above before:

public aspect Monitor A
pointcut progmonitor (): execution (public static void *.main(..));
void around (): progmonitor () {
System.out.println()
proceed () ;
}
before (): progmonitor () A

System.out.println()

The output of the program is as follows:

saround.
sbefore.

Inside main{() .

indicating that before terminating, the around advice relinquished control back to the point-

cut at which point the before advice executed, followed by the body of the main method.

We now place the around without a proceed below before:

public aspect Monitor A

pointcut progmonitor (): execution (public static void *.main(..));

368

before(): progmonitor () {
System.out.println();

}

void around (): progmonitor () A

System.out.println();

The output of the program is as follows:

sbefore.

>around.

indicating that the before advice executed first, followed by the around advice which shad-

ows the execution of the code associated with the pointcut.

We now place the around with a proceed helow before:

public aspect Monitor A
pointcut progmonitor (): execution (public static void *.main(..));
before(): progmonitor () {
System.out.println();
}
void around (): progmonitor () A
System.out.println();

proceed () ;

The output of the program is as follows:

sbefore.
saround.

Inside main{() .

369

indicating that the before advice exccuted first, followed by the around advice which relin-

quishes control to the code associated with the pointcut.

Case 2. around with after

We place around without proceed above after:

public aspect Monitor A
pointcut progmonitor (): execution (public static void *.main(..));
void around (): progmonitor () {
System.out.println()
}
after (): progmonitor () {

System.out.println()i

The output of the program is as follows:

>around.

safter.

indicating that the around advice did in fact shadow the code that corresponds to the point-

cut (i.c. the body of the main function), even though the after advice does execute.

Consider now the around with proceed above after:

public aspect Monitor A
pointcut progmonitor (): execution (public static void *.main(..));
void around (): progmonitor () A
System.out.println()
proceed () ;
}
after (): progmonitor () {

System.out.println()5)

370

The output of the program is as follows:

>around.
Inside main() .

safter.

indicating that before terminating, the around advice delegated control back to the pointcut

at which point the body of the main method executed, followed by the after advice.

We place around without proceed below after:

public aspect Monitor A
pointcut progmonitor (): execution (public static void *.main(..));
after (): progmonitor () {
System.out.println()
}
void around (): progmonitor () A

System.out.println()

The output of the program is as follows:
>around.

Why is that? The after advice would have precedence and would execute after the code
associated with the pointcut. However, the code associated with the pointcut never executes

as it is being shadowed by the around advice.

We place around with proceed below after:

public aspect Monitor A

pointcut progmonitor (): execution (public static void *.main(..));

371

after (): progmonitor () {
System.out.println()

}

void around (): progmonitor () A
System.out.println();

proceed () ;

The output of the program is as follows:

saround.
Inside main{() .

safter.

indicating that the around advice did in fact relinquish control to the code associated with

the pointcut which executed, followed by the exccution of the after advice.

22.8.2 Precedence rules among advices from different aspects

An aspect definition can include an explicit declaration of precedence over another with the

following statement:
declare precedence : type palterny, type patlerno. ..., type patiern,

where a type pattern must resolve to an aspect or it may include wildcard characters that

must resolve to a set of aspects.

In the above, all advices defined in an aspect (or a set of aspects) that match type pattern,
have precedence over all advices defined in an aspect (or a set of aspects) that match

type patterng, cte. Consider the following example:

public aspect A {

declare precedence: A, B;

372

pointcut callMain(): execution (public static void *.main(..));
before(): callMain() {System.out.println()

after (): callMain() {System.out.println()it}

public aspect B {
pointcut callMain(): execution(public static void *.main(..));
before(): callMain() {System.out.println()}

after (): callMain() {System.out.println()it}

The output of the program is as follows:

>A: before.
>B: before.
Inside main{() .
>B: after.

>A: after.

Without an explicit declaration of precedence, if aspect Child is a subaspect of aspect
Parent, then all advices defined in Child have precedence over all advices defined in Parent.
Without an explicit declaration of precedence or a super-subaspect relationship, if two pieces

of advice are defined in two different aspects, precedence is undefined.

Precedence rules in the presence of around advice

To sce how the around advice fits into precedence among advices from different aspects, we

need to run the following cases:

Case 1. around without a proceed

public aspect A {
declare precedence: A, B;
pointcut callMain() : execution (public static void *.main(..));

void around(): callMain() {System.out.println()}

373

public aspect B {
pointcut callMain() : execution(public static void *.main(..));

void around (): callMain() {System.out.println()}

The output of the program is as follows:

>A: around.

Case 2. around with a proceed

We now modify class A to add a proceed statement:

public aspect A {
declare precedence: A, B;
pointcut callMain() : execution (public static void *.main(..));
void around (): callMain() A
System.out.println()

proceed () ;

The output of the program is as follows:

>A: around.

>B: around.

Let us now add a proceed statement to class B:

public aspect B {
pointcut callMain() : execution(public static void *.main(..));
void around (): callMain () {
System.out.println()

proceed (); }}

374

The output of the program is as follows:

>A: around.
>B: around.

Inside main{() .

22.9 Introducing state and behavior

The mechanism of introduction allows for crosscutting state and behavior to be defined as
part of class definitions from within aspect definitions. It also allows one to define a given

type (class or interface) as a supertype to a given type, thus modifying the class hicrarchy.

22.9.1 Introducing static features

In the simplest case of introductions, we can introduce static state or behavior inside a class
definition. We will demonstrate this with an example.

Example: Counting objects

Consider class Point:

public class Point A
private double x, y;
public Point (double x, double y) {

this.x = x;

this.y = y;

We introduce a static integer variable numberOf Instances in the class definition of Point:
public static int Point.number(OflInstances;

This variable will have to be increased every time an instance of Point is created.

375

We do this by the following after advice:

after (): execution (Point.new(..)) {

Point .number0OfInstances ++;

We also introduce a static integer method howmany () in the definition of class Point that

would allow its client to query on the value of variable number0Of Instances:

public static int Point.howMany () {

return numberOfInstances;

The complete aspect definition is shown below:

public aspect Tracer {
public static int Point.numberOfInstances;
public static int Point.howMany () {
return numberOfInstances;
+
after (): execution (Point.new(..)) {

Point .numberOfInstances++;

Clients of class Point may now assume that method howMany () forms part of the interface
of the class. They remain unaware of its introduction through an aspect. For the program

below,

public static void main(Stringl] args) {

Point pl new Point (0, 0);

Point p2 = new Point (1, 3);

System.out.println(+ Point.howMany ());

376

The output of the program is as follows:

Number of Point instances: 2

22.9.2 Introducing instance features I
Example: Game of thrones

Consider classes Human and Noble below:

public abstract class Human <
String name;
public Human (String name) <
this.name = name;
+
public void speak () A

System.out.println(

public class Noble extends Human A
String house;
public Noble(String name, String house)
super (name) ;
this.house = house;
+
public String toString() A

return + this.name + ;

377

Counsider the following test program:
g prog

public class Test {
public static void main(Stringl[] args) {
Noble Arya = new Noble(,)

Arya.speak (); }}

The output of the program is as follows:

Good morning m’lord.

The aspect below adds an overriding method speak() to class Noble.

public aspect Behavior {
public void Noble.speak () A

System.out.println(+ this.toString ());

The output of the program is as follows:

Good morning my lord. I am Arya Stark.

Note that the keyword this refers to the instance of the executing object. Furthermore, if
class Noble already had an overriding method speak (), the AspectJ compiler would detect

a conflict and it would produce an crror.

22.9.3 Introducing behavior through an interface implementation

AspectJ allows us to declare that a class implements a given interface and thus being able

to introduce behavior, and we will extend the game of thrones example to demonstrate this.

378

Consider interface Allegiance:

public interface Allegiance {

public void declare();

We can declare that class Noble implements Allegiance as follows:
declare parents: Noble implements Allegiance;
Once we make such a declaration, we must subsequently define method declare():

public void Noble.declare () {

System.out.println(this.toString() + + this.house +)

The complete aspect definition is shown below:

public aspect Behavior {
declare parents: Noble implements Allegiance;
public void Noble.declare () A
System.out.println(this.toString() + + this.house +)
}
public void Noble.speak () A

System.out.println(+ this.toString());

Counsider the following test program:
g prog

public class Test A
public static void main(Stringl] args) {
Noble Arya = new Noble(s)

Arya.declare(); }}

379

The output of the program is as follows:

I am Arya Stark. Of House Stark.

22.10 Context passing

The mechanism of context passing allows a pointcut to expose a binding to the underlying
object, thus making the object available to any advice that may nced to access it. What
do we mean by “underlying object”? This would be the object where an cvent of interest
occurs. For example, in the case of a call join point we may be interested in the caller, the

callee, or both.

22.10.1 Self and target join points

Sclf and target join points can capturce the caller and receiver of a call. The join point this
captures the sender object (caller), wherecas target captures the receiving object (callee).

For method executions, both join points capture the executing object.

22.10.2 Introducing instance features II

In this subsecction we revisit introductions by combining them with context passing.

Example: Keeping track of moves

Consider the implementation of class Point:

public class Point A
protected double x, y;

public Point (double x, double y) A

this.x X;

this.y = y;

380

public Point () <

this (0, 0);

public void move(double x, double y) {

this.x = x;

this.y = vy;
+
public String toString() A

return + x + + + v,

We want to keep track of each move of each point object. In other words, we must be able

to distinguish between moves per instance. The statement
int Point.numberOfMoves;

introduces a private integer variable numberO0fMoves in the class definition of Point. This im-
plics that every instance of Point will maintain its own unique integer variable number0fMoves.

Additionally, we want to obtain the value of this variable. The following definition

public int Point.howMany () {

return this.number0OfMoves;

introduces a method into class Point that will return the value of variable number0fMoves.

We must capture the executing object upon reception of a move () message. Once we have
the executing object, we can then access its own unique variable number0fMoves. We can

capturc the receiving object through context passing, as follows:

pointcut counts (Point p) : execution(void Point.move(double, double)) &&

this(p);

381

It is important to stress that pointcut counts performs two different tasks here:

1. It captures exccution of method move (). This will cause any associate advice to exe-

cute.

2. It captures and exposes a binding to the Point instance whose move () method is about
to cxccute. This will allow any associated advice to obtain access to the particular

object.

We define an advice to increment the variable number0fMoves as follows:

after (Point p) : counts(p) {

p.-number0fMoves ++;

We can now put everything together in one aspect definition as follows:

public aspect Logger {
int Point.number0OfMoves;
public int Point.howMany () {
return this.numberOfMoves;
}
pointcut counts (Point p) : execution(void Point.move (double, double))
this (p);
after (Point p) : counts(p) {

p.number0fMoves++; }}

Consider the following test program:

public class Test {
public static void main(Stringl[] args) {
Point pl = new Point ();
Point p2 = new Point ();

pl.move (3, 7);

382

&&

pl.move (3, 11);
p2.move (10, 10);
System.out.println(pl.howMany ());

System.out.println(p2.howMany ()); 1}}

The output of the program is as follows:

22.10.3 Argument join points

The join point args(type) can capture the arguments passed to a method or constructor.

We will demonstrate this with an example.

Example: Bounded stack with contract specifications

Consider aspect ContractChecker that performs partial contract checking on the creation
of BStack objects, imposing the requirement that no object can be created with capacity

zero. Recall that capacity is required by the constructor of the class.

public aspect ContractChecker A
pointcut invariantChecking (int arg) : execution (BStack.new(int)) &&
args (arg);
before (int arg): invariantChecking(arg) {
if (arg <= 0) {
System.out.println(+ arg);
System.out.println/()

System.exit (0);

383

The pointcut that captures the execution of the constructor exposes the argument passed
to the constructor, and the before advice checks the value of the argument. Should the
argument be a non-positive number, then the advice does not allow the execution to proceed

but it will instead display some informative message and exit the program.

For example, should we attempt to create an empty capacity object with

Stack myStack = new BStack(0);
we will get the following output:
Capacity: 0

Error: Invalid size.

22.10.4 Combining advice precedence and context passing

We will demonstrate how to combine advice precedence and context passing with an example.

Example: Filtering

Consider class Container that stores strings.

import java.util.Arraylist;
public class Container {
private ArraylList <String> elements = new ArraylList<String> ();
private int capacity;
public Container (int capacity) {
this.capacity = capacity;
+
public void add(String str) {
this.elements.add(str);
+
public String remove (int position) {

return this.elements.remove (position); 1}

384

public void clear () {

this.elements.clear(); }}

Aspect Filter contains two around advices, both of which intercept the call to

Container.add(String) and act as filters to the string argument. The first around advice
will transform the argument into lower case and allow the call to proceed. The call will then
be intercepted by the second around advice that will add a timestamp to the string and

allow the call to proceed.

import java.util.x*;
import java.text.x;
public aspect Filter A
DateFormat dateFormat = new SimpleDateFormat ()
Date date;
void around(Container c¢, String arg): call(* Container.add(String)) &&
target (c) &&
args (arg) {
String newstr = arg.tolowerCase ();
proceed(c, newstr); 7
void around(Container ¢, String arg): call(* Container.add(String)) &&
target (¢) &&
args (arg) {
date = new Date();
String newstr = arg + + date +

proceed(c, newstr); }}

The test program instantiates a container class and adds a string to it which is a mixture of

upper and lower-case characters.

385

public class Test A
public static void main(Stringl[] args) {
Container ¢ = new Container (3);
c.add()

System.out.println(c.remove (0)); }}

The output of the program is as follows:

hello world [Wed Apr 23 21:14:36 EDT 2014]

22.10.5 Adyvice execution join points

As the name suggests, advice exccution join points capture the execution of advice blocks.

We will demonstrate this with an example.

Example: Bounded stack with monitoring of advice execution

In the following example, we add yet another aspect to class BStack in order to trace the
execution of all advices from Logger and ContractChecker. The pointcut should capture

all advice execution and will expose a binding to the underlying aspect instance:

pointcut executions (Object o) : adviceexecution () &&
'within (AdviceTracer) &&

this (0);

The join point !'within(AdviceTracer) is required in order to avoid circular references be-
tween this pointcut and the advice from within this aspect definition which would result in

an infinite loop. The complete aspect definition is as follows:

public aspect AdviceTracer A
pointcut executions (Object o) : adviceexecution() &&
'!within(AdviceTracer) &&

this (0);

386

after (Object o):

executions (o) A

System.out.println(+

thisJoinPoint.getSignature ());

1}

Consider the following test program and its output below:

public class Test A

public static void main(Stringl] args) {

Stack myStack =
myStack.push
myStack . push (

myStack . push (

new BStack (b);

)
)
)

System.out.println(myStack.pop());

System.out.println(myStack.pop());

System.out.println(myStack.pop());

T}

>Advice executed: void

>Mutator method called:

>Advice executed: void

>Mutator method called:

>Advice executed: void

>sMutator method called:

>Advice executed: void

>Mutator method called:

>Advice executed: void

all

>sMutator method called:

>Advice executed: void

your

>sMutator method called:

>Advice executed: void

base

ContractChecker.before (int)

call (void Stack.push(String))
Logger .before (JoinPoint)

call (void Stack.push(String))
Logger.before (JoinPoint)

call (void Stack.push(String))
Logger .before (JoinPoint)

call (String Stack.pop())

Logger .before (JoinPoint)

call (String Stack.pop())

Logger.before (JoinPoint)

call (String Stack.pop())

Logger .before (JoinPoint)

387

22.11 Privileged aspects

AspectJ allows us to get access to private features of a class. We will demonsrate this in

relation to introductions and context passing with a few examples.

22.11.1 Combining context passing and privileged aspect behavior

We will demonstrate this with an example.

Example: A binary semaphore protocol

Consider the implementation of class Semaphore:

public class Semaphore {

private int value;

public void increment () A
this.value++;

X

public void decrement () A
this.value -—;

X

public int getValue () {
return this.value;

X

public void reset () {

this.value = 0;

We want to imposc a binary protocol to class Semaphore. This means that we initially must
monitor methods increment () and decrement (). The two pointcuts capturce the exccution

of each method respectively and expose a binding to the underlying semaphore object:

388

pointcut monitoringIncs (Semaphore s):
execution (* Semaphore.increment ()) &&
this(s);

pointcut monitoringDecs (Semaphore s):
execution (* Semaphore.decrement ()) &&

this(s);

Each pointcut will be associated with an advice. The advice for monitoringIncs executes
instead of the code associated with the pointcut and performs a check on the value of the
semaphore. If it is already 1, then the advice will do nothing. If it is not 1, then the
advice will pass execution to the code associated with the pointcut, therefore allowing the

increment.

void around(Semaphore s): monitoringlIncs(s) A
if (s.value == 1)
else

proceed (s);

The advice for monitoringDecs exccutes instead of the code associated with the pointeut
and performs a check on the value of the semaphore. If it is already 0, then the advice will
do nothing. If it is not 0, then the advice will pass exccution to the code associated with
the pointcut, therefore allowing the decrement.
void around (Semaphore s): monitoringDecs (s) {

if (s.value == 0)

else

proceed(s);

389

Putting cverything together we have the following aspect definition:

public privileged aspect BinaryProtocol {
pointcut monitoringIncs (Semaphore s):
execution (* Semaphore.increment ()) &&
this(s);
pointcut monitoringDecs (Semaphore s):
execution (* Semaphore.decrement ()) &&
this(s);
void around(Semaphore s): monitoringIncs(s) A
if (s.value == 1)
else

proceed (s);

+

void around (Semaphore s): monitoringDecs(s) A
if (s.value == 0)
else

proceed (s);

sider the following test program:
Consider the following test program

public class Test A
public static void main(Stringl] args) {
Semaphore semaphore = new Semaphore();
semaphore.increment () ;
semaphore.increment () ;
semaphore.decrement ();

System.out.println(semaphore.getValue()); 1}}

390

The output of the program is as follows:

22.11.2 Combining introductions, context passing, and privileged

aspect behavior

We will use examples to demonstrate how to combine introductions, context passing and

privileged aspect behavior.

Example: A cyclic counter protocol

In the first example, consider the definition of class Counter:

public class Counter A
private int value;
void increment () {
this.value++;
}
public int getValue () {

return value;

We want to add cyclic behavior to counter objects, i.c. once the value of a counter object
rcaches some predefined maximum value, the object should reset its value. The maximum

value is held by the constant
private final int MAX = 10;
Initially we define an interface that all cyclic objects must implement:

public interface Cyclic {

public void reset ();

391

We introduce the interface implementation of class Counter together with the implementa-

tion of method reset ()

declare parents: Counter implements Cyclic;

public void Counter.reset () {

this.value = 0;

Finally we need to capture all calls to method increment() and check if variable value
has rcached MAX, in which case we must reset the counter. Otherwise, we allow the call to
procceed. Aspect CyclicProtocol is declared privileged as it would need to obtain access

to private variable value in class Counter.

public privileged aspect CyclicProtocol {
private final int MAX = 10;
declare parents: Counter implements Cyclic;
public void Counter.reset () A
this.value = 0; }
void around(Counter c): call(* Counter.increment()) && target(c) {
if (c.value == MAX)
c.reset ();

proceed(c); 1}}

Consider the following test program:

public class Test {
public static void main(Stringl[] args) {
Counter ¢ = new Counter ();
for (int 1 = 0; i < 15; i++) {
c.increment ();

System.out.print(c.getValue () +);)

392

The output of the program is as follows:

123456789 1012345

Example: A locking semaphore

We will extend the binary semaphore example by adding locking behavior to a semaphore

object. Consider interface Lockable:

public interface Lockable {
void lock ();
void unlock ();

boolean isLocked ();

The statement

declare parents: Semaphore implements Lockable;

introduces interface Lockable as a supertype to class Semaphore. The statement

private boolean Semaphore.lock;

introduces a private integer variable lock as part of the state of class Semaphore. The

following segment

public void Semaphore.lock() {
this.lock = true;

+

public void Semaphore.unlock () {
this.lock = false;

+

public boolean Semaphore.isLocked() A

return this.lock;

393

introduces methods lock(), unlock(), and isLocked() as part of the behavior of class

Semaphore.

To implement the locking mechanism, we need to intercept calls made to increment() or
decrement () and place a condition that they should only bhe allowed to run provided that
the semaphore is not locked. We do this by first defining a pointcut that would capture any
of the two calls and once it is captured it will expose a binding to the underlying semaphore

object.

pointcut monitoringMods (Semaphore s):
(call (* Semaphore.increment ()) ||
call (* Semaphore.decrement ())) &&

target (s);

An around advice executes instead of the code associated with the pointcut and performs a
check on the status of the semaphore, only allowing the code associated with the pointeut

to run provided the semaphore is not locked.

void around (Semaphore s): monitoringMods (s) {

if (s.isLocked () == true)
System.out.println()
else

proceed (s);

Putting cverything together, we have the aspect definition shown below. As the aspect def-
inition must access private state of the class Semaphore (despite the fact that this is state

introduced by the aspect itself), it must be declared privileged.

public privileged aspect Lock {
declare parents: Semaphore implements Lockable;
private boolean Semaphore.lock;
public void Semaphore.lock () {

this.lock = true; }

394

public void Semaphore.unlock () {
this.lock = true;
}
public boolean Semaphore.isLocked () {
return this.lock;
}
pointcut monitoringMods (Semaphore s):
(call (* Semaphore.increment ()) ||
call (* Semaphore.decrement ())) &&
target (s);

void around (Semaphore s): monitoringMods (s) {

if (s.isLocked () == false)
System.out.println()
else

proceed (s);

sider the following test program:
Consider the following test program

public class Test A

public static void main(Stringl] args) {
Semaphore semaphore = new Semaphore ();
semaphore.increment ();
semaphore.lock ();
semaphore.increment () ;
System.out.println(semaphore.getValue ());
semaphore.unlock ();
semaphore.increment ();
semaphore.lock ();
semaphore.decrement () ;

semaphore.unlock () ;

395

semaphore.decrement () ;

System.out.println(semaphore.getValue ());

The output of the program is as follows:

Error: Cannot set semaphore value.
1
Error: Cannot set semaphore value.

0

22.12 Multiple aspects

Example: A cruise control system

Consider the following class definition:

public class Vehicle <
private double speed;
public void accelerate(double speedIncrement) A{
this.speed = this.speed + speedIncrement;
}
public void decelerate(double speedDecrement){

this.speed = this.speed - speedDecrement;

We introduce a privileged aspect, Logger, that defines pointcut monitor to capture execu-
tions of method accelerate defined in class Vehicle and uses context passing to expose a
binding to the exccuting object. An after advice displays the value of variable speed once

the code associated with the pointceut has successfully terminated.

396

public privileged aspect Logger A
pointcut monitor (Vehicle v): execution (* Vehicle.accelerate(..)) &&
this (v);
after (Vehicle v): monitor(v) {

System.out.println(+ v.speed +)

A privileged aspect CruiseController implements cruise control by imposing a maximum
limit on the speed of the vehicle. Pointcut accelMonitor captures execution of method
accelerate () declared in class Vehicle, and proceeds to use context passing to expose two
bindings: One to the exccuting object through this, and another to the actual argument
passed to the method through args. An around advice initially checks whether the requested
increase is within the allowable limit only in that case it will allow the execution to go ahead

through proceed. Otherwise, the advice will issue an informative error message.

public privileged aspect CruiseController A{
private double speedlLimit = 100.0;
pointcut accelMonitor (Vehicle v, double speedInc):
execution(* Vehicle.accelerate(..)) &&
this(v) &&
args (speedInc);
void around (Vehicle v, double speedIncrement):
accelMonitor (v, speedlIncrement) {
System.out.println(+
speedIncrement +)3
if ((v.speed + speedlncrement) <= speedLimit)
proceed (v, speedIncrement);
else
System.out.println()

+r

397

The test program below instantiates Vehicle and attempts to increasc its speed in four
consccutive intervals of 30. Once an attempt would make the speed exceeding its maximum
allowable value, the around advice will not allow it, thus leaving the speed at 90. The pro-
gram subsequently attempts to increase the speed by 10, which is allowed, thus reaching the

maximum allowable limit. Any subscquent attempt for an incrcase will not be allowed.

public class Test {
public static void main(Stringl[] args) {
Vehicle car = new Vehicle ();
car.accelerate (30);
car.accelerate (30);
car.accelerate (30);
car.accelerate (30);
car.accelerate (10);

car.accelerate (10);

The output of the program is as follows:

About to increase by: 30.0 km/h.
Current speed: 30.0 km/h.

About to increase by: 30.0 km/h.
Current speed: 60.0 km/h.

About to increase by: 30.0 km/h.
Current speed: 90.0 km/h.

About to increase by: 30.0 km/h.
Error: Cannot exceed 100 km/h.
Current speed: 90.0 km/h.

About to increase by: 10.0 km/h.
Current speed: 100.0 km/h.

About to increase by: 10.0 km/h.

398

Error: Cannot exceed 100 km/h.

Current speed: 100.0 km/h.

22.12.1 Combining context passing, privileged aspect behavior

and multiple aspects
Example: Access control

Consider the following application:

import java.util.ArraylList;
public class Server A
private String name;
private ArraylList<Client> clients = new ArrayList<Client>();
public Server (String name) {
this.name = name;
+
public void establishConnection (Client client) {
clients.add(client);
+
public void breakConnection (Client client) {
clients.remove(client);
+
public String toString() {

return name;

public class Client {
private String name;
private Server server;
private Boolean authenticated;

public Client(String name, Server server) {

399

this.name = name;
this.server = server;
this.authenticated = false; }
public void authenticate () A{
authenticated = true;
}
public void connect () {
server.establishConnection(this);
}
public String toString() A

return name;

Aspect AccessController captures messages sent by clients to a server attempting to es-
tablish a connection. The aspect only allows a connection if a client is authenticated. If a
connection cannot be established, then the aspect should display an informative message.
Additionally, aspect Logger displays an informative message once a connection is about to

be established between client and server.

public privileged aspect AccessController {
declare precedence: AccessController, Logger;
pointcut accessMonitor (Server server, Client client):
call (* Server.establishConnection(Client)) &&
this(client) &&
target (server);
void around (Server server, Client client):
accessMonitor (server, client) A
if (client.authenticated)
proceed (server, client);
else

System.out.println (+ client.toString ()

400

server.toString () +),)

public aspect Logger A
pointcut accesslLog (Server server, Client client):
call (¥ Server.establishConnection(Client)) &&
this(client) &&
target (server);
before (Server server, Client client): accesslog (server, client) {
System.out.println(+

client.toString() +

+
s

server.toString ()

Consider the following test program:

public class Test {

public static void main(Stringl[] args) {

Server server = new Server/()
Client c¢c1 = new Client(, server);
Client c2 = new Client(, server);

cl.authenticate ();
cl.connect ();

c2.connect ();

The output of the program is as follows:

Connection established between Jack and Concordia University.

Authentication error: Jill cannot establish a connection to Concordia University.

401

22.13 Reusing pointcuts: Abstract aspects

Even though the adoption of AOP results in a good separation of concerns, restricting aspect
definitions to match class and method names of system core concerns leads to strong binding
between aspects and system core concerns. In such cases aspect definitions are not reusable,

but they are restricted to be only applicable in one specific application context.

To deploy an aspect definition in different contexts, we first need to answer the following
questions: “What neceds to be reused?” and “What part of an aspect definition can be
bound to the core functionality?” An obvious construct which binds an aspect to the core

functionality is the (named or anonymous) pointcut.

In order to support reuse, a level of genericity is supported by Aspect.J through the provision
of abstract aspects. We can distinguish between two cases, discussed in the subsequent

subscctions.

22.13.1 Reusing concrete pointcuts

A concrete pointceut expression can be reused not only by advices within the aspect where it is
being defined, but by advices in all subaspects. Much like class features, pointcut declarations
can be associated with the access modifiers public (the declaration can be visible to all aspects
anywhere in the application), no modifier (default; this implies that the declaration is visible
to all aspects within the same package), protected (declaration is visible to host aspect and
all its subaspects) and private (declaration is visible only to the host aspect). One restriction
imposed by AspectJ is that in order to define a subaspect, the superaspect must itself be

declared abstract (even in the case where the superaspect contains no abstract feature).

22.13.2 Reusing abstract pointcuts

A pointcut can be declared abstract when we do not want to commit to a particular ap-
plication in the current aspect definition but we prefer to leave the concrete definition in

subaspects. This idea allows the development of aspect libraries, as collections of generic

402

aspect definitions. Much like a concrete subclass which inherits from an abstract super-
class must implement all inherited abstract methods or must itself be declared abstract,
a subaspect must provide a definition of all abstract pointcuts inherited from an abstract

superaspect, otherwise it must itself be declared abstract.

In the following example, we will build an aspect that will implement a generic tracing fa-
cility. The abstract aspect AbstractLogger does not implement a pointcut, but it does
provide a reflection-based tracing facility upon entering and exiting the code to be defined

by some concrete pointcut in a subaspect.

public abstract aspect AbstractlLogger {
abstract pointcut monitored();
before(): monitored() {
System.out.println(+ thisJoinPoint);
}
after (): monitored() A

System.out.println(+ thisJoinPoint);

Aspect ConcreteLlogger inhcerits from AbstractLogger and implements the abstract point-

cut monitored().

public aspect Concretelogger extends Abstractlogger {
pointcut monitored(): execution(void Stack.push(String)) ||

execution(String Stack.pop());

403

We include the two aspects in the Stack project, whose test program is shown below:

public class Test {
public static void main(Stringl] args) {

Stack myStack = new Stack();

myStack.push)
myStack . push ()
myStack.push()

System.out.println(myStack.pop());
System.out.println(myStack.pop());

System.out.println(myStack.pop());

The output of the program is as follows:

>Entering: execution(void Stack.push(String))
>Exiting: execution(void Stack.push(String))
>Entering: execution(void Stack.push(String))
>Exiting: execution(void Stack.push(String))
>Entering: execution(void Stack.push(String))
>Exiting: execution(void Stack.push(String))
>Entering: execution (String Stack.pop())
>Exiting: execution(String Stack.pop())

all

>Entering: execution (String Stack.pop())
>Exiting: execution(String Stack.pop())

your

>Entering: execution (String Stack.pop())
>Exiting: execution(String Stack.pop())

base

404

22.14 In retrospect: Final words by E. W. Dijkstra

“The purpose of thinking is to reduce the detailed reasoning needed to a doable
amount, and a separation of concerns is the way we hope to achieve this reduc-
tion. The crucial choice is, of course, what aspects to study in isolation, how to
disentangle the original amorphous knot of obligations, constraints and goals into
a set of concerns that admit a reasonably effective separation. The knowledge of
the goal of separation of concerns is a useful one: we are at least beginning to
understand what we are aiming at.”

(E. W. Dijkstra, A Discipline of Programming, 1976, last chapter, In Retrospect)

22.15 The thisJoinPoint API

A partial method summary of the thisJoinPoint interface is shown in this section for both

the call to Server.connect(..) and its execution, for the program shown below. A com-

plete summary is provided by the language specification®.

public class Client {

String name;

Server server;

public Client(String name, Server server) {
this.name = name;
this.server = server;

}

public void openConnection () {

server.connect (this);

'See http://eclipse.org/aspectj/doc/next/runtime-api/org/aspectj/lang/JoinPoint .html

405

import java.util.Arraylist;

public class Server A

private String name;

private ArraylList<Client> clients = new ArraylList<Client>();

public Server (String name) {

this.name = name;

}

public void connect(Client client) {

clients.

add (client);

public class Test A

public static void main(Stringl[] args) {

Server host = new Server(

Client client = new Client(

client.openConnection ();

)

, host);

22.15.1 thisJoinPoint on call(x Server.connect(..))

thisJoinPoint

thisJoinPoint

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint

.getKind ()

toString ()
toShortString ()
toLongString ()
getArgs ()
hashCode (O
getSourceLocation()

getStaticPart()

.getSignature()

call(void Server.connect(Client))
method-call

call(void Server.connect(Client))
call(Server.connect(..))

call(public void Server.connect{(Client))
[Ljava.lang.Object;@1£38fc6

23342038

Client.java:10

call(void Server.connect(Client))

void Server.connect(Client)

406

thisJoinPoint.

thisJoinPoint

thisJoinPoint

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

.getSignature() .getDeclaringTypeName ()

getSignature() .getName() connect

Server

.getSignature() .getClass()

class org.aspectj.runtime.reflect.MethodSignatureImpl

getSignature() .toLongString ()
public void Server.connect(Client)
getSignature() .toShortString()

Server.connect(..)

getSignature() .hashCode() 24769387
getThis () Client@15bfdbd
.getThis () .hashCode) 22805949
getThis () .toString() Client@15bfdbd

getThis () .getClass () class Client

getThis () .getClass() .getName() Client
.getTarget () Server@6f8b2b
getTarget () .hashCode () 7310123
getTarget () .toString () Server@6f8b2b

getTarget () .getClass () class Server

getTarget () .getClass() .getName() Server

22.15.2 thisJoinPoint on execution(* Server.connect(..))
thisJoinPoint execution(void Server.connect(Client))
thisJoinPoint.getKind () method-execution
thisJoinPoint.toString () execution(void Server.connect(Client))
thisJoinPoint.toShortString() execution(Server.connect(..))
thisJoinPoint.toLongString()

execution(public void Server.connect(Client))
thisJoinPoint.getArgs () [Ljava.lang.0bject;01f38fc6
thisJoinPoint.hashCode () 23342038
thisJoinPoint.getSourceLocation() Server.java:8
thisJoinPoint.getStaticPart () execution(void Server.connect(Client))

407

thisJoinPoint.

thisJoinPoint

thisJoinPoint

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint

thisJoinPoint.

thisJoinPoint.

thisJoinPoint.

thisJoinPoint

thisJoinPoint.
thisJoinPoint.

thisJoinPoint.

.getSignature() .getName ()

.getSignature() .getDeclaringTypeName ()

getSignature() void Server.connect(Client)
connect
Server
getSignature() .getClass ()
class org.aspectj.runtime.reflect.MethodSignaturelmpl
getSignature() .toLongString() public void Server.connect(Client)

getSignature() .toShortString() Server.connect(..)

getSignature() .hashCode() 24769387
getThis () Server@15bfdbd
getThis () .hashCode () 22805949
.getThis () .toString() Server@15bfdbd

getThis () .getClass() class Server

getThis () .getClass() .getName() Server
getTarget () Server@15bfdbd
.getTarget () .hashCode () 22805949
getTarget () .toString () Server@15bfdbd

getTarget () .getClass () class Server

getTarget () .getClass () .getName() Server

408

Part VI

Multiparadigm Programming with

Ruby

409

410

Chapter 23

Object-oriented programming with

message passing 11

In Computer Science, imperative programming is a programming paradigm that describes
computation in terms of statements that change a program state. The term pure object-
oriented programming implics that all of the data types in the language are objects and all
operations on those objects can be invoked by message passing. Sending a message to an

object invokes a method by the receiver object. A message contains the method’s name

along with any paramecters. In this chapter we will adopt the Ruby language.
puts .length #=> 17

puts .index() #=> 3

puts -7.abs #=> 7

puts 10.49.round #=> 10

puts 10.51.round #=> 11

puts 2.next #=> 3

puts 97.chr #=> "a"

23.1 Variables and aliasing

Multiple variables referencing the same object is called aliasing. Consider the following

example:

411

personl =

person2 = personl

The assignment of personl to person2 docs not create an object. It assigns the object

reference of personl to person?2, so that both variables now would refer to the same object.

We can avoid aliasing with dup, which creates a new object with identical contents.

persond = personl.dup
personl [0] =

puts personl #=> Rony
puts person2 #=> Rony

puts person3 #=> Tony

23.2 Chain and parallel assignment statements

An assignment statement sets the value of a variable on its left hand side (lvalue) to the

value of the expression on its right hand side (rvalue).

Ruby supports chaining of assignments. It also allows one to perform assignments in some
B o O

unexpected places. Consider the example below:

a=5b=1+ 2+ 3
puts a #=> 6

puts b #=> 6

a=+(b =1+ 2) + 3
puts a #=> 6

puts b #=> 3
Ruby supports parallel assignment:

a =1
b = 2
a, b ="5>ob, a

puts a #=> 2

412

a, b, ¢c = x, (x += 1), (x += 1)
puts a #=> 0
puts b #=> 1
puts c #=> 2

puts x #=> 2

23.3 Arrays

An array is an ordered collection of elements, where each element is identified by an integer

index.

We can create arrays using literals. A literal array is simply a list of objects between square
brackets. As cverything is an object, this implies that an array can hold objects of different

types, as in the example below:

a = [, 1, 2, 3.14 1 # Array with four elements.

puts al0] # Access and display the first element. #=> number
al3] = nil # Set the last element to nil.

puts a # Access and display entire array. #=> number 1 2 nil

We can also create an array by explicitly creating an Array object. Ruby allows us to specify
array ranges, as in the example below:

myarray = [1, 2, 3, 4, 5, 6]

puts myarray [0] #=> 1

puts myarrayl[1...3] # Ezclusive range. => 2 3.

puts myarray[1..3] # Inclusive range. => 2 3 4.
puts myarrayl[1,3] # Range between 1st up to 3rd consecutive, inclusive.
#=> 2 3 4.

Ruby allows a negative index, forcing the array to count from the end.

a = [, 3.14, , 17 1

413

puts a.class #=> Array

puts a.length #=> 4
puts al0] #=> pi
puts al[-1] #=> 17
puts al1] #=> 3.14
puts al2] #=> prime
puts al[3] #=> 17
puts al[4] #=> nil

b = Array.new

puts b.class #=> Array
puts b.length #=> 0
b[0] =

b[1] =

b[2] =

puts b #=> a new array

23.4 Associative arrays

An associative array (or hash) is an unordered collection of elements.

An clement is a pair of two objects: a wvalue and a key through which the value can be

retrieved. The value can be an object of any type.

To storc an clement in an associative array, we must supply both objects:

hashName = { "key” => "value”,

414

We can subsequently retrieve the value by supplying the appropriate key:

hashName[" key’| => value

Example 23.1. Consider the example below which builds and manipulates an associative

array.

biblio = { => ,
=> s
=> ,
=> ,
=> 3

We can inquire the collection for its size:

puts biblio.length #=> 5

We can access the collection to obtain the value associated with a given key:

puts bibliol 1 #=> The master and margarita

We can also access the collection in order to modity the value associated with a given key:

bibliol[1 =

puts bibliol[1 #=> Lolita

We can also add to the collection:

bibliol[1 =
puts biblio[1 #=> Beyond good and evil
puts biblio.length #=> 6

We can delete an element from the collection by supplying the appropriate key:

biblio.delete_if {lkey, valuel| key == }

puts biblio.length #=> 5

Iterating over an associative array

Onc of the strengths (and perhaps weaknesses) of Ruby is that it allows us to do the same

thing using different ways. We can iterate over the entire collection in a couple of different

415

ways. In the next example we display all key-value pairs:

biblio.each_pair do |key, value]
puts

end

The above will display:

nabokov90 : The defense

nietzsche?97 : Beyond good and evil
nabokovg89a : Lolita

nabokov89b : Invitation to a Beheading
bulgakov96 : The master and margarita

We can perform the above iteration as follows:

biblio.each do |key, value]|
puts

end

There is yet another way to do that:

biblio.each {lkey, value| puts key + + valuel}

We can iterate over the collection and access and display cach key individually:
biblio.each_key {lkey!| puts keyl}

The above will display:

nabokov90

nietzsche97

nabokov89a

nabokov89b

bulgakov9é

23.5 Classes

We already have seen that a class specifies state and behavior.

416

What’s in a name?

Ruby uses a convention to help it distinguish the usage of a name: the first characters of a
name indicate how the name is used. Class names, module names, and constants should start
with an uppercase letter. Class variables start with two “at” signs (@@). Local variables,
method paramecters, and method names should all start with a lowercase letter or with an
underscore (_). Global variables are prefixed with a dollar sign ($), while instance variables

begin with a single “at” sign. Consider the following examples:

local_variable

CONSTANT_NAME / ConstantName / Constant_Name
:symbol_name

@instance_variable

@@class_variable

$global_variable

ClassName

method_name

ModuleName

23.6 Objects

Instances of classes (objects) contain state and behavior. Each object contains its own
unique state. Behavior on the other hand is shared among objects. The state of the object

is composed of a sct of attributes (or ficlds), and their current values.

i

Example 23.2. Consider class Coordinate which defines a two-dimensional coordinate.

class Coordinate
@@total = O
def initialize (x, y)

@B@total += 1

0x = x
ey =y
end

417

def setx (x)
Gx = x
end

def sety (y)

ey =y
end
def getx
@x
end
def gety
Cy
end
def to_s
return
end

def Coordinate.total
return
end

end

e The class keyword defines a class.
e By defining a method inside this class, we are associating it with this class.

e The initialize method is what actually constructs the data structure. Every class

must contain an initialize method.
e @x and @y are instance (object) variables.

e puts and print write cach of their arguments. puts adds a new line, whercas print

does not add a new line.

A class can be instantiated with new as in

pl = Coordinate.new (0, 0)

418

which defines an instance p1 whose coordinates are (0,0). We can now interact with object

pl:

puts pl.to_s #=> (0, 0)
pl.setx(2)

puts pl.getx #=> 2
pl.sety(3)

puts pl.gety #=> 3
puts pl.to_s #=> (2, 3)

p2 = Coordinate.new(1l, 1)

puts Coordinate.total #=> Number of coordinates: 2

The following is a refined version of class Coordinate:

class Coordinate
attr_accessor :x, 'y
@0total = O
def initialize (x, y)
@Btotal += 1
0x = x
ey =y
end
def to_s
return
end
def Coordinate.total
return
end

end

419

Let us instantiate class Coordinate and interact with an object:

pl = Coordinate.new(0,0)

puts pl.to_s #=> (0, 0)
pl.x = 2

puts pl.x #=> 2

pl.y = 3

puts pl.y #=> 3

puts pl.to_s #=> (2, 3)

23.7 Inheritance

Example 23.3. Consider class XYZCoordinate which defines a three-dimensional coordi-

nate.

require
class XYZCoordinate < Coordinate
attr_accessor :z
@@newtotal = 0
def initialize (x, y, z)
super (x, y)
@z = z
@Onewtotal += 1
end
def to_s
return
end
def XYZCoordinate.total
return
end

end

420

Let us instantiate class XYZCoordinate and interact with its objects:

pl = XYZCoordinate.new (0,0,0)
puts pl.to_s #=> (0, 0, 0)
p2 = XYZCoordinate.new(1,5,5)
puts p2.to_s #=> (1, 5, 5)

puts XYZCoordinate.total #=> Number of 3D-coordinates: 2

Why have we provided a new class variable, newtotal, in the subclass? Ruby does not
support hiding and it would not have considered variable total in class XYZCoordinate as
a new variable. As a result, the output on the last statement above would have been 4. not

2.

23.8 Object extensions

Ruby allows us to extend specific instances with new behavior. Consider the example below:

def pl.whatIam
return

end

puts pl.whatIam #=> The origin on the 3D system.

puts p2.whatlam #=> Will cause an error.

23.9 Control flow

Ruby provides a rich set of control low constructs to support selection and repetition.

23.9.1 Single selection

Consider the sentence “If you arc a Computer Science student, then you must take this
course.” In other words, an action must be taken provided a certain condition holds. To

support selection, the if statement is perhaps the simplest and it comes in three variations.

421

Initially to support single sclection with the optional alternative to execute a statement if

the condition cvaluates to false.

if boolean-expression [then]
body

[else
body]

end

The if statement also works as a statement modifier which evaluates expression if boolean-

expression is true.

expression if boolean-expression

Finally, the if statement can be used as a ternary operator:
boolean-expression 7 expressionl : expression?

which returns expression; if boolcanExpression is true and expressions otherwise.

Consider the sentence: “You must take this course, unless you have already taken an equiv-
alent onc.” In other words, you have to take an action only if a certain condition does not
hold. The term unless works as a negated if. In Ruby, a negated form of the if statement

13 also available:

unless boolean-expression [then]
bedy

[else
body]

end
The unless statement can also work as a statement modifier:
expression unless boolean-expression

which evaluates expression only if boolean-expression is false.

422

23.9.2 Multiple selection

To support multiple selection, we can use an extended version of the if statement:

if boolean-expression [then]
body

elsif boolean-expression [then]
bedy

[else
body]

end

We can also usc the case statement. When a comparison returns frue, the scarch stops and
the body associated with the comparison is executed. The statement then returns the value
of the last expression executed. If no comparison matches and an else clause is present, its

body will be executed; otherwise, the statement returns nil.

case target
when comparison [, comparison] ... [then]
body
when comparison [, comparison] ... [then]
bedy
[else
body]

end

Example 23.4. Consider the following code segment that deploys multiple selection with

the case statement:

number = 11
case number
when 1, 3, 5, 7, 9
puts

when 0, 2, 4, 6, 8, 10

423

puts
else
puts

end

23.9.3 Repetition

The while loop executes its body zero or more times as long as its condition is true.

while boolean-expression [do]
body

end
The while loop can also operate as a statement modifier:
expression while boolean-expression

There is also a negated form that executes the body as long as boolean-expression is false

(or until the boolean-expression becomes true):

until boolean-expression [do]
bedy

end

The while can also work as a statement modifier:
expression until boolean-expression

Ruby also provides the do statement:

loop do
bedy
next if boolean-expression # skip iteration
break if boolean-expression # exit loop
redo if boolean—-expression # do it again

end

424

Iterators

The keyword each returns successive elements of its collection

a = [s s]

a.each { |el| print el + } #=> 3.14 number pi

The keyword collect takes cach clement from a collection and passes it to a block. The

code below takes cach clement from the collection and displays its successor.

print [s ,].collect { I|x| x.succ } #=> IBM

The keyword find returns the first clement from a collection which meets a condition.

Otherwise it returns nil. The code below displays the first even number from a collection.

print [1, 3, 7, 8, 9, 10].find { Ix| x % 2 == 0 } #=> 8
Iterator-based loops
3.times { |count| puts count} #=> 0 1 2
1.upto(10) { lcount| puts count } #=> 123 4 56 78 9 10
10.downto (1) { lcount| puts count I} #=> 10 9 8 76 5 4 3 2 1
0.step(10,2) { |count| puts count 17 #=> 0 2 4 6 8 10
for element in [) ,]

puts element #=> a b c
end

23.10 Regular expressions

A regular expression is a way of specifying a pattern of characters to be matched in a string.
In Ruby this is done with /pattern/. In Ruby, regular expressions arc objects and can thus

be manipulated as such. Some common pattern descriptions are shown below:

425

PATTERN DESCRIPTION

/Lispl|Lava/ Matches a string containing Lisp, or Lava.
/L{isplava)/ As above.
/ab+c/ Matches a string containing an «a, followed by one or more

bs, followed by a c.
/abxc/ matches a string containing an a, followed by zero or more
bs, followed by a c.

Matches any character.

/[Colloquilum|al/ | Matches Colloquium, or Colloquia.

Example 23.5. Consider the lyrics of the song “Welcome to the machine”, by Pink Floyd

(Lyrics by Roger Waters, 1975).

Welcome my son, welcome to the machine.
Where have you been?

It’s alright we know where you've been.
You’ve been in the pipeline, filling in time,
Provided with toys and "Scouting for Boys’.
You bought a guitar to punish your ma,
And you didn’t like school, and you

know you’re nobody’s fool,

So welcome to the machine.

Welcome my son, welcome to the machine.
What did you dream?

It’s alright we told you what to drcam.
You dreamed of a big star,

He played a mean guitar,

He always ate in the Steak Bar.

He loved to drive in his Jaguar.

So welcome to the Machine.

426

In this example we are looking to extract and display lines which contain the word “punish.”

File.open().each { [line]|

puts line if line =~ /punish/

This will display: You bought a guitar to punish your ma,

23.11 Access control

We can define access rights for features as follows:

Public methods can be called by anyone. Methods are public by default (except for

initialize, which is always private, see below).
Protected methods can be invoked only by objects of the defining class and its subclasses.

Private methods can be called only in the defining class.

We can specify access control as follows:

class MyClass

def methodl # default i1s ’‘publzc’

end

protected # subsequent methods wtill be protected’
def method2

end

private # subsequent methods will be ’private’

def method3

end

427

public # subsequent methods will be ’‘public’

def method4

end

end

Alternatively we can specify access control as follows:

class MyClass

def methodl

end

public :methodl, :method4
protected :method2
private :method3

end

Example 23.6. Consider the following computation:

ml = Movie.new(,)
m2= Movie.new(,)
m3= Movie.new(R

a = [ml, m2, m3]

puts a.class

puts a.length

puts al0].to_s

ObjectSpace.each_object(Movie) {lx| puts x.to_s}

puts Movie.total

The computation produces the following output:

Array
3

Movie: Taxl driver (1976)

428

Movie: Once upon a time in America (1984)
Movie: The Deer Hunter (1978)
Movie: Taxi driver (1976)

Number of movies: 3

Let us provide a definition of class Movie:

class Movie
@@howMany = 0
def initialize(title, year)

@title = title

@year = year
@@howMany += 1
end
def Movie.total
return
end
def to_s
return + Q@title + + Q@year +
end

end

23.12 The interactive Ruby shell

You can invoke the interactive Ruby shell (irb), shown in Figure 23.1, from the command

prompt of the underlying operating system (here: Windows 7). Among other things, irb

allows you to enter arithmetic-. relational- or logical expressions.

You can also use the irb to try out snippets of code (sce Figure 23.2).

429

SettingsN\Administrator?>irb
3x2

(3 + 1) x 2

3+1x%2

D2

(3 > 1) and (5 > 7)
not(3 > 1)

irblmain):

Figure 23.1: The interactive Ruby shell (1).

t .
(C) Copyrlght 1985 2@@1 M1crosoft Corp

C:\Documents and Settings\NAdministrator>irb
érb(main):@@l:@) puts "Ruby".length

=> nil
érb(main):@@Z:@) S.times { lcount!l puts count 2}

5
irb{main):8832:3> for element in ['a’,
irb{main}): 0804:1> puts element end

=» ["a", "b", "c", "d"]
irb({main):oe5: @)

Figure 23.2: The interactive Ruby shell (2).

430

Chapter 24

Modules

In OOP, the class provides the predominant unit of modularization. Some languages, in-
cluding Ruby, further support modules. A module in Ruby can encapsulate constants and
methods. A module cannot be instantiated and cannot form part of any inheritance hicrarchy

(i.c. cannot inherit and cannot be subclassified.)

24.1 Modules as namespaces

Example 24.1. Consider module MathLibrary which encapsulates mathematical operations

for all clients.

module MathLibrary
PI = 3.14159265
def MathLibrary.factorial(n)
if n == 0
1
else
n * factorial(n-1)
end
end

end

431

We can usc the module as follows:

puts MathLibrary::PI #=> 3.14159265

puts MathlLibrary.factorial (5) #=> 120
The Math module in Ruby’s standard library provides a rich set of methods. As one example:
puts Math.sqrt(9) #=> 3.0

If a class would make heavy usage of a module, then a class can include this module in its
definition. This would simplify the calls to the modules functionality as it would not require

the module’s name as a prefix:

include Math

puts sqrt(9) #=> 3.0

24.2 Modules as mixins

Though Ruby does not support multiple inheritance, classes can import modules as mizins.
In object-oriented programming languages, a mixin is a class that provides a certain func-
tionality to be inherited by a subclass, but is not meant to be instantiated!. Unlike with
inheritance, a class cannot claim an is-a relationship with a mixin module. Ruby resolves
name collision based on the lexical ordering of the inclusion of a module. The last module

to be included hides all previous possible name collisions.

In general, mixing are useful for encapsulating behavior that is common to many objects in

the class hicrarchy, but cannot be factored into a common superclass.

n 1973 Steve Herrell, owner of Steve’s ice-cream parlor in Somerville, Massachusctts, began blending
his customers’ choice of cookie and/or candy morsels into his ice cream and called the item a “mix-in”, a
copyrighted trademark he sold with the store in 1977.

432

Example 24.2. Consider class Coordinate which includes module Debugger which provides

a reflective operation.

module Debugger

def reflect

end

end

class Coordinate
include Debugger
attr_accessor :x, 'y
def initialize (x, y)

Bx = x

@y =y

end

def to_s
return

end

end

pl = Coordinate.new(0,0)

p2 = Coordinate.new(1,1)
puts pl.reflect #=> Coordinate (#21114270): (0, 0)
puts p2.reflect #=> Coordinate (#21114120): (1, 1)

Example 24.3. Consider class DBase which includes module Authenticator which provides

an authentication facility.

module Authenticator
def authenticate (passwd)
if (passwd ==) then
return

else

433

return

end

end

end

require
class DBase

include Authenticator

#
end
db = DBase.new
puts db.authenticate() #=> false

24.3 Additional examples

Example 24.4. Describe the axes of decomposition provided by Ruby, and compare and

contrast with thosc of Java.

1. Java provides the notion of class as the primary decomposition axis. Additionally it
provides an interface. Ruby’s primary decomposition axis is the class and additionally

it provides a module.
2. Java’s classes can be abstract. Ruby’s classes cannot be abstract.

3. Interfaces are a mechanism to reuse specification only: Modules are a way to reuse

implementation only.

Example 24.5. In the context of Ruby, compare delegation to module inclusion in terms

of the notion of class interfaces.

With module inclusion, methods defined in modules become part of the interface of classes

(and all their subclasses). This is not the case with delegation.

434

Example 24.6. Bricfly provide some rationale for the support of mixing in a language such

as Ruby. Is such a construct superfluous?

Mixing are useful for encapsulating behavior that is common to many objects in the class

hicrarchy, but cannot be factored into a common superclass.

435

436

Chapter 25

Introspection

Introspection is the process by which of a program can observe (but not modify) its own
properties. including its structure and behavior. A related term., reflection, is the process by
which a program can observe as well as modify its own properties, including its structure

and bchavior. In Ruby, we can obtain the following type of knowledge about a program:

e What objects it contains.
e The contents and behaviors of objects.

e The current class hierarchy.

Counsider the instantiations below:

require

require

pl Coordinate .new (0, 0)

p2 XYZCoordinate .new (0,0,0)

def p2.whatlam
return

end

We can execute a number of different types of reflective queries, discussed in the subsequent

sections, to obtain knowledge about the system.

437

25.1 What objects does the system contain?
We can iterate over all instances of Coordinate in the system, posing a reflective query

about each one. Let us inspect the system for objects of type Coordinate:

ObjectSpace.each_object (Coordinate) { |p]|

puts p.1inspect

We obtain the following:

#<XYZCoordinate:0x28455d8 @y=0, @z=0, @x=0>

#<Coordinate:0x2846028 @y=0, @x=0>

Note that an instance of XYZCoordinate is_a Coordinate, hence the listing of p2 in the

output.

25.2 Contents and behaviors of objects

We can check whether or not a particular object may respond to a message:

puts pl.respond_to?() #=> false

puts p2.respond_to?() #=> true

We can also determine the class and unique id of objects, and test their relationship to

classes:

puts pl.id #=> 21113660

puts pl.class #=> Coordinate
puts p2.class #=> XYZCoordinate
puts p2.instance_variables #=> 0y 0z 0Oz

puts p2.kind_of? Coordinate #=> true

puts p2.kind_of? XYZCoordinate #=> true

puts pl.kind_of? XYZCoordinate #=> false

puts p2.instance_of? Coordinate #=> false

puts p2.instance_of? XYZCoordinate #=> true

438

25.3 The current class hierarchy

We can inquire about the superclass of a given class:
puts XYZCoordinate.superclass #=> Coordinate
We can also inquire about class features:

puts XYZCcordinate.private_instance_methods #=>
puts XYZCoordinate.public_instance_methods #=>

puts XYZCcordinate.class_variables #=> 0@0total

439

440

Part VII

Functional Object-Oriented

Programming with Common Lisp

Object System (CLOS)

441

442

Chapter 26

Object-oriented programming with

generic functions

26.1 Classes and objects

We will model classes with CLOS (Common LISP Object System), an object-oriented ex-

tension to the LISP language. Consider the CLOS definition of class semaphore.

(defclass semaphore ()
((count :accessor semaphore-count
sinitform 0)
(name :reader semaphore-name

tinitarg :name)))

All instances of a class have the same structure. This structure is in the form of slots. A slot
has a name and a value. A value describes the slot’s state at a given time. This state infor-
mation can be read and written by accessor methods. CLOS offers two kinds of slots: local
slots and shared slots. Even though all instances of the same class have the same structure,

each instance, maintains its own unique state.

We can create an instance of semaphore by

> (setf s (make-instance ’semaphore))

443

#<SEMAPHORE 200D0OE93>

The :initform slot option makes it possible to specify a default value for a slot.

The :initarg :name slot option makes it possible to initialize the value of this slot when
creating instances. We can, therefore, specify an alternative instantiation for class semaphore

by providing an argument for the value of slot name as

> (setf s (make-instance ’semaphore :name ’my-resource))

#<SEMAPHORE 200FEAEF>

We can encapsulate the call to make-instance in a constructor function to instantiate the

class semaphore as follows:

(defun make-semaphore (name)

(make-instance ’semaphore :name name))

Now we can instantiate the class as

> (setf s (make-semaphore ’my-resource))

#<SEMAPHORE 20093193>

The :accessor slot option generates two methods: one for a reader and one for a writer. The
term accessor generic function is an umbrella term that includes both readers and writers.

We can sct a new value for the slot count as

> (setf (semaphore-count s) 1)

1

We can read the value of count as

> (semaphore-count s)

1

The :reader slot option generates a method for a reader generic function only.

444

> (semaphore—-name s)

MY-RESOURCE

We can provide methods to increment and decrement the value of slot count as follows:

(defmethod increment ((sem semaphore))
(setf (semaphore-count sem) (+ 1 (semaphore-count sem))))
(defmethod decrement ((sem semaphore))

(setf (semaphore-count sem) (- (semaphore-count sem) 1)))

> (increment s)
1
> (increment g)

2

> (decrement s)

1

The complete class definition now looks as follows

(defclass semaphore ()
((count :accessor semaphore-count
sinitform 0)
(name :reader semaphore-name
tinitarg :name)))
(defun make-semaphore (name)
(make-instance ’semaphore :name name))
(defmethod increment ((sem semaphore))
(setf (semaphore-count sem) (+ 1 (semaphore-count sem))))
(defmethod decrement ((sem semaphore))

(setf (semaphore-count sem) (- (semaphore-count sem) 1)))

We obscrve that methods arc not encapsulated inside classes, but they are instead defined

separately from classes.

445

26.1.1 Generic functions and methods

A few things are important to note in CLOS: Initially, we see that unlike in message passing
systems (like e.g. Java), methods are defined outside of classes. Additionally, all methods
that have the same name constitute a generic function. In CLOS, a generic function is com-
posed by a number of methods using defmethod. Each method provides an implementation

of the generic function for a particular class of argument. For example, in
(defmethod increment ((sem semaphore))...)

the required parameter to method increment is specialized by being replaced by a two-
element list, the first element being the name of the parameter (sem) and the second element
(class semaphore) being the specializer. If a method does not belong to a class definition,
where does it belong to? A method belongs to the generic function that is responsible for

determining which method to run in response to an invocation.

26.1.2 Auxiliary methods

Regular methods (or primary methods) can be augmented by auziliary methods of three

kinds:

1. :before methods allow us to say “When a primary method is called. before running

the code that should run, execute the code of this auxiliary method.”

2. rafter methods allow us to say “When a primary method is called, after running the

code that should run, execute the code of this auxiliary method.”

3. :around mcthods arc called instcad of the primary methods. They allow us to say
“When a primary method is called, instead of running the code that should run,
execute the code of this auxiliary method.” An around-method may also choose to

invoke its primary method via call-next-method.

Example 26.1. In this example we will subclassify semaphore to define class binary-semaphore.

(defclass binary-semaphore (semaphore) ())

(defun make-binary-semaphore (name)

446

(make-instance ’binary-semaphore :name name))
(defmethod increment :around ((binsem binary-semaphore))
(if (= (semaphore-count binsem) 1)

nil

(call-next-method)))
(defmethod decrement :around ((binsem binary-semaphore))
(if (= (semaphore-count binsem) 0)

nil

(call-next-method)))

We can instantiate and interact with a binary semaphore object as follows:

> (setf bsem (make-binary-semaphore ’my-binary-resource))
#<BINARY-SEMAPHORE 200B8847>
> (increment bsem)

1

> (increment bsem)

NIL

> (semaphore-count bsem)

1

> (decrement bsem)

0

> (decrement bsem)

NIL

> (semaphore-count bsem)

0

Example 26.2. Consider the following interaction with an object which acts as an un-

bounded collection of clements:

> (setq ¢ (make-instance ’collection))

#<COLLECTION 200A4347>

447

> (insert ’(a b) ¢)

> (insert ’(a b) ¢)

"error: duplicate element."
> (insert ’(c d) ¢)

> (erase (d e) ¢)

"error: element does not exist."
> (erase ’(c d) c)

> (display c)

((A B))

> (erase ’(a b) ¢)

> (erase ’(a b) ¢)

"error: list empty."

The structure of class collection is shown below with incomplete definitions of the func-

tions.

(defclass collection ()
((els :accessor elements
:initarg :els
sinitform 2 ())))
;; returns contents of the entire collection c.
(defmethod display ((c¢ collection)) ...)
;; inserts an element el into a collection c.
;; tmposes a rTestriction that el does not already exist;
;; otherwise 1t returns an error message.
;5 calls uttlity function memberp.
(defmethod insert (el (c¢ collection)) ...)
;; predicate function; tests element for membership in list lst
(defun memberp (element 1lst) ...)
;; erases el from collection c.
;; returns an error message i1f collection 15 empty.
;; returns an error message if el 11s mot found.

;; calls utility function memberp.

448

;; calls uttlity function remove-element.
(defmethod erase (el (¢ collection)) ...)
;; returns a new list with element el removed from list lst.

(defun remove-element (el 1lst) ...)

449

Let us complete the definition of the class, by providing the implementation of all functions:

(defclass collection ()
((els :accessor elements
iinitarg :els
sinitform 2 ())))
(defmethod display ((c¢ collection))
(elements c))
(defmethod insert (el (¢ collection))

(if (memberp el (elements c))

(setf (elements c) (cons el (elements c¢)))))
(defun memberp (element lst)
(cond
((null 1st) nil)
((equal element (car 1lst)) t)
(t (memberp element (cdr 1lst)))))
(defmethod erase (el (c collection))

(if (null (elements c¢))

(if (memberp el (elements c))
(setf (elements c¢) (remove-element el (elements c)))

)))

(defun remove-element (el lst)
(if (equal el (car 1lst))
(cdr 1st)

(cons (car 1lst) (remove-element el (cdr 1lst)))))

26.2 Inheritance and method combination

As a subclass is a specialization of any component class, it is considered more specific (as

opposed to the reverse which makes superclasses less specific than their subclasses). When

450

there are methods defined for more than once component class of a given class, we need to
have a rule to state how we decide which one to use. CLOS provides a rule that specifics how
state and behavior are combined. This rule refers to a total ordering of all the superclasses
of a class, from the most specific to the least specific, called the class precedence list of a

given class.
1. Start from the bottom of the inheritance graph.
2. Walk upward, always taking the left-most unexplored branch.

3. If you are about to enter a node and you notice another path entering the same node
from the right, retrace your steps until you get to a node with an unexplored path

leading upward. Go to step [2].

The order in which you first enter each node, determines its place in the precedence list.

Example 26.3. Consider the following inheritance hicrarchy of Figure 26.1 codified in the

segment below:

(defclass shape () (...))
(defclass circle (shape) (...))
(defclass colored-object () (...))

(defclass colored-circle (circle colored-object) (...))

The precedence list determined by this graph is colored-circle, circle, shape, colored-object,

standard-object.

Example 26.4. Consider the definitions of the following two classes:

(defclass person () ()

(defmethod speak ((s person) string)
(format t string))

(defmethod speak :before ((s person) string)
(print)

(defmethod speak :after ((s person) string)

(print)

451

standard-object

colored-object

colored-circle

Figure 26.1: Multiple inheritance.

(defclass speaker (person) ())

(defmethod speak :before ((i speaker) string)
(print)

(defmethod speak :after ((i speaker) string)

(print)

The code desceribes two classes person and speaker, related through inheritance. The latter
is a subclass of the former. The superclass defines one regular function, speak and two
auxiliary functions attached to it which execute before and after the code of the regular
function. The subclass only defines auxiliary methods attached to the speak function in the
superclass. Auxiliary functions in the subclass have priority over the auxiliary functions in
the superclass. In the case of before auxiliary functions, priority means executing first. In

the case of after auxiliary functions, priority means executing last.

Consider the following statement:

(speak (make-instance ’speaker))

452

The output is as follows:

"Bonjour!"
"Hello!" Can I help you?
"Have a nice day!"

"Bonne journee!l”

The statement creates an instance of speaker and sends message speak with argument Can
I help you?. The before auxiliary method of the subeclass will run first which will display
"Bonjour!", following by the before auxiliary method of the superclass which will display
"Hello!". Next comes the body of the regular method speak which will display the value
of its parameter, Can I help you?. The after auxiliary method of the superclass will
execute first displaying "Have a nice day!", followed by the after auxiliary method of

the subclass which will display "Bonne journee!™.

453

454

Chapter 27

Data structures and abstract data

types 11

27.1 The Stack ADT

The Stack ADT is a collection that stores arbitrary objects. Insertions and deletions follow

a last-in first-out (LIFO) scheme. There are two major stack operations:

push(stack element): inserts element onto stack.
pop(): removes and returns the last inserted clement.
Furthermore, there are some auxiliary operations:
top(): returns the last inserted element without removing it from the collection.
size(): returns the number of clements stored.
isempty(): returns a Boolean value indicating whether no elements are stored.

isfull (): returns a Boolean value indicating whether the collection has reached its capac-

ity.

In implementing a stack, we need to keep in mind that both major operations access the

stack from the same end. The push(..) operation would simply create a new list with the

455

clement to be placed on the stack and the current list and set it as the new value of the
currcent list. The cons operation is well suited for this as it takes, as its arguments, an atom

and a list. We also need to increment the size of the stack by one.

(defmethod push ((s stack) element)
(setf (stack-elements s) (cons element (stack-elements s)))

(setf (stack-size s) (+ 1 (stack-size s))))

The pop operation would return the head of the list, as well as create a new list comprised
by the tail of the current list, setting it as the new value for the stack. We also need to

decrement the size of the stack by onc.

(defmethod pop ((s stack))
(let ((top-element (car (stack-elements s))))
(setf (stack-elements s) (cdr (stack-elements s)))
(setf (stack-size s8) (- (stack-size s) 1))

top-element))

We can now put everything together as follows:

(defclass stack ()

((elements :accessor stack-elements
:initarg :elements
sinitform 2 ())

(size :accessor stack-size
:initarg :size
sinitform 0)

(capacity :accessor stack-capacity
initform 3
:allocation :class)))

(defmethod isempty ((s stack))

(equal (stack-size s) 0))

(defmethod isfull ((s stack))

(equal (stack-size s) (stack-capacity s)))

456

(defmethod push ((s stack) element)
(setf (stack-elements s) (cons element (stack-elements s)))
(setf (stack-size s) (+ 1 (stack-size s))))
(defmethod pop ((s stack))
(let ((top-element (car (stack-elements s))))
(setf (stack-elements s) (cdr (stack-elements s)))
(setf (stack-size s) (- (stack-size s) 1))
top-element))
(defmethod top ((s stack))
(car (stack-elements s)))
(defmethod push :around ((s stack) element)

(if (isfull s)

(call-next-method s element)))
(defmethod pop :around ((s stack))

(if (isempty s)
(call-next-method s)))
(defmethod top :around ((s stack))

(if (isempty s)

(call-next-method s)))

We can now instantiate stack and usc it as follows:

> (setq s (make-instance ’stack))
#<STACK 200934B3>
> (push s 3)
> (push s 4)

> (push s 5)

\

(top s)

457

Stack
elements: List
size: Integer
capacity: Integer

push (stack, ElementType)
push :around

pop (stack): ElementType
pop :around

top(stack): ElementType
top :around
isempty(stack): Boolean
isfull(stack): Boolean

Figure 27.1: UML class diagram representation of class stack.

> (push s 6)

"The stack is already full."
> (pop s)

5

> (pop s)

4

> (pop s)

3

> (pop s)

"The stack is empty."
> (stack-size s)

0

Example 27.1. Consider the definition of class stack illustrated in UML in Figure 27.1.
Define class stack2 which extends stack. Class stack2 introduces method pop2 that be-
haves exactly like pop but can only execute immediately after a pop. In the case where
pop2 cannot execute, your program should display an error. You may not redefine stack or

override behavior from stack.

458

The definition of stack? is shown below:

(defclass stack2 (stack)
((popsemaphore raccessor popsem
initform 0)))
(defmethod pop2 ((s stack2))
(pop s))
(defmethod push :after ((s stack2) element)
(setf (popsem s) 0))
(defmethod pop :after ((s stack2))
(setf (popsem s) 1))
(defmethod pop2 :after ((s stack2))
(setf (popsem s) 0))
(defmethod pop2 :around ((s stack2))
(if (= (popsem s) 1)
(call-next-method s)

))

A sample run is shown below:

> (setq s (make-instance ’stack2))
#<STACK2 2009353B>

> (pop2 s)

"Cannot operate: pop2"

> (pop s)

"The stack is empty."

> (push s 1)

1

v

(push s 3)

\

(push s 5)

v

(push s 7)

459

"The stack is already full."
> (pop2 s)

"Cannot operate: pop2"
> (pop s)

5

> (pop2 s)

3

> (pop2 s)

"Cannot operate: pop2"
> (pop s)

1

> (pop s)

"The stack is empty."
> (pop2 s)

"The stack is empty."
> (top s)

"The stack is empty."
> (push s 9)

1

> (pop2 s)

"Cannot operate: pop2"
> (top s)

9

> (pop s)

9

27.2 The Queue ADT

The Queue ADT is a collection that stores arbitrary objects

a first-in first-out (FIFO) scheme.

460

. Insertions and deletions follow

There are two major quecue operations:

enqueue(queue element): inserts element at the rear of queue.

dequeue (): removes and returns the element at the front of the queue.

Furthermore, there are some auxiliary operations:

front (): returns the front clement without removing it from the collection.
size(): returns the number of clements stored.
isempty(): rcturns a Boolean value indicating whether no clements are stored.

isfull (): returns a Boolcan value indicating whether the collection has reached its capac-

ity.

In implementing a queue, we need to keep in mind that the two major operations access
the queue from two different ends: the front and the rear. Recall that an ADT is an
implementation-independent concept. This implies that it is up to us, the implementors of
the ADT, to decide which end of the list we will consider as the front or the rear (as long as

they arc not the same end of the list).

The enqueue operation adds an clement to the rear and the dequeue operation removes an

clement from the front. We have two choices for this implementation:

1. To consider the head of the list as the front of the queue. This implies that during
enqueue, an element is added to the end of the list and during dequeue the head of the

list is removed.

2. To consider the head of the list as the rear of the queuc. This implies that during
enqueue an clement is added to the head of the list and during dequeue the last

element of the list is removed.

461

The first choice is more convenient and we shall follow it here. To enqueue an clement, we
need to create a new list which is comprised with the current list and the clement. How do
we attach an element at the end of a current list? Function cons takes an element and a list,
so that would not work. Function append can work, but it takes as arguments two lists. We
can transform the clement at hand into a list through the 1ist function and then provide it

as the second argument to append. We also need to increment the size of the queue by one.

(defmethod enqueue ((s queue) element)
(setf (queue-elements s) (append (queue-elements s) (list element)))

(setf (queue-size s) (+ 1 (queue-size s))))

To dequeue an element we simply have to return the head of the current list as well as to
create a new list without the head element of the current list and set it as the new value to

the queue. We also need to decrement the size of the queue by one.

(defmethod dequeue ((s queue))
(let ((top-element (car (queue-elements s))))
(setf (queue-elements s) (cdr (queue-elements s)))
(setf (queue-size s8) (- (queue-size s) 1))

top-element))

We can now put everything together as follows:

(defclass queue ()

((elements :accessor queue-elements
:initarg :elements
sinitform 2 ())

(size :accessor queue-size
:initarg :size
sinitform 0)

(capacity :accessor queue-capacity
:initform 3
:allocation :class)))

(defmethod isempty ((s queue))

(equal (queue-size s) 0))

462

(defmethod isfull ((s queue))
(equal (queue-size s) (queue-capacity s)))
(defmethod enqueue ((s queue) element)
(setf (queue-elements s) (append (queue-elements s) (list element)))
(setf (queue-size s) (+ 1 (queue-size s))))
(defmethod dequeue ((s queue))
(let ((top-element (car (queue-elements s))))
(setf (queue-elements s) (cdr (queue-elements s)))
(setf (queue-size s) (- (queue-size s) 1))
top-element))
(defmethod enqueue :around ((s queue) element)

(if (isfull s)
(call-next-method s element)))
(defmethod dequeue :around ((s queue))

(if (isempty s)

(call-next-method s)))

We can now instantiate queue and usc it as follows:

> (setq q (make-instance ’queue))
#<QUEUE 200BFCD7>

> (enqueue q 3)

> (enqueue g ’(a b))

> (enqueue q 7)

> (enqueue q 11)

"The queue is already full."
> (dequeue q)

3

> (dequeue q)

(A B)

463

> (dequeue q)
7
> (dequeue q)

"The queue is empty."

464

Chapter 28

Bibliography and online resources

Bibliography
1. Michael Fitzgerald, Learning Ruby, O’Reilly, 2007.
2. Paul Graham, ANSI Common Lisp, Prentice Hall, 1996.

3. Sonja E. Keene, Object-Oriented Programming in Common Lisp: A Programmer’s

Guide to CLOS, Addison-Wesley, 1988.

4. Brian W. Kernighan and Dennis Ritchie, C Programming Language (2nd Edition),

Prentice Hall, 1988.

Ira Pohl and Charlie McDowell, Java by Dissection, 2nd edition, Lulu Press, 2006.

[

6. Michael L. Scott, Programming Language Pragmatics, 3rd edition, Morgan Kaufmann,

2009.

Online resources

1. AspectJ Documentation and Resources.

URL: http://www.eclipse.org/aspectj/doc/released/

2. The Common Lisp HyperSpec.

URL: http://www.lispworks.com/documentation/common-1isp.html

465

3. Chris Pine, Learn to Program, 2009.
URL: http://pine.fm/LearnToProgram/

466

All rights reserved.

In accordance with Canadian Copyright Law,
reproduction of this material, in whole or
in part, without prior written consent
of individual authors and/or publishers
is strictly prohibited.

Concordia University Bookstore has obtained copyright clearance and paid all
applicable royalties for works contained in this anthology as per its agreement with COPIBEC.
Publications not covered under the COPIBEC licence have been dealt with directly.

467

Concordia University Bookstore

978-1-77185-658-4

THIS COURSEPACK IS NON-REFUNDABLE

COMP 348 Principles of Programming Languages

Concordia University Bookstore

11329916

