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Chapter 1 

Clauses and queries 

1.1 Introduction to data types 

A data type is a classification of the kind of data that can be held by a variable. Examples 

include numeral types (such as integers, or real numbers), and boolean types (can only 

assume the values of true or false). Every programming language has data types and ways 

of combining and abstracting them. For any data type, we are concerned with: 

1. The values of the type. 

2. The operations on that type. 

3. How the values are represented. 

Data types can be simple or composite. Examples of simple data types include booleans, 

numerals, or symbols (sequences of characters). An example composite data type is the list 

(see Chapter 2: Lists 1). 

1.2 Data types in Prolog 

Prolog's single data type is the term. A term can be an atom (begins with a lower-case 

letter), a number (can be an integer or afloat), a variable (begins with an upper-case letter), 

or a compound term (composed of an atom called a functor and a number of arguments 
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which are themselves terms). 

For example, consider the binary (of order 2) relation likes over the set of all people. One such 

instance would be Noodles likes Deborah. Using words is just one example we can express 

relations. We can re-write this instance in Prolog syntax as likes (noodles, deborah). 

N ote a) the lack of capitalization, and b) the period at the end. The sentence is a proposition 

that we consider to be true and we refer to it as a fact (see next section). The compound 

term likes (noodles, deborah). includes the functor likes and the arguments noodles 

and deborah which are separated by commas and enclosed in a pair of round brackets. The 

number of arguments of a compound term is called the arity of the term. 

1.3 Facts 

We will use a running example to express the meaning and constraints of data as well as to 

construct queries over their representation in order to obtain information. A Prolog program 

consists of assertions (clauses). These are divided into facts and rules. Facts are proposi­

tions which are taken to be true. We will discuss rules in a subsequent section. 

We will start with a discussion about family trees. Consider an example family genealogy 

tree shown in Figure 1.1. The clause 

parent (peter, daphne) true. 

can be simplified to 

parent (peter, daphne). 

and can read as "Peter is a parent of Daphne." The proposition can be regarded as an 

instance of the binary predicate parent(X, Y) and is obtained by substituting Peter for X 

and Daphne for Y 
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I Tom ~H Sandra I I Michael ~H Eve I 

I I I I 

I Adam I I Helen ~~ Andrew I I John I 

I Judy I .1 J Mark I I I 

I I 

I Roger I I Jim I I Janis I .1 I Peter I I I 

I Daphne I 

Figure 1.1: An example family genealogy tree. 

1.4 Procedures 

A procedure consists of one or more clauses where each clause defines a certain relation 

between its arguments. We will adopt the Prolog programming language to model and 

process clauses. A Prolog program consists of a collection of procedures. For example, the 

following program segment 

parent (tom, adam). 

parent (tom, helen). 

parent (sandra, adam). 

parent (sandra, helen). 

parent (michael , andrew). 

parent (michael , john). 

parent(eve, andrew). 

parent(eve, john). 

parent (helen, mark). 

parent (andrew, mark). 

parent (judy, roger). 
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parent (judy, jim). 

parent (judy, janis) . 

parent (mark, roger). 

parent (mark, jim). 

parent (mark, janis) . 

parent(janis, daphne). 

parent (peter, daphne). 

defines procedure parent specifying a relationship between its two arguments. The procedure 

consists of 18 clauses (all of which are facts). Note the dot (.) which signifies the end of a 

clause. The clauses constitute a knowledge base or (declarative) database. 

1.5 Arity 

The number of arguments in a term is called its arity and it is usually indicated with the 

suffix "/" followed by the a number that indicates the arity. For example, our genealogy 

database defines parent/2. Note that terms that have the same name but different arities 

are treated as different. 

1.6 Queries 

Is Peter a parent of Daphne? We can codify this question into a query. The Prolog repre­

sentation of this query 1 is as follows: 

7- parent (peter, daphne). 

to which the Prolog system will respond 

Yes 

IThe question mark (7) is the prompt of the Prolog system. 
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implying that it has been successful in obtaining a fact which satisfies the query. This implies 

that the query has been successfully matched to a given fact. 

The family tree of Figure 1.1 is codified into a collection of facts as shown below: 

man(tom). 

man (michael) . 

man (adam) . 

man(andrew). 

man(john) . 

man (mark) . 

man(roger). 

man(jim). 

man(peter). 

woman(sandra). 

woman(eve). 

woman (helen) . 

woman(judy). 

woman(janis) . 

woman(daphne). 

parent (tom, adam). 

parent (tom, helen). 

parent (sandra, adam). 

parent (sandra, helen). 

parent (michael , andrew). 

parent (michael , john). 

parent(eve, andrew). 

parent(eve, john). 

parent (helen, mark). 

parent (andrew, mark). 
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parent (judy, roger). 

parent (judy, jim). 

parent (judy, janis) . 

parent (mark, roger). 

parent (mark, jim). 

parent (mark, janis) . 

parent(janis, daphne). 

parent (peter, daphne). 

Note that even though we are flexible in deciding the format of a fact, we must ensure that 

all facts denoting the same relation are consistent. In this example, we have decided to 

follow the convention that parent (X, Y) will denote the relation "X is the parent of Y." 

This means that parent (tom, adam) and parent (helen, tom) are not consistent. 

Variables can be used in queries (and must always start with a capital letter) to find all values 

which can be substituted for, in order to make the clause true. On the fact parent (peter, 

daphne), a new question can be formed: "Who is a parent of Daphne?" which can be 

codified into a query as follows: 

7- parent(X, daphne). 

to which the Prolog system will respond 

X = janis 

In reaching this response, Prolog searches the database starting from the top to see under 

what conditions the query can be satisfied, i.e. whether a value for X exists which can result 

in a match. 

The response we obtain is a correct answer but we know that it is not complete according 

to our collection of facts, since Daphne has two parents. Prolog allows an interaction during 

a query. We can now ask "Are there more matches?" With the semicolon symbol (;) we 

instruct the Prolog system to continue its search. 
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7- parent(X, daphne). 

X janis 

X peter 

"Are there still more matches?" 

7- parent(X, daphne). 

X janis 

X peter 

No 

The response No indicates that this is the system's final response, i.e. there are no (more) 

matches. 

In a similar fashion to the semicolon symbol during an interaction with the Prolog system, 

a period symbol (.) indicates our intention to stop the search. 

1.7 Rules 

A rule is a clause described in the general form 

head: - body 

which reads "The head {of the rule} is true, if the body is true.", or alternatively "The head 

of the rule can succeed if the body of the rule can succeed.". The body consists of predicates, 

which are called the goals of the rule. The predicates in the body of a rule can be combined by 

conjunction (logical and, denoted by comma), disjunction (logical or, denoted by semicolon), 

or combinations of them. The example below 

H:- Pi, P2, ... , Pn. 

reads that in order to prove (or show) H, we need to prove (or show) Pi, and P2, and ... , and 

Pn. 
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Let us extend the database with a new relation. Suppose we let p stand for the isParentOf 

relation and let 9 stand for the isGrandParentOf relation. 

We can then define 9 in terms of p by the following formula we will call G: 

G = V x V y V z ((p(x, z) 1\ p(z, y)) ----'t g(x, y)) 

In other words, if x is a parent of z and z is a parent of y, then we conclude that x is a 

grandparent of y. We can represent this in Prolog with the rule below. We use variables to 

express the feature that a grandparent is a parent whose child is itself a parent. The rule 

below is a compound proposition comprised by two goals: 

grandparent ex, Y) : - parent ex, Z), parent ez, Y). 

The rule can succeed if parent (X, Z) and parent (Z, Y) can both succeed. More specifi­

cally, for a query to succeed, Prolog moves from left to right attempting to satisfy each of 

its goals. In this example, once and if the first goal succeeds, we move right to the next 

goal, otherwise the query fails. If and once the second goal succeeds, then the query has 

succeeded in finding a match. If the second goal fails, the query fails. 

We can now pose the following question: "Is Judy a grandparent of Daphne?" The question 

can be codified into the following query: 

7- grandparent (judy, daphne). 

to which the Prolog system will respond 

Yes 

This implies that Prolog has found a match for Z for which 

grandparent (judy, daphne) :- parent (judy, Z), parent(Z, daphne). 

can become true. 
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Consider the question: "Is Roger a grandparent of Daphne?" The query is as follows: 

7- grandparent(roger, daphne). 

No 

Consider the question: "Who are the grandparents of Daphne?" The query is as follows: 

7- grandparent (X, daphne). 

X = judy 

X = mark 

No 

Consider the question: "Who is Helen a grandparent of?" The query is as follows: 

7- grandparent(helen, X). 

X roger 

X jim; 

X janis 

No 

We can now further extend the database: Suppose we let p stand for the isParentOf relation 

and let a stand for the isAncestorOf relation. Then we can define a in terms of p by the 

following formula we will call A: 

A = V x Vy (p(x,y) -+ a(x,y)) 

A = V x Vy V z ((p(x,z) and a(z,y)) -+ a(x,y)) 

In other words, x is an ancestor of y if either x is a parent of y, or x is a parent of an ancestor 

of y. We can represent this in Prolog with the rules below. We use variables to express the 

feature that a one's parent is also one's ancestor, as well as the parent of one's ancestor is 

also one's own ancestor. 
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ancestor(X, Y) 

ancestor(X, Y) 

parent (X, Y). 

parent (X, Z), ancestor (Z, Y). 

Note that the ancestor rule is composed of a disjunction. We can combine this into a single 

line, denoting the disjunction with a semicolon as 

ancestor(X, Y) parent (X, Y); (parent (X, Z), ancestor (Z, Y)). 

Consider the question: "Is Tom an ancestor of Daphne?" The query is as follows: 

7- ancestor(tom, daphne). 

Yes 

Consider the question: "Is Tom an ancestor of Peter?" The query is as follows: 

7- ancestor(tom, peter). 

No 

Consider the question: "Who are the ancestors of Janis?" The query is as follows: 

7- ancestor(X, janis). 

X judy 

X mark 

X tom , 

X sandra 

X michael 

X eve , 

X helen 

X andrew , 

No 

Consider the question: "Who are the ancestors of Peter?" The query is as follows: 

7- ancestor(X, peter). 

No 
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Note that Prolog finds no ancestors for Peter not because he has no ancestors (we know that 

all humans have ancestors), but because no such facts exist in our database which define any. 

Consider the question: "Who is Eve an ancestor of?" The query is as follows: 

7- ancestor(eve, X). 

X andrew 

X john 

X mark 

X roger 

X jim , 

X janis 

X daphne , 

No 

Suppose we let a stand for the isAncestorOf relation and let d stand for the isDescendantOf 

relation. Then we can define d in terms of a by the following formula we will call D: 

D = V x V y (a(x, y) --+ d(y, x)) 

In other words, if x is an ancestor of y then we can conclude that y is a descendant of x. 

We can represent this in Prolog with the rule below. We use variables to express the feature 

that the descendant of any person has that person as his or her ancestor. 

descendant (X, Y) :- ancestor(Y, X). 

Consider the question: "Is Jim a descendant of Michael?" The query is as follows: 

7- descendant(jim, michael). 

Yes 

Consider the question: "Is Peter a descendant of Michael?" The query is as follows: 

7- descendant (peter, michael). 

No 



30

We can further extend the database by adding more rules. Suppose we let m stand for the 

isMan relation, p stand for isParentOf relation and let f stand for the isFatherOf relation. 

Then we can define f in terms of m and p by the following formula we will call F: 

F = V x Vy ((m(x) /\p(x,y)) -+ f(x,y)) 

In other words, if x is a man and x is a parent of y, then we conclude that x is the father of y. 

We can represent this in Prolog with the rule below. We use variables to express the feature 

that every man who is a parent of any child is also his or her father. 

father(X, Y) man(X) , parent (X, Y). 

A similar reasoning can be applied to build a rule for the isM otherOf relation. 

mother(X, Y) .- woman (X) , parent (X, Y). 

We can now pose even more different types of questions in our system, such as: "Who is the 

father of Helen?" The query is as follows: 

7- father(X, helen). 

X = tom 

We can hit semicolon (;) to instruct Prolog to continue its search for more possible matches: 

7- father(X, helen). 

X = tom ; 

No 

There is no other match, as was expected. 
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Consider the question: "Who is Sandra the mother of?" The query is as follows: 

7- mother (sandra, X). 

X adam; 

X helen; 

No 

Suppose we let m stand for the isMan relation, let p stand for isParentOf relation and let s 

stand for the isSonOf relation. Then we can define s in terms of m and p by the following 

formula we will call S: 

S = V x Vy ((m(x) I\p(y,x)) ---+ s(x,y)) 

In other words, if x is a man and y is a parent of x, then we conclude that x is the son of y. 

We can represent this in Prolog with the rule below. We use variables to express the feature 

that every man who has a parent, is also his parent's son. 

son(X, Y) man(X) , parent(Y, X). 

A similar reasoning can applied to build a rule for the isDaughterOf relation: 

D = V x V y ((w(x) 1\ p(y, x)) ---+ d(x, y)) 

daughter (X , Y) woman (X) , parent(Y, X). 

Consider the question: "Is Adam the son of Tom?" The query is as follows: 

7- son (adam, tom). 

Yes 
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Consider the question: "Who is Adam the son of?" The query is as follows: 

7- son(adam, X). 

X tom; 

X sandra 

No 

1.8 Anonymous variables 

If any parameter of a relation is not important, we can replace it with an anonymous variable 

(denoted by the underscore character _) as follows: 

father(X, _). 

is_mother(X) .- mother(X, _). 

We can now pose more questions such as "Is Tom a father?" To answer this type of question, 

it is important to realize that it does not matter whom Tom is the father of, as long as Tom 

is found as the first term in a father fact. The query is as follows: 

7- is_father(tom). 

Yes 

1.9 Ground vs. non-ground queries 

We have so far posed many different questions on the family tree database. However, all 

questions we have posed, fall into two categories. The first category are those which can 

be answered by a Yes/No and can be expressed as "Is it the case that a given statement is 

true?" The second category are those which can be expressed as "Under what conditions, if 

any, is a given statement true?" 
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This brings us to the notion of ground and non-ground queries: 

Ground queries consist only of value identifiers as parameters to the predicate 

such as parent (peter, daphne). The answer to a ground query is of the form Yes/No. 

The answer "Yes" means that the system has proved that the goal was true under the 

given database of facts and rules. The answer "No" means that either the goal was 

proved false or the system was unable to prove it. 

Non-ground queries contain variables as parameters such as parent (X, daphne). A non­

ground query is satisfiable relative to the program if there is a substitution for its 

variable which makes the query true. 

1.10 The inferencing process 

To prove that a goal is true, the inferencing process must find a chain of inference rules 

and/ or inference facts in the database that connect the goal to one or more facts in the 

database. Given a goal Q, then either Q must be found as a fact in the database or the 

inferencing process must find a fact Pl and a sequence of propositions g, ... Pn such that: 

Q: -Pn 

The process of proving a goal is called matching. 

1.11 Unification and resolution 

The mechanisms of unification and resolution are vital to query evaluation. 
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Unification The process of taking two terms (one from the query and the other being a 

fact or the head of a rule) and determining if there is a substitution which makes them 

the same. If such a substitution exists, then one or more variables are instantiated 

to reflect this. For example, parent (X, daphne) can be unified with parent (peter, 

daphne) since X can be substituted for peter (in which case it is instantiated to peter). 

Resolution When a term from the query has been unified with the head of a rule (or a 

fact), resolution replaces the term with the body of the rule (or nothing, if a fact) and 

then applies the substitution to the new query. 

Given a query, Prolog searches the database of clauses from top to bottom: 

• If it finds a fact, it tries to unify the query with the fact. If successful, one solution 

has been found. If not successful, it tries the next clause. 

• If it finds a rule, it tries to unify the query with the head of the rule. If successful, the 

goals of the body of the clause are treated as those queries which must be satisfied in 

order for the initial query to be satisfied. If not successful, it tries the next clause in 

the program. 

Example 1.1. Consider the question "Who is Helen the daughter of?" translated into the 

query daughter (Helen, Y). Prolog will search the database from top to bottom trying to 

find a clause that can be matched with the query. 

The query daughter (helen, Y) will unify with the daughter (X, Y) rule, instantiating X 

to helen. 

Resolution will apply the substitution of the variables and produce a new rule: 

daughter(helen, Y) :- woman (helen) , parent(Y, helen).} 

Both goals in the body of the rule have to be satisfied for the head of the rule to be satisfied. 

The first goal is unified with the fact woman (helen). The second goal is also unified with 

the fact parent (tom, helen). instantiating Y to Tom. 
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Example 1.2. Consider the evaluation of the query grandparent (judy, daphne). Prolog 

will search the database from top to bottom, trying to unify the query with one of the 

clauses of the database. It will unify the query with the head of the rule grandparent (X, 

y) : - parent (X, Z), parent (Z, Y) instantiating X to judy and Y to daphne, and apply 

the substitution as follows: 

grandparent (judy, daphne) :- parent (judy, Z), parent(Z, daphne). 

For the head of the new query to be true, both goals of the body of the clause must be 

evaluated to true. To evaluate the two goals, Prolog will consider the two new queries 

parent (judy, Z), parent(Z, daphne). 

and it will perform a new search of the database to unify each one, looking for an instantia­

tion which can satisfy them both. Variable Z can be instantiated to janis thus making the 

original query true. 

Example 1.3. Suppose we let p stand for the isParentOf relation and let s stand for the 

isSibling With relation. Then we can define s in terms of p by the following formula we will 

call S: 

S = V x Vy V z (p(z,x) I\p(z,y)) ---+ s(x,y)) 

In other words, if z is a parent of both x and y, then we conclude that x and yare siblings. 

We can represent this in Prolog with the rule siblings below. We use variables to express 

the feature that two different persons with a common parent are siblings. 

siblings (X, Y) parent(P, X), parent(P, Y), X \= Y. 

The above rule does not consider full siblings (those with both common parents). We can 

define this new relation based on previous relations. Suppose we let f stand for the isFatherOf 

relation, m stand for the isM otherOf relation and let f s stand for the isFullSibling With 
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relation. Then we can define f s in terms of p and m by the following formula we will call 

FS: 

FS = V x V y V w V z (f(w, x) /\ f(w, y) /\ m(z, x) /\ m(z, y)) ---+ fs(x, y)). 

In other words, if x and y have both father and mother in common, then we conclude that x 

and yare full siblings. We use variables to express the feature that two different persons with 

the same father and mother are full siblings. We can follow a similar reasoning to provide 

the alternative implementation fulLsiblings2. 

full_siblingsl(X, y) :-

father(F, X), father(F, Y), mother(M, X), mother(M, Y), 

X \= Y. 

full_siblings2(X, Y) :-

parent(F, X), parent(F, Y), parent(M, X), parent(M, Y), 

X \= Y, F \= M. 

Use can now use the rule siblings to define rules for uncle and aunt relations as shown 

below: 

uncle(U, N) :- man(U), siblings(U, P), parent(P, N). 

aunt (A, N) :- woman (A) , siblings (A, P), parent(P, N). 

Example 1.4. Consider the following database of facts which represents a directed graph: 

edge(a,b) . 

edge(b,c) . 

edge(a,c) . 

edge(c,d) . 
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edge(d,e) . 

edge(f,e) . 

edge(f,g) . 

We define a rule path(N1, N2) which succeeds if there is a path from node N1 to node N2. 

path(N1, N2) edge(N1, N2). 

path(N1, N2) .- edge(N1, N), path(N, N2). 

We additionally define a rule is-connected(N1, N2) specifying that a source node N1 is 

connected to a destination node N2 if there is a path from N1 to N2. 

is-connected(N1, N2) path(N1, N2). 

Consider the following questions which we will subsequently translate into queries: 

• Is there a path from b to e? 

• Is there a path from d to a? 

• Is node a connected to node d? 

• Which node(s) is node c connected to? 

The queries and the responses are shown below: 

7- path(b,e). 

Yes 

7- path(d,a) . 

No 

7- is-connected(a, d). 

Yes 

7- is-connected(c, X). 
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X d 

X = e 

No 

Let us concentrate on the last query above and see how unification and resolution work 

during its evaluation: 

• Unify with the rule is-connected(N1, N2), and instantiate N1 to c, and N2 to X. 

Resolve to new query path(c, X). 

• Unify first path(N1, N2) rule with the fact edge(c, d), and instantiate X to d. 

• Unify first goal of second path (N1, N2) rule with the fact edge (c, d), and instantiate 

X to d. Resolve to new query path (d, N2). 

• Unify path(d, N2) with the fact edge(d, e), and instantiate N2 to e. 

The system will respond with d and e as the values for X. 

Example 1.5. Consider a declarative database, representing a graph, that contains facts of 

the form 

edge(a, b). 

where edge (a, b) defines a directed edge from node a to node b. Construct a Prolog rule 

path(Source, Destination) that succeeds ifthere exists a path from node Source to node 

Destination. Translate the graph of Figure 1.2 into a Prolog database, and execute and 

trace a query to determine whether there exists a path from node a to node c. In tracing 

the query, clearly indicate all steps. 

The declarative representation of the graph and the rule to define a path between two nodes 

are shown below: 
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edge(a, b). 

edge(b, c). 

edge(c, d). 

path(Source, Destination) 

path(Source, Destination) 

Figure 1.2: Directed graph. 

edge(Source, Destination). 

edge(Source, IntermediateNode), 

path(IntermediateNode, Destination). 

For the query path (a, c), we have the following trace: 

1. We search the database from top to bottom, looking to unify the query to a fact or 

a rule. We unify with edge (Source, Destination), instantiating Source to a and 

Destination to c, thus resolving to edge (a, c). 

2. We now attempt to satisfy this query, searching again from top to bottom; We will 

fail. 

3. We unify with the second rule, instantiating Source to a and Destination to c, thus 

resolving to edge (a, IntermediateNode), path (IntermediateNode, c). We must 

satify both goals of this resolution if we were to satify the original query. 
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4. We search the database from top to bottom and we unify edge (a, IntermediateNode) 

with edge (a, b), instantiating IntermediateNode to b, and resolving to path(b, c). 

5. We unify path(b, c) with the first rule, instantiating Source to b and Destination 

to c, thus resolving to edge (b, c). 

6. We search for edge (b, c) which we can unify to one of the facts, thus returning True 

(recall that we are resolving a ground query). 

Example 1.6. Consider the following Prolog database: 

clerk(jones) . 

clerk(smith) . 

typist(brown). 

manager(patel). 

manager (lee) . 

supervises(X,Y):- manager (X) , clerk(Y). 

supervises(X,Y):- clerk(X) , typist(Y). 

supervises(X,Y):- manager (X) , typist(Y). 

We will follow the search of the query supervises (Supervisor, brown) and describe how 

Prolog deploys unification, instantiation and resolution to perform an evaluation until the 

first successful match. There are three Supervises (X, Y) rules. Prolog will try all of them 

in the order from top to bottom. 

1. Unify supervises (Supervisor, brown) with the rule supervises (X, Y), instanti­

ating Supervisor to X and Y to brown. Resolve to 

supervises (Supervisor, brown) manager (Supervisor) , clerk(brown). 

Prolog tries manager (Supevisor). Unify manager (Supervisor) with manager (patel), 

instantiating Supervisor to patel. Prolog now tries to find clerk(brown) and fails. 
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Unify manager(Supervisor) with manager (lee) , instantiating Supervisor to lee. 

It tries again to find clerk (brown) and it fails. As a result, the first supervises (X, 

Y) fails. 

2. Unify supervises (Supervisor, brown) with the rule supervises (X, Y), instanti­

ating Supervisor to X and Y to brown. Resolve to 

supervises (Supervisor, brown) clerk(Supervisor), typist(brown). 

Unify clerk (Supervisor) with the fact clerk (j ones). Prolog tries typist (brown) 

and succeeds. As a result, the second rule for supervises (X, Y) succeeds. Prolog 

replies Yes and Supervisor = jones. 

Example 1. 7. Consider a declarative database composed by a number of facts of the fol­

lowing procedure: 

likes(Name, Liking). 

Construct a rule likes_to_go_out_wi th (X, Y) that succeeds for two persons X and Y which 

have common interests. 

likes_to_go_out_with(X, Y) .- likes(X, Something), 

likes(Y, Something), 

X \= Y. 

Example 1.8. Consider a declarative database composed ofthe following facts and one rule: 

man(X). 

woman(Y). 

parent(P, C). %% P is the parent of C. 

father(X, Y) :- man(X) , parent (X, Y). 
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1. Let f stand for isFatherOf relation, and a stand for isM aleA ncestorOf relation. Con­

struct a predicate formula, call it A, defining a in terms of f 

2. Translate the predicate into a Prolog rule male_ancestor (A, P) that succeeds if A is 

a male ancestor or P. 

A = \;j x \;j y (j(x, y) ---+ a(x, y)) 

A = \;j x \;j y \;j z (j(x, z) 1\ a(z, y)) ---+ a(x, y)) 

male_ancestor(A, P) .- father(A, P). 

male_ancestor(A, P) .- father(A, P2), male_ancestor(P2, P). 

Example 1.9. On the genealogy database: 

1. Let m stand for man relation, w stand for woman relation, p stand for the isParentOf 

relation, and s stand for the isSibling With relation where the two parameters of the 

last relation are of different gender. Define s in terms of m, wand isParentOf by a 

predicate formula, call it S. 

2. Translate the predicate into a Prolog rule siblings (X, y) that succeeds if X and y 

is a male-female siblings pair. 

For full-siblings we need two common parents: 

S = \;j x \;j y \;j f \;j m (p(j, x) I\p(j, y) I\p(m, x) I\p(m, y) 1\ f -I- m 1\ m(x) 1\ w(y)) ---+ s(x, y)) 

siblings(X, Y) :­

parent(F, X), 

parent(F, Y), 

parent(M, X), 
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parent(M, Y), 

F \= M, 

man(X) , 

woman(Y) . 

For half-siblings we need one common parent: 

s = V x V y V z (p(z, x) /\ p(z, y) /\ m(x) /\ w(y)) ---+ s(x, y)) 

siblings(X, Y) .-

parent(Z, X), 

parent(Z, Y), 

man(X) , 

woman(Y) . 

1.12 Qualifiers 

What if we now wanted to pose a different type of question: "Are all men parents?" We can 

do this with the qualifier forall. 

qualify (X) forall(man(X) , parent (X, _)). 

The body of the rule will be true only if each instantiation of man (X) appears as a first term 

in a parent (X, _) clause. 

7- qualify(X). 

No 
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1.13 Arithmetic operators 

We can evaluate the truth value of an arithmetic expression. The operators +, -, * and / 

denote their respective arithmetic operations and mod denotes the remainder operation. 

The keyword is is a built-in arithmetic operator. It takes an arithmetic expression as its 

right-hand side (RHS) operand and a variable as its left-hand side (LHS) operand. In the 

example below, we are asking if it is true that 7 can be expressed as 6 + 1. 

7- (7 is 6 + 1). 

Yes 

Alternatively we can ask under what conditions a given expression can be evaluated: 

7- (X is 6 + 1). 

X = 7 

No 

7- (X is 7 mod 2). 

X = 1 

No 

We can use arithmetic operators in the definition of rules. For example, we can specify that 

Y is considered the double of X if it can be expressed by the RHS operand of the operator 

is, as defined below: 

double(X, Y) :- Y is X * 2. 

7- double(2, 4). 

Yes 

7- double(3, X). 
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x = 6 

No 

In general, a function that takes n arguments will be represented in Prolog as a relation that 

takes n + 1 arguments, the last one being used to hold the result, as shown in the example 

above. An important point to remember is that all variables on the RHS of the operator is 

must already be instantiated. In the example below, 

7- double(X, 16). 

the variable X that appears on the RHS of is is not instantiated. As a result, the query will 

result in an error. 

1.14 Relational and logical operators 

We can evaluate relational operators such as less than «) as shown below: 

7- 1 < 3. 

Yes 

7- (1 < 3). 

Yes 

Other relational operators are <=, >, >=, and ==, the last one indicating equality. 

We can also have logical operators as in the examples below: 

7- (1 < 3), (4 < 2). 

No 

7- (1 < 3); (4 < 2). 

Yes 
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Example 1.10. Consider function max to return the maximum between two numbers: 

max(X, Y, X) X > Y. 

max(X, Y, Y) '- X < Y. 

The first rule reads "The maximum of X and Y is X, provided that X > Y." 

7- max(9, 5, X). 

X = 9 ; 

No 
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Chapter 2 

Lists I 

A list is a finite ordered sequence of zero or more elements that can be repeated. We can 

only access two things in a list: the first element of the list (head) and the list made up of 

all except the head, called the tail of the list. The number of elements in a list is called the 

length of the list. For example, the list L = (a, b, c, d) has length 4, its head is a and its tail 

is (b, c, d). We will use the notation head(L) and tail(L) to denote the head of L and the 

tail of L. The empty list, denoted by 0 does not have a head or tail. 

Note that 

a =1= (a) =1= ((a)) 

The elements of a list can be any kind of objects, including lists themselves in which case a 

list is said to be nested (as opposed to being fiat). 

L head(L) tail(L) 

(a, (b)) a ((b)) 

((a), (b,c)) (a) ((b,c)) 

(a) a 0 
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2.1 Clauses and lists 

Syntactically, a Prolog list is represented by square brackets [ ... J. The empty list is 

represented as [J. Every non-empty list can be represented in two parts: head and tail. 

Consider the list L = [a, b, c, d, eJ. The notation [H 1 TJ is used to represent a list 

whose head is H and its tail is T. SO L can be represented as 

L= [a, b, c, d, eJ 

= [a [b, c, d, eJ J 

= [a [b [c, d, eJJJ 

= [a [b [c [d, eJ J J J 

= [a [b [c [d [eJJJJJ 

= [a [b [c [d [e 1 [J J J J J J 

Example 2.1. In this example we want to define a clause first/2 which succeeds if an 

element is the head of a list. The rule below, 

first CF, [F 1_]) . 

reads "Clause first succeeds if an element F is found to be the first element of a given list, 

represented as [F 1 J , since we are not really interested in the contents of the tail." 

The query below reads "Is element a the head of the list [a b cJ 7" to which Prolog responds 

with a Yes. 

7- first Ca, [a, b, cJ). 

Yes 

Let us now rephrase the question. We ask "Under what conditions an element is the head 
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of the list [a b c]?" The condition is that an element must be equal to a. Let us translate 

the question in Prolog and see its response: 

7- first(F, [a, b, c]). 

F = a 

which means that the condition under which the statement can be true is when F a. 

Example 2.2. In this example, we want to define a clause c/3 which succeeds if a list can 

be broken down into a head and a tail. The rule below, 

c( [H I T], H , T). 

reads "Clause c succeeds if a list, represented as [H I T], can be broken down into a head H 

and a tail T. 

The query below reads "Given the list [a b c d], is a the head and [b c d] the tail?" to 

which Prolog responds with a Yes. (What type of question is this?) 

7 - c( [a, b, c, d], a, [b, c, dJ). 

Yes 

The query below reads "Given the list [a b c d], what are the head and tail, if any?" 

(What type of question is this?) 

7- c([a, b, c, d], H, T). 

H = a 

T [b, c, d] 
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to which Prolog will respond by providing the conditions under which the statement can be 

true. 

The query below reads "Given the list [J, what are the head and tail, if any?" (What type 

of question is this?) 

7- c( [J, H, T). 

No 

which means that there are no conditions under which the empty list can have a head or 

tail. 

Example 2.3. Consider a procedure to define a predicate member (X, L) which is true if X 

is an element of the list L. An element X is a member of the list L if X is the head of L 

(regardless of what its tail is): 

member(X, [X 1_]) . 

Additionally, X can be a member of L if X is a member of the tail of L (regardless of what 

its head is). 

member(X, [_ITJ) :- member(X, T). 

Let us execute some queries: 

7- member(a, [a, b, cJ). 

Yes 

7- member(e, [a, b, c, d, eJ). 

Yes 

7- member(X, [a,bJ). 

X = a 

X b 

No 
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Let us trace the call to member (e, [a, b, c, d, e]): 

7- member(e, [a, b, c, d, eJ) . 

member(e, [b, c, d, e] ) . 

member(e, [c,d,eJ) . 

member(e, Cd, eJ) . 

member(e, [e] ) . 

Yes 

Example 2.4. In this example, we want to define a clause add/3 which succeeds if a new 

list can be created by placing an element as the head of some other list. The rule below, 

add (X, L, [X I LJ) . 

reads "Clause add succeeds if a new list, represented as [X I L], can be created whose head 

is an element X and whose tail is a list 1." 

The query below reads "Is the list [a, b, c] created when placing element a as the head 

and list [b c] as the tail?" to which Prolog responds with a Yes. 

7- add(a, [b, c], [a, b, c]). 

Yes 

The query below reads "Is the list [a, b, c] created when placing element b as the head 

and list [b c] as the tail?" to which Prolog responds with a No. 

7- add(b, [b, c], [a, b, c]). 

No 

The query below reads "Under what conditions, if any, can a list be comprised with a as its 

head and with the list [b c] as its tail?" to which Prolog provides the condition as the list 

[a b c]. 
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7- add (a, [b, c, dJ, NewList). 

NewList = [a, b, c, dJ 

The query below reads "Under what conditions, if any, an element a can be added to a list 

creating the list [a bed eJ 7" 

7- add(a, L, [a, b, c, d, eJ). 

L = [b, c, d, eJ 

which means that the condition under which the statement can be true is when the list is 

[b c d eJ. 

Example 2.5. In this example, we would like to define a rule last/2 which succeeds if an 

element is the last element of a given non-empty list. We can identify two cases for this: 

1. The list has one element. 

2. The list has more than one element. 

Case 1: The list has only one element. In this case, the last element is the only existing 

element of the list. Let us translate this into Prolog. The following rule, 

last (L, [LJ). 

reads "Rule last succeeds if an element L is found to be the only element of a given list." 

The query below reads "Is element a the last element of the list [aJ 7" to which Prolog 

responds with a Yes. 

7- last (a, [aJ). 

Yes 
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The query below reads "Under what conditions, if any, is an element the last element of the 

list [a]?" 

7- last (L, [a]). 

L = a 

which means that the condition under which the statement can be true is when L a. 

Case 2: The list has more than one element. In this case, we need to reduce the 

problem to the one that can be handled by case 1. In other words, the clause will succeed 

once it chops off all elements, one by one, until it ends up with one element. The following 

rule, 

last (L, [H I T] ) last(L, T). 

reads "Rule last can be proven true for a list whose head is H and whose tail is T, if it can 

be proven true for a new list which is the tail T of the original list." 

In other words, let us get rid of the first element and see if we end up with only one element 

in which case the rule of case 1 will determine that this remaining element is indeed the 

last element. 

However, if after getting rid of the first element we end up with something which has a 

non-empty tail (i.e. there is still more than one element in the list), we must repeat this 

chopping off the head of the list, until we end up with a list which has only one element and 

subsequently handled by the first rule (of case 1). 

The query below reads "Is element c the last element of the list [a b c]?" to which Prolog 

responds with a Yes. 
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7- last(c, [a, b, c]). 

Yes 

The query below reads "Under what conditions, if any, is an element the last element of the 

list [a b c] 7" . 

7- last (L, [a, b, c]). 

L = c 

which means that the condition under which the statement can be true is when L c. 

Example 2.6. Consider the rule size/2 to read in a list and calculate its length: 

size( [] ,0). 

size([HIT] ,N) size(T,N1), N is N1+1. 

We can execute queries as follows: 

7- size ( [] ,N) . 

N = O. 

7- size([a,b,c] ,N). 

N = 3. 

7- size([[a,b] ,c] ,N). 

N = 2. 

7- size([[a,b,c]] ,N). 

N = 1. 
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Example 2.7. Consider the following Prolog program, a2b, which behaves as follows: 

7- a2b([a,a,a,a], [b,b,b]). 

No 

7- a2b([a,a,a,a],[b,b]). 

Yes 

7- a2b([a,a,a,a,a,a], [b,b,b]). 

Yes 

7- a2b( [a,a,a,a], [b]). 

No 

7- a2b([a,d,f,a,a], [b,b]). 

No 

7- a2b( [a,a] , [b]). 

Yes 

7- a2b([a,a], [b,b,b,b]). 

No 

7- a2b([a,a,a,a,a,r], [b,b,b]). 

No 

7a2b([a,a], [b,b]). 

No 

7- a2b( [a,a,a,a], [b,d]). 

No 

Our task is to describe what the program does, and write a Prolog program to perform this 

task. The program takes two lists as arguments, and succeeds if the first argument is a list 

of a's, and the second argument is a list of b's where the list of a's is twice the size of the 

list of b's. 
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The program is as follows: 

;; shortest possible list is the empty list 

a2b ( [J , []) . 

;; need to have two a's for one b 

a2b([a,aITaJ, [bITbJ) :- a2b(Ta, Tb). 

2.2 Controlling backtracking with 'cut' 

Recall the rule member /2: 

member(X, [X 1_]) . 

member(X, [_ITJ) :- member(X, T). 

If the first clause succeeds, it would be inefficient to attempt to satisfy the second. Prolog 

provides a special built-in predicate called 'cut' and spelled'!.' When called, the 'cut' always 

succeeds and removes any alternative choices. We can now re-write the above example as 

follows: 

member(X, [XI_J) :- !. 

member(X, [_ITJ) :- member(X, T). 

Let us execute the program: 

7- member(a, [a, b, cJ). 

true. 

7- membered, [a, b, cJ). 

false. 

7- member(X, [a, b, cJ). 

X = a. 



57

We see that in the last case the interpreter discards alternative choices once it has found an 

instantiation for variable X. 

The 'cut' can also be used to specify mutually exclusive cases. Consider the rule max/3: 

max(X, Y, X) X >= Y. 

max(X, Y, Y) .- X < Y. 

A version using 'cut' would be as follows: 

max(X, Y, X) :- X >= Y, !. 

max(X, Y, Y). 

Let us execute the program: 

7- max(5, 3, X). 

X = 5. 

7- max(5, 7, X). 

X = 7. 

If the first clause succeeds, the 'cut' ensures that the second clause is disregarded as an 

alternative choice and it is never evaluated. 

Let us now try a ground query as follows: 

7- max(10, 0, 0). 

true. 

Why is that? The first clause fails, and Prolog evaluates the second clause which now 

succeeds. To rectify this we can re-write the rule as follows: 

max(X, Y, X) .- X >= Y, !. 

max(X, Y, Y) X < Y. 
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Let us now re-try the previous ground query: 

7- max(10, 0, 0). 

false. 

2.3 List construction with findall 

The built-in function findall(X,P,L) returns a list L with all values for X that satisfy 

predicate P. For example, for the database below 

likes (bill, movies). 

likes (bill, walks). 

likes (j ames, beer). 

likes (peter, beer). 

likes (peter, movies) . 

likes (mike, soccer). 

likes (mike, walks). 

likes (michael, cars). 

the query findall(X,likes(X, movies), L). will return L [bill, peterJ. 

The built-in function list_to_set (List, Set) converts a list (with possibly repeated ele­

ments) into a set. For example, lisLto_set( [a, b, b, a, cJ, X). will return X = [a, 

b, cJ. 

Finally, the built-in function length (List, L) returns the length L of a given list. For 

example, length ( [a, b, cJ, X). will return X = 3. 

Example 2.8. Construct a Prolog rule qualifies_foLbenefits (P) that succeeds if P is 

a mother of more than three children. 
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womanCP), 

findallCP, parentCP, _), L), 

lengthCL, N), 

N >= 3. 

Example 2.9. Define a Prolog procedure second_to_last CA, L) that succeeds when A is 

the second to last element in a list L. Sample runs are shown below: 

7- second_to_lastCa, []). 

false. 

7- second_to_lastCa, [a,b]). 

true. 

7- second_to_lastCa, [a,b,c,d,e,f]). 

false. 

7- second_to_lastCX, [a,b,c,d,e,f]). 

X = e. 

The procedure is as follows: 

second_to_lastCA, [A,_]). 

second_to_lastCA, [_IT]) :- second_to_lastCA, T). 
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Example 2.10. Consider the following database: 

object(sun). 

object(mercury). 

object(venus). 

object(earth). 

object(mars) . 

object(jupiter) . 

object(saturn). 

object(uranus). 

object (neptune) . 

object(pluto). 

object(moon) . 

object(deimos). 

object(phobos). 

object(arche). 

object(callisto). 

object(europa). 

object(io). 

object(themisto). 

object(atlas). 

object(calypso) . 

object(helene). 

object(desdemona). 

object(titania) . 

object(despina) . 

object (galatea) . 

ob j ect Clarissa) . 

object(thalassa). 
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mass (mercury, 0.33). %% mass in 10~24 KG 

mass (venus , 4.87). 

mass (earth, 5.98). 

mass (mars , 0.64). 

mass(jupiter, 1900). 

mass (saturn, 569). 

mass (uranus , 569). 

mass (neptune , 86.8). 

mass(pluto, 0.02). 

orbits (mercury, sun). 

orbits (venus , sun). 

orbits(earth, sun). 

orbits (mars , sun). 

orbits(jupiter, sun). 

orbits (saturn, sun). 

orbits (uranus , sun). 

orbits (neptune , sun). 

orbits(pluto, sun). 

orbits (moon, earth). 

orbits(deimos, mars). 

orbits (phobos , mars). 

orbits(arche, jupiter). 

orbits(callisto, jupiter). 

orbits (europa, jupiter). 

orbits(io, jupiter). 

orbits (themisto , jupiter). 

orbits(atlas, saturn). 

orbits (calypso , saturn). 

orbits(helene, saturn). 
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orbits (desdemona, uranus). 

orbits(titania, uranus). 

orbits (despina, neptune). 

orbits (galatea, neptune). 

orbits(larissa, neptune). 

orbits (thalassa, neptune). 

Suppose we let obj stand for the is Object relation, let orb stand for the orbits relation and 

let p stand for isPlanet relation. We can define a formula (call it P), to say that if 0 is an 

object with mass equal to or greater than 0.3 and 0 orbits around the sun, then we conclude 

that 0 is a planet. We use mass( 0) to represent the mass of object o. 

P = Vo (obj(o) 1\ (mass(o) >= 0.3) 1\ orb(o, sun)) -+ p(o)) 

We can now define a rule, planet (P), for the isPlanet relation: 

planet(P) .- object(P), mass(P, M), M >= 0.3, orbits(P, sun). 

Consider the following query and its result: 

7- planet (X) . 

X = mercury 

X venus 

X earth 

X = mars , 

X jupiter 

X saturn 

X uranus 

X neptune 

false. 
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Let 8 stand for isSatellite relation. We can define a formula (call is S), to say that if an 

object 0 orbits around a planet, then we conclude that 0 is a satellite. 

s = VoVx (obj(o) 1\ orb(o, x) 1\ p(x)) ---+ 8(0)) 

We can now define a rule, satellite (S), for the isSatellite relation: 

satellite(S) .- object(S), orbits(S, P), planet(P). 

Consider the following query and its result: 

7- satellite(X). 

x = moon , 

X deimos 

X phobos 

X arche, 

X callisto 

X europa 

X io, 

X themisto 

X atlas, 

X calypso 

X helene, 

X desdemona 

X titania 

X despina 

X galatea 

X larissa 

X thalassa. 

We can deploy rule planet (P) to define a new rule obtain_satellites (P, L) which suc­

ceeds when P contains all satellites in the collection 1. 
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Recall that the query 

findall(Dbject, Goal, List). 

produces a list List of all the objects Db j ect that satisfy the goal Goal. 

obtain_satellites(P, L) planet(P), findall(S, orbits(S, P), L). 

Consider the following query and its result: 

7- obtain_satellites(P, L). 

P = mercury, 

L [] , 

P venus, 

L [] , 

P earth, 

L [moon] 

P = mars, 

L [deimos, phobos] 

P jupiter, 

L [arche, callisto, europa, io, themisto] 

P saturn, 

L [atlas, calypso, helene] 

P uranus, 

L = [desdemona, ti tania] 

P neptune, 

L [despina, galatea, larissa, thalassa] 

false. 

The above query contained two variables, so the result considered all possible sucessful pairs. 

How about if we wanted to obtain the satellites for planet Mars? 
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7- obtain_satellites (mars , L). 

L = [deimos, phobosJ. 

We deploy rule obtain_satellites (P, L) to define a new rule moonless (P) which succeeds 

when P contains no satellites. 

moonless(P) obtain_satellites(P, L), length(L, 0). 

We can now invoke this rule as follows:: 

7- moonless(X). 

X = mercury 

X = venus 

false. 

Phobos is an object in our solar system. Is Phobos a satellite? Let us translate this question 

into a query. What type of query would that be? The query would be satellite (phobos) . 

and it is a ground query. 

Let us demonstrate step-by-step how the above query proceeds until indicating success or 

failure. We want to explain this only in terms of unification, instantiation and resolution 

and substitution: Prolog will search the database from top to bottom trying to find a clause 

that can be matched with the query. The query satellite (phobos) will unify with the rule 

satelli te (S) rule, instantiating S to phobos. Resolution will apply the substitution of the 

variables and produce a new rule: 

satellite(phobos) :- object(phobos), orbits (phobos, P), planet(P). 

All three goals in the body of the rule have to be satisfied for the head of the rule to be 

satisfied. 

1. The first goal is unified with the fact obj ect (phobos) . 
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2. The second goal is unified with the fact orbits (phobos, mars). instantiating P to 

mars. 

3. Prolog will now try to satisfy the third goal. It will unify planet (mars) with the 

rule planet (P) instantiating P to mars. Resolution will apply the substitution of the 

variables and produce a new rule: 

planet (mars) object(mars), mass (mars , M), M >=0.3, orbits (mars , sun). 

4. The first and fourth goals are unified with the facts object (mars) , and orbits (mars, 

sun) respectively. The second goal unifies with the fact mass (mars, 0.64) instanti­

ating M to 0.64. The third goal will be evaluated and succeed. As a result the original 

query succeeds. 
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Chapter 3 

Finite state machines 

A finite state machine (FSM) (or state machine, or finite state automaton), is an abstract 

model of a machine with a primitive internal memory. The behavior of an FSM is composed 

of a finite number of states, transitions between those states, and possibly actions. In 

the example of Figure 3.1 the machine includes two states state 1 (the initial state) and 

state 2. While at state 1, if event event a occurs, there is a transition to state state 2. 

Similarly, while at state 2 if event b occurs, there is a transition to state 1. 

A parser state machine (also: acceptor, recognizer, sequence detector) produces a binary 

output, accepting or rejecting an input. On the other hand, a transducer generates output 

(take an action) based on a given input and/or a state. 

3.1 Deterministic finite state machines 

Formally, a parser state machine is defined as a 5-tuple (read: "quintuple") as follows: 

(Q, L" 6, qo, F) 

where 

• Q is a finite, non-empty set of states. 

• L, is a finite, non-empty set of symbols, called the input alphabet. 



68

event a 

state 1 state 2 

eventb 

Figure 3.1: An example finite state machine. 

• 6 is a state transition function: 6 : Q x ~ ----+ Q. This function defines a deterministic 

finite state machine as opposed to a nondeterministic finite state machine whose state 

transition function returns a set of states. 

• qo E Q is the initial state. 

• F c Q is a set of final states. 

What does it mean "to execute a parser FSM over an input alphabet ~"? Given an FSM and 

a string w in ~*, the FSM accepts each one of the letters of w as input (from left to right) 

following a path starting from the start state. Each letter causes a state transition from the 

start state to the next and so forth. If this path eventually ends in the final state, then we 

say that the FSM accepts w. Otherwise we say that the FSM rejects w. The language of an 

FSM is the set of all strings that it accepts. 

3.2 Deterministic finite state machines for a regular 

. expreSSIon 

Suppose we need to build a deterministic FSM to recognize the language represented by the 

FSM of Figure 3.2. The following are valid strings: aab, aaaab, babaab, bbabaab, aababaab. 

All valid strings end in aab. 
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b a 

a 

b 

Figure 3.2: A deterministic finite state machine. 

We can represent the states and their transitions with a transition table as follows: 

a b 

initial state qo ql qo 

ql q2 qo 

q2 q2 q3 

final state q3 ql qo 

3.3 A logic program interpreter for deterministic FSMs 

In problems of this kind, we need two pieces of information: a) the representation of an 

FSM by a sequence of facts, and b) an interpreter to recognize a language. The interpreter 

is made up of a sequence of rules and the language that it is meant to recognize is expressed 

as a regular expression. 

FSM representation 

We can represent an FSM by facts of the following form: 

start (state) . 

transition(currentState, condition, nextState). 
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end(state). 

The start and final states can be taken directly from the figure, whereas the transitions can 

be more easily taken from the transition table. 

start (qO) . 

final(q3) . 

transition(qO, a, q1). 

transition(qO, b, qO). 

transition(q1, a, q2). 

transition(q1, b, qO). 

transition(q2, a, q2). 

transition(q2, b, q3). 

transition(q3, a, q1). 

transition(q3, b, qO). 

Building an interpreter 

Given a set of facts as above, we need to build rules to determine whether or not a given 

string can be accepted by the FSM. A string w is accepted by an FSM if its reading from left 

to right (i.e. each symbol in turn is taken as a condition which determines some transition) 

causes a path from the start state to the final state. 

Consider a predicate accept (Xs), where Xs is a an input string, represented by a list. A 

parsing is only valid if initiated from the start state. 

accept(Xs) start(Q), path(Q, Xs). 

The second goal above needs to be defined as a new rule. While at the start state Q, a string 

Xs will be accepted if its head causes a transition to a new state Q1 as well as if starting 

from Q 1 the tail of Xs is accepted. 
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path(Q, [XIXs]) transition(Q, X, Ql), path(Ql, Xs). 

If our input string is valid, we will eventually reach the final state, having exhausted all 

symbols in the string, i.e. once we reach the final state and we have an empty string. 

path(Q, []) final(Q) . 

Putting everything together, we can provide the full listing of our interpreter program for 

the FSM of Figure 3.2 as follows: 

start (qO) . 

final(q3) . 

transition(qO, a, ql). 

transition(qO, b, qO). 

transition(ql, a, q2). 

transition(ql, b, qO). 

transition(q2, a, q2). 

transition(q2, b, q3). 

transition(q3, a, ql). 

transition(q3, b, qO). 

accept(Xs) :- start(Q), path(Q, Xs). 

path(Q, [XIXs]) :- transition(Q, X, Ql), path(Ql, Xs). 

path (Q , []) : - final( Q) . 

We are now ready to execute the interpreter program: 

7- accept([a,a,b]). 

Yes 

7- accept([a,a,b,a,b,a,a,b]). 

Yes 
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7- accept ( [] ) . 

No 

7- accept([b,a,a]). 

No 

7- accept([b,b,b,b,b,a,a,a]). 

No 

7- accept([a,a,b,a]). 

No 
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Chapter 4 

Boolean algebra and digital gates 

In this chapter we will deploy clauses to model and simulate Boolean expressions and digital 

circuits. 

4.1 Boolean operations 

We have already seen that a proposition is a sentence that is either true or false (but not 

both). Many statements can be constructed by combining one or more propositions. New 

propositions, called compound propositions, can be formed from existing propositions us­

ing logical operations (or logical connectives) which are expressed as functions, called truth 

functions. Commonly used logical connectives include: 

Conjunction (and connective) constructs a new proposition whose truth value is true if 

both of its operands are true, otherwise is false. It is denoted by x, 1\, or ., e.g. p x q. 

Many authors prefer to omit the conjunction symbol and simply write pq instead of 

p x q. 

Disjunction (or connective) constructs a new proposition whose truth value is true if either 

or both of its operands are true, otherwise is false. It is denoted by +, or V, e.g. p + q. 

Inverse (not connective) constructs a new proposition whose truth value is the reverse truth 

value of its operand. It is denoted by', rv, or ---'. Some authors use q to denote the 

inverse of proposition q. 
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The relationships between the truth values of the above compound propositions can be 

displayed in a truth table as follows: 

x y x' xxy x+y 

1 1 0 1 1 

1 0 0 0 1 

0 1 1 0 1 

0 0 1 0 0 

We can define procedures to represent logical connectives in Boolean algebra and conse­

quently digital gates which are the building blocks of digital circuits. In defining clauses, we 

will follow the convention operation (in, out) to denote an operation whose input is in and 

whose output is out. For example, the Boolean operation I (inverse) is a unary operation 

whose procedure inv will include the clause 

invCO, 1). 

which reads "The inverse of 0 is 1." 

The Boolean operation or is a binary operation whose procedure or will include the clause 

orCO, 1, 1). 

which reads "The disjunction of 0 and 1 is 1." 

Knowing the truth-table definitions for Boolean operations, we can define the corresponding 

procedures as follows: 

and (1, 0, 0). 

and Co, 1, 0). 

andCO, 0, 0). 

and (1, 1, 1). 
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or (1 , 0, 1). 

orCO, 1, 1). 

orCO, 0, 0). 

or (1 , 1, 1). 

invCO, 1). 

inv(1, 0). 

The above would be enough to be able to represent any Boolean expression. However, for 

convenience we can also define operations nor (not or), xor (exclusive or), and nand (not 

and) as follows: 

nand (1, 0, 1). 

nand CO, 1, 1). 

nand CO, 0, 1). 

nand (1, 1, 0). 

nor (1 , 0, 0). 

norCO, 1, 0). 

norCO, 0, 1). 

nor (1 , 1,0). 

xor(1, 0, 1). 

xorCO, 1, 1). 

xorCO, 0, 0). 

xor(1, 1,0). 
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x ----------, 

- (xAND V') OR Y 

y 

Figure 4.1: Digital circuit for the expression (x x y') + y. 

4.2 Evaluating Boolean expressions 

We can build rules to represent Boolean expressions. Consider the expression (x x y') + y 

whose truth table is given below: 

x y y' x x y' (x x y') + y 

1 1 0 0 1 

1 0 1 1 1 

0 1 0 0 1 

0 0 1 0 0 

The expression can be built as the digital circuit shown in Figure 4.1. We can define a rule 

to represent the Boolean expression (and consequently the digital circuit) as follows: 

circuit(X, Y, Out) :­

inv(Y, Tmp1) , 

and(X, Tmp1, Tmp2) , 

or (Tmp2, Y, Out). 
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We can now test the digital circuit by executing queries over particular input sequences as 

follows: 

7- circuit(1, 1, Out). 

Out = 1 . 

7- circuit(1, 0, Out). 

Out = 1 . 

7- circuit(O, 1, Out). 

Out = 1 . 

7- circuit(O, 0, Out). 

Out = ° . 
We can ask questions that correspond to ground and non-ground queries. For example, we 

can ask "Is it indeed the case that for X = 1 and for Y = 1, the output is 17", and the 

corresponding query is 

7- circuit(1, 1, 1). 

true 

We can also ask questions like "For what input values, if any, is the output 07" 

7- circuit(X, Y, 0). 

0, x 

Y ° . , 

false. 

We can also simulate the digital circuit by executing the program as follows: 

7- circuit(X, Y, OUT). 

x 0, 

Y 0, 

OUT = ° 
x = 1, 
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Y = 0, 

OUT = 1 

X 1, 

Y 1, 

OUT = 1 

X 0, 

Y 1, 

OUT = 1 

false. 

It turns out that the Boolean expression of this example (and its corresponding digital circuit) 

can be simplified to a single logic gate or. How can we be sure? If we use simulation to 

investigate the behavior of the two circuits, then we see that for the same input, the output 

of the two circuits is the same. 

7- or(X, Y, OUT). 

X 1, 

Y 0, 

OUT = 1 

X 0, 

Y 1, 

OUT = 1 

X 0, 

Y 0, 

OUT = ° 
X 1, 

Y 1, 

OUT = 1. 
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Part II 

Functional Programming with 

Common Lisp (CL) 
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Chapter 5 

Lists II 

Written in 1958, Lispl is a family of programming languages and the second-oldest high-level 

programming language in use today2. We will adopt Common Lisp3 (CL), one of the two 

most widely known dialects4 of Lisp to model, construct and manipulate lists and subse­

quently define functions. 

A list is the central notion of functional programming. An element of a list can be either an 

atom or a list. A list can also be empty. Consider the following examples: 

() 

(1357) 

((1 2) (3 4)) 

( ((1 2) (3 4))) 

(a (b 1) 2) 

The empty list. 

A list of four elements, the numbers 1, 3, 5, and 7. 

A list of two elements, the list (1 2) and 

the list (3 4). 

A list of one element, the list ((1 2)(3 4)). 

A list with three elements: the symbol a, 

the list (b 1) and the number 2. 

1 Historically known as LISP as this is an abbreviation of LISt Processing. 
2The oldest high-level language in use today is Fortran. 
3 ANSI INeITS 226-1994 (R2004). 
4The second most widely known dialect of Lisp is Scheme. 
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5.1 Expressions and functions 

A function f is a mapping from each element in a set A to exactly one element in a set B. 

The function is denoted by f : A -+ B. The set A is the domain of f and the set B is the 

codomain of f. We also say that f has type A -+ B. 

If f (x) = y, then x is called an argument of f, and y is called a value of f. If the domain of 

f is the Cartesian product Al x ... x An, we say f has arity n. 

Expressions are written as lists, using prefix notation. Prefix notation is a form of notation 

for logic, arithmetic, and algebra. It places operators to the left of their operands. For 

example, the (infix) expression 14 - (2 x 3) is written as (-14(x23)). 

The first element in an expression list is the name of a function and the remainder of the 

list are the arguments: 

(functionN ame arguments) 

When an expression is evaluated, it produces a value (or list of values), which then can be 

embedded into other expressions. In the above example, (* 2 3) will invoke the * (mul­

tiplication) function on the arguments 2 and 3 returning 6 which will in turn become the 

second argument to the invocation of the - (subtraction) function which will return 8. This 

shows that we can invoke Lisp as a calculator. 

As in arithmetic, we can nest expressions. Nested expressions are evaluated by reducing 

the innermost parenthesized expressions to numbers, followed by the next layer, and so on. 

Unlike in regular arithmetic where multiplication has priority over addition the evaluation 

of prefix expressions is unambiguous. For example, the expression 

a b x c 
d x e + f 
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is translated in prefix notation as 

(/(-a(*bc)) (+(*de)f)) 

The term arity is used to describe the number of arguments or operands that a function 

takes. A unary function (arity 1) takes one argument. A binary function (arity 2) takes two 

arguments. A ternary function (arity 3) takes three arguments, and an n-ary function takes 

n arguments. Furthermore, variable arity functions can take any number of arguments. For 

example, 

(+ 1 2 3 4) 

(* 2 3 4) 

« 1 3 2) 

Equivalent to infix (1 + 2 + 3 + 4). Returns 10. 

Equivalent to infix (2 * 3 * 4). Returns 24. 

Equivalent to (1 < 3 < 2). Returns false (NIL). 

5.2 Prohibiting expression evaluation 

The sub expressions of a procedure application are evaluated, whereas the subexpressions of 

a quoted expression are not. 

(/ (* 2 6) 3) 

'(/(*26)3) 

Returns 4. 

Returns (/ (* 2 6) 3). 

5.3 Boolean operations 

Lisp supports Boolean logic with operators and, or, and not. The two former have variable 

arity, and the last one is a unary operator. 

The or Boolean operator evaluates its subexpressions from left to right and stops immediately 

(without evaluating the remaining expression) if any subexpression evaluates to true. In the 

example below the or function will return true which is the value of (> x 3). Note that 

the values true/false are denoted in Lisp by t/nil respectively. 
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> (let ((x 5)) 

(or « x 2) (> x 3))) 

T 

The and Boolean operator evaluates its sub expressions from left to right and stops immedi­

ately (without evaluating the remaining expression) if any subexpression evaluates to false. 

In the example below the and function will return nil which is the value of « x 3). 

> (let ((x 5)) 

(and « x 7) « x 3))) 

NIL 

Consider another example: 

>(or (and (= 1 1) « 5 6)) (not (> 3 1))) 

T 

5.4 Constructing lists 

We have three mechanisms to create a list which are summarized below: 

1. cons: creates a list by adding an element as the head of an existing list. 

2. list: creates a list comprised of its arguments. 

3. append: creates a list by concatenating existing lists. 

Constructing lists with cons 

Function cons constructs a new list by adding a new element at the head of an existing list. 

For an element h and a list L, cons(h, L) denotes a list whose head is h and whose tail is L. 

Consider the following examples: 

cons(a, 0) = (a) 



85

cons(a, (b, c)) = (a, b, c) 

For any non-empty list L, the operations cons, head and tail are related as follows: 

cons(head(L) , tail(L)) = L 

The function cons is a binary function: it expects two arguments, an element and a list. If 

an element is added to an empty list, then cons is essentially used to create a list, as in the 

first of the examples below: 

(cons 'a '0) 

(cons 1 '(2 3)) 

(cons' (1 2) '(3 4)) 

Returns (a). 

Returns (1 2 3). 

Returns ((1 2) 3 4). 

A list in Lisp is singly-linked where each node is a pair of two pointers, the first one pointing 

to a data element and the second one pointing to the tail of the list with the last node's 

second pointer pointing to the empty list (See Figure 5.1). 

For example, the list (a) can be constructed (and represented) as (cons 'a '0) or (cons 

'a nil). 

> (cons 'a '0) 

(A) 

(cons 'a nil) 

(A) 

The list (a b) can be constructed as (cons 'a (cons 'b '0)) or (cons 'a (cons 'b 

nil)) . 

> (cons 'a (cons 'b 'C))) 

(A B) 

> (cons 'a (cons 'b nil)) 

(A B) 
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> ( cons 'a '(» 
(A) 

---1 J I nil 

a 

or alZI 

> (cons 'a (cons 'b '(») 
(A B) ---1 I I ~ I I nil I 

a b 

> (cons 'a (cons (cons 'b (cons 'e '(») 
(cons 'd (cons' e '(»») 

(A (B C) D E) 

a d 

b c 

Figure 5.1: List representations. 

e 

The list (a (b c) d e) can be constructed as (cons 'a (cons (cons 'b (cons 'c '0)) 

(cons 'd (cons 'e 'C))))). 

> (cons 'a (cons (cons 'b (cons 'c 'C))) (cons 'd (cons 'e 'C))))) 

(A (B C) D E) 

5.5 Mutability 

An object is said to be mutable (as opposed to immutable) if it can be modified once it is 

created. In the example (cons '(a b) '(c d)) the function cons produces a new list, as 

opposed to modifying any of its list arguments. 

Example 5.1. Consider the following sequence of list constructions using cons: 

> (cons (+ 2 3) '(b c)) 
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Is the above syntactically correct? Yes, because there are indeed two arguments supplied to 

cons and the second argument is a list. Here, the parenthesized form (+ 2 3) is evaluated 

and replaced by an element, 5, which is now the head of a newly created list, whose tail is the 

list (b c) passed as a second argument. As a result, the function will return the list (5 B C). 

What if we had placed a quote in front of the first argument, i.e. 

>(cons '(+ 2 3) '(b c)) 

Lisp would not proceed to evaluate the expression, thus taking the parenthesized form as is. 

The result would be the list (( + 2 3) B C). 

Consider the following: 

> (cons a) 

Is this syntactically correct? No, because there are two errors here. First, a cannot be 

evaluated. Second, there is only one argument. A list as a second argument is missing. As 

a result, the function will return Error (The variable A is unbound.) 

How about the following: 

> (cons 'a) 

Is this syntactically correct? No, because there is only one argument. Even though we use 

quotation to tell Lisp not to evaluate a, a list (as a second argument) is missing. As a result, 

the function will return Error (The call does not match definition.) 

Consider the following: 

> (cons 'a '()) 

Is this syntactically correct? Yes, because we have an element and a list. This creates a new 

list whose head is a, and whose tail is the list passed as the second argument (the empty 
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list). As a result, the function will return (A). 

Yet one more example: 

> (cons 'a '(b cd)) 

Is this syntactically correct? Yes, because we have an element and a list. This is very similar 

to the previous problem, only the second argument is not the empty list. As a result, the 

function will return (A BCD). 

Constructing lists with list 

Function list takes any number of arguments and constructs a list comprised of these 

arguments. Function list has variable arity, i.e. it can take any number of arguments. 

(list 1 2 'a 3) 

(list 1 '(2 3) 4) 

(list '( + 2 1) (+ 2 1)) 

(list 1 2 3 (list 'a 'b 4) 5) 

Returns (1 2 A 3). 

Returns (1 (2 3) 4). 

Returns ((+ 2 1) 3). 

Returns (1 2 3 (a b 4) 5). 

Example 5.2. Consider the following sequence of list constructions using list: 

> (list a 1) 

Is this syntactically correct? No, because a cannot be evaluated. If we wanted to pass it 

as an element, we needed to precede it with a quote. As a result, the function will return 

Error (The variable A is unbound). 

Consider the following: 

> (list 'a 1) 

This is very similar to the above, only now we tell the interpreter not to attempt to evaluate 

a. The function will create a list with all its arguments as its elements and will return (A 1). 
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One more example: 

> (list 'a '()) 

Note that as a list can be nested (i.e. it can contain other lists), the empty list is a valid list 

element. The function will return (A NIL). It is interesting to query on the length of this 

list with the built-in function length: 

> (length (list 'a 'C))) 

2 

Let us now extend the previous problem: 

> (list 'a '() '() '()) 

This will create and return the list (A NIL NIL NIL). What is the length of this list? 

> (length (list 'a '() '() '())) 

4 

Consider the following: 

> (list 'a) 

This will create the singleton list (A). 

One more example: 

> (list (a b) 2) 

Is this syntactically correct? No, because Lisp will attempt to resolve (a b) (remember: 

it assumes that it is an expression to be evaluates) but will fail. As a result, the function 

will return Error (Undefined operator A in form (A B)). From the error message you can 

see that it assumes the first element ofthe parenthesized form, a, to be an operator (function). 
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A slight variation: 

> (list '(a b) 2) 

This is very similar to the above, only now we tell the interpreter not to attempt to evaluate 

(a b). This will create a list with two elements, the first of which is the list (a b): ((A B) 

2) . 

How about an example where we have compound list constructions? 

> (list (list 'a 'b) 2) 

Whenever you see examples like this, work your way from the innermost parentheses out­

wards. The inner parenthesis contains function list which takes two arguments and it will 

create the list (a b). Thus, the outer function is now interpreted as (list '(a b) 2), and 

it will return ((A B) 2). 

Yet another compound list construction: 

> (list (cons 'a (cons 'b 'C))) 2) 

We follow exactly the same approach like the previous problem: We work our way from the 

innermost parentheses outwards. The innermost cons will create the list (b), thus making 

the outer cons as (cons 'a '(b)) which returns the list (a b). The list (a b) will be the 

first element in a newly created list, whose second (and last) element is 2. Thus, the list 

function will now create the list ((A B) 2). 

Constructing lists with append 

Concatenation is the operation of joining two sequences of elements end to end. Concatena­

tion can be applied to strings or lists. In the latter case, we can demonstrate the operation 

of concatenation with the following example: 

concatenate( ( a, b), (c, d)) ---+ (a, b, c, d) 
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Function append constructs a new list by concatenating any number of lists that are supplied 

as its arguments. Much like list, function append has variable arity, i.e. it can take any 

number of arguments. There is a restriction on the types of its arguments: they must all be 

lists. 

(append '(1 2) '(3 4)) 

(append '(1 2 3) '0 '(a) '(5 6)) 

(append '(1 2 3 '(a b c)) '0 '(d) '(4 5)) 

Returns (1 234). 

Returns (1 2 3 a 5 6). 

Returns (1 2 3 (QUOTE (a be)) d 4 5). 

Note that append expects only lists as its arguments. The following call to append will cause 

an error since the first argument, 1, is not a list. 

> (append 1 '(4 5 6)) 

Error: 1 is not of type LIST. 

To create the list (1 4 5 6) we must first transform 1 into a list: 

> (append (list 1) '(4 5 6)) 

(1 4 5 6) 

Example 5.3. Consider the following sequence of list constructions using append: 

First, our intention is to create the list (a b c). 

> (append 'a '(b c)) 

Is the above syntactically correct? No, because the first argument is not a list. As a result, 

the function will return an Error (A is not of type LIST). What if we insisted to create the 

list (a b c) using append? We must transform the first argument from an atom to a list. 

We have a few options here as shown below: 

> (append '(a) '(b c)) 

(A B C) 
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> (append (cons 'a 'C)) '(b c)) 

(A B C) 

> (append (list 'a) '(b c)) 

(A B C) 

Consider the following evaluation: 

> (append (cons 'a 'C)) (list 'b 'c)) 

We have nested expressions, therefore we must work our way from the innermost outwards. 

The first expression will create the list (a) and the second expression will create the list (b 

c). The outermost expression now becomes (append '(a) '(b c)) and it will create the 

list (A B C). 

Consider the following: 

> (append '() '(a) '(b c) '()) 

This problem is straightforward. Function append will concatenate all elements of all its list 

arguments, returning (A B C). 

Yet one more example: 

> (append '(nil) '(a) '(b c) '()) 

As in the previous problem: Function append will concatenate all elements of all its list 

arguments and it will return (NIL A B C). 

Example 5.4. At first, the following expression may seem rather complicated: 

> (append (list 'a '(c d)) (cons 'f (list 'g (cons 'k 'C))))) 
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Do not get intimidated with problems like this. The approach should always be the same: 

Let us work our way from innermost parenthesized expressions outwards. There are two 

expressions which are passed as arguments to append, both of which are evaluated as lists 

(thus the form is syntactically correct) . 

• First argument: (list 'a '(e d)) will return the list (a (e d)) . 

• Second argument: 

(cons 'k '()) will return the list (k). 

(list 'g (cons 'k '0)) is now interpreted as (list 'g '(k)), 

returning the list (g (k)). 

- (cons 'f (list 'g (cons 'k '0))) is now interpreted as (cons 'f '(g (k))), 

returning the list (f g (k)). 

The outermost expression can thus be interpreted as 

> (append '(a (e d)) '(f g (k))) 

and it will return (A (C D) F G (K)). 

5.6 Accessing a list 

We can only access either the head of a list, or the tail of a list. Hence, only two operations 

are available: car and cdr. The names are indeed cryptic. Operation car is sometimes 

referred to (and implemented) as first, and operation cdr is referred to and implemented 

as rest5 . In this text we will adopt car, erd. 

Operation car takes a list as an argument and returns the head of the list. Note that the 

head of a list can be either an atom or itself a list. For example, 

5If your Lisp implementation supports both notations, my suggestion is to adopt one pair only, i.e. chose 
between car/cdr and first/rest and keep a consistency. It is confusing to mix the two notations. 
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(car '(a s d f)) 

(car '((a s) d f)) 

Returns a. 

Returns (a s). 

Operation cdr takes a list as an argument and returns the tail of the list. Note that the tail 

of a list is itself a list. For example, 

(cdr '(a s d f)) 

(cdr '((a s) d f)) 

(cdr '((a s) (d f))) 

Returns (s d f). 

Returns (d f) . 

Returns ((d f)). 

In the following example, we are interested in accessing the second element in a list. The 

second element is the head of the tail of the list: 

(car (cdr '(1 (3 5) (7 11)))) ; Returns (3 5). 

Example 5.5. Consider the following operations to construct and access a list: 

> (car (list' () '(a be))) 

NIL 

As in previous examples, we should work our way from the innermost parentheses outwards. 

The inner function list will create the list (nil (a b c)). This list has two elements. 

Function car will return the head of this list. It so happens that the head is not an atom, 

but a list. In fact it is the empty list. 

What if instead of the head we wanted to obtain the tail of the list? The tail of any list is a 

list containing all elements except the first (head). 

> (cdr (list' () '(a be))) 

((A B C)) 

This list contains one element which is itself the list (a b c). 
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Consider the following: 

> (cdr (append '0 '0 '0)) 

Function append will concatenate all elements of all (list) arguments. There are no elements 

in its arguments, so the result is the empty list: NIL. There is no tail to the empty list, thus 

the result is NIL. 

How about if in the previous example, we used list instead? 

> (cdr (list '0 '0 '0)) 

Unlike function append which looks at the contents of its arguments, function list will take 

all its arguments (even if empty) as elements in the newly created list, i.e. the result of 

(list '0 '0 '0) is the list (nil nil nil). The tail of this list is the list (nil nil). 

Example 5.6. Consider the following expression evaluation: 

(append (list 'b 'Cd e) (* 2 3)) (cons '(+ 2 3) (list 'f (cons 'g 'C))))) 

Let us work our way from innermost to outermost expressions: 

> (list 'b 'Cd e) (* 2 3)) 

(B (D E) 6) 

> (cons '(+ 2 3) (list 'f (cons 'g 'C)))) 

((+ 2 3) F (G)) 

The value of the outermost expression is (B (D E) 6 (+ 2 3) F (G)). Its length is 6. 

Exam pIe 5.7. Consider the following expression evaluation: 

(list (append '( + 1 4) '0 (list '0 '0)) 

(cons (+ 1 4) (list 'a (cons (+ 1 7) '0)))) 
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Let us work our way from innermost to outermost expressions: 

> (append '( + 1 4) '() (list '() '())) 

(+ 1 4 NIL NIL) 

> (cons (+ 1 4) (list 'a (cons (+ 1 7) '()))) 

(5 A (8)) 

The value of the outermost expression is (( + 1 4 NIL NIL) (5 A (8))). Its length is 2. 

Example 5.8. Consider the following expression evaluation: 

(car (cdr (cdr (append (list 'C) '(a)) 

(cons 'b (list (+ 2 3 4))))))) 

Let us first evaluate the values of the two expressions supplied as arguments to function 

append: 

> (list '() '(a)) 

(NIL (A)) 

> (cons 'b (list (+ 2 3 4))) 

(B 9) 

Thus, the append expression becomes 

(append (list 'C) '(a)) (cons 'b (list (+ 2 3 4)))) 

and it is evaluated to (NIL (A) B 9). 

(cdr (append (list 'C) '(a)) (cons 'b (list (+ 2 3 4))))) 

evaluates to ((A) B 9). 

(cdr (cdr (append (list 'C) '(a)) (cons 'b (list (+ 2 3 4)))))) 
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evaluates to (B 9) and its head (the overall evaluation) is B. This is an atom (not a list) so 

there is no notion of length. 

Example 5.9. Consider the following expression: 

(car (cdr (cdr (append (append '0 '(a) '0) (list 'b '0 (cons (+ 3 4) '0)))))) 

> (append '0 '(a) '0) 

(A) 

> (list 'b '0 (cons (+ 3 4) '0)) 

(B NIL (7)) 

Thus, the append expression becomes 

(append (append '0 '(a) '0) (list 'b '0 (cons (+ 3 4) '0))) 

and it evaluates to (A B NIL (7)). 

(cdr (append (append '0 '(a) '0) (list 'b '0 (cons (+ 3 4) '0)))) 

evaluates to (B NIL (7)). 

(cdr (cdr (append (append '0 '(a) '0) (list 'b '0 (cons (+ 3 4) '0))))) 

evaluates to (NIL (7)) and its head (the overall evaluation) is NIL (the empty list). The 

length of the empty list is zero. 

5.7 Predicate functions 

A function whose return value is intended to be interpreted as truth or falsity is called a 

predicate function. The built-in function listp returns true if its argument is a list. For 

example, 

(listp '(a b c)) 

(listp 7) 

Returns true (T). 

Returns false (NIL). 
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Other common predicate functions include: 

Predicate Description 

(numberp argument) Returns true if argument is a number. 

(zerop argument) Returns true if argument is zero. 

(evenp argument) Returns true if argument is an even number. 

(oddp argument) Returns true if argument is an odd number. 

We provide a larger list of such predicate functions in Chapter 7: Functions 1. 

5.8 Advanced mathematical operations 

Lisp provides a number of built-in advanced mathematical operations. For example, (sqrt 

a) returns Va, (expt a b) returns ab and (log a) returns the natural logarithm of a. 

> (sqrt 9) 

3.0 

> (expt 2 3) 

8 

> (log 10) 

2.3025852 
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Chapter 6 

Control flow 

The simplest single conditional is if: 

An alternative form is 

( if testExpression 

thenExpression ) 

( if testExpression 

thenExpression 

elseExpression ) 

The testExpression is a predicate while the thenExpression and the (optional) elseExpression 

are expressions to be evaluated. 

Consider the following example: 

(if (listp '(a be)) ; If (a b c) is a list ... 

(+ 3 7) ; ... then evaluate this expression, 

(+ 1 3)) ; ... else evaluate this one. 
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Multiple selection can be formed with a Gond expression which contains a list of clauses where 

each clause contains two expressions, called question (condition) and answer. Optionally, we 

can have an else clause. 

(Gond (question answer) 

(else answer)) Optional. 

Questions are predicate expressions evaluated to true or false whereas answers are expres­

sions. Questions are evaluated sequentially. For the first question that evaluates to true, 

Lisp evaluates the corresponding answer, and the value of the answer is the value of the 

entire Gond expression. If the last condition is else and all other conditions fail, the answer 

for the Gond expression is the value of the last answer expression. We can also use t (true) 

in place of else. 

6.1 Variables and binding 

Binding is a mechanism for implementing lexical scope for variables. The let syntactic form 

takes two arguments: a list of bindings and an expression (the body of the binding) in which 

to use these bindings. 

( let 

( (bindingd 

(binding2) 

) 

( expression) ) 
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where (bindingn ) is of the form (variablen value). 

The let values are computed and bindings are done in parallel, which requires all of the 

definitions to be independent. In the example below, x and yare let-bound variables; they 

are only visible within the body of the let. 

(let ((x 2) (y 3)) 

(+ x y)) 

; Returns 5. 

6.2 Context and nested binding 

An operator like let creates a new lexical context. Within this context there are new 

variables, and variables from outer contexts may become invisible. A binding can have 

different values at the same time: 

(let ((a 1)) 

(let ((a 2)) 

(let ((a 3)) 

... ) ) ) 

Here, variable a has three distinct bindings by the time the body (marked by ... ) executes 

in the innermost let. The inner binding for a variable shadows the outer binding and the 

region where a variable binding is visible is called its scope. Consider the following example: 

(let ((x 1)) ; x is 1. 

(let ((x (+ x 1))) ; x is 2. 

(+ x x))) ; Returns 4. 

What if we want the value of one new variable to depend on the value of another variable 

established by the same expression? In that case we have to use a variant called let*. A 

let* is functionally equivalent to a series of nested lets. 
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Consider the following example: 

(let* ((x 10) 

(y (* 2 x))) ; Not legal for let. 

(* x y)) 

; Returns 200. 
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Chapter 7 

Functions I 

7 .1 Introduction to mathematical functions 

A function is a relation between a set of inputs and a set of (potential) outputs where each 

element of the input set maps (i.e. it is related) to exactly one element of the output set. 

Given a function f : X -+ Y, where X and Yare sets, then X is called the domain of f and 

Y is called the codomain of f. In the expression f (x), x is called the argument and f (x) is 

called the value for the function. The definition of a function is not confined to numbers. In 

fact a function may relate elements of any two sets. 

7.2 Defining functions 

We can define new functions using defun. A function definition looks like this: 

(defun name ( formal parameter list) 

body) 

We will demonstrate function construction through a number of examples. 

Example 7.1. Consider function absdiff takes two numbers as arguments and returns 
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their absolute difference: 

(defun absdiff (x y) 

(if (> x y) 

(- x y) 

(- y x))) 

We can execute the function as follows: 

> (absdiff 3 5) 

2 

In the function definition above, absdiff (x y), x and yare the formal parameters of 

the function. In (absdiff 3 5),3 and 5 are the arguments (or actual parameters) to the 

function absdiff and they are bound to its formal parameters. 

Example 7.2. A palindrome is a string which can be read the same way in any direction. 

For example abba is a palindrome, but abb is not. Define a function ispalindrome which 

receIVes a list argument list and returns true if list is a palindrome; it returns false 

otherwise. Function equal returns true if its arguments have the same value. 

(defun ispalindrome (list) 

(equal list (reverse list))) 

We can execute the function as follows: 

> (ispalindrome '(a b b a)) 

T 

> (ispalindrome 'C)) 

T 

> (ispalindrome '(a b b)) 

NIL 

Example 7.3. Consider function third2 1 which takes a list as an argument and returns its 

1 Lisp provides a number of built-in functions, including third in some implementations. Our naming 
convention in the cases where we provide our own implementation as in this and other similar examples must 
reflect this fact. 
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third element. The third element of a list is the head of the tail of the tail of the original 

list. 

(defun third2 (1st) 

(car (cdr (cdr 1st)))) 

We can execute the function as follows: 

> (third2 '(a bed)) 

C 

> (third2 '(a (b c) (d e f) (g))) 

(D E F) 

7.3 Side effects 

In computer science, a function or expression is said to produce a side effect if it modifies 

some state in addition to its return value. For example, a function might modify some global 

variable, modify one of its arguments, write data to a display or file, or read some data from 

other side-effecting functions. We discuss side effects in detail in Chapter 8. 

7.4 Pure functions 

A function may be described as pure if both these statements about the function hold: 

1. The function always evaluates the same result value given the same argument value(s). 

2. The evaluation of the result does not cause any semantically observable side effect or 

output, such as mutation of mutable objects or output to I/O devices. 

Consider the following examples: 

• A function length(string) is pure because it returns the size of a string . 

• A function today () is impure because at different times it will yield different results. 
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• A function print Carg) is impure because it causes output as an effect. 

Pure functions allow optimization of expressions through a process called common subex­

pression elimination. For example, consider y = f(x) x f(x). The evaluation of f(x) can 

be costly. A compiler can perform an optimization by factoring out f(x) if it is pure, trans­

forming the program to 

z = f(x) 

y=zxz 

thus eliminating the second evaluation of f (x). 

If a function is impure, common subexpression elimination is not possible. For example, in 

y = randomO x randomO, then the second call to randomO cannot be eliminated, because 

its return value will (most likely) be different from that of the first call. 

7.5 Referential transparency 

An expression is said to be referentially transparent (as opposed to referentially opaque) if 

it can be replaced with its value without changing the program (in other words, yielding a 

program that has the same effects and output on the same input). Since referential trans­

parency involves the concept of determinacy (producing the same result for each input), all 

referentially transparent functions are determinate. If all functions involved in the expres­

sion are pure functions, then the expression is referentially transparent. In pure functional 

programming, referential transparency is enforced for all functions. 

Examples where referential transparency holds: 

• C* 5 5) can be replaced by 25. 

• sin (x) will always give the same result for any given x. 
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Examples where referential transparency does not hold: 

• The expression x++ in languages such as C++ or Java is not transparent, as it changes 

the value of x. 

• System. out. println( "Hello world") cannot be replaced by its value (say, 0) since 

Hello world will not be displayed. 

• Function todayO cannot be replaced by its value (say, "June 27, 2009") since it will 

not yield the same result the day after. 

Being side-effect free is necessary but not sufficient for referential transparency. Referential 

transparency implies that an expression (such as a function call) can be replaced with its 

value; this requires that the expression has no side effects and is determinate. 

7.6 Idempotence 

The notion of idempotence is a property of a mathematical operation that has the same 

effect if used multiple times as it does if used only once. For example, the absolute value, 

abs(), function is idempotent, as 

abs(x) = abs(abs(x)) 

= abs( abs( abs(x))) 

= ... for all x. 

In other words, applying abs exactly once yields the same result as repeatedly applying abs 

any number of times. 
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7.7 Higher-order functions 

Functions are called higher-order if they do at least one of the following: 

1. Take one or more functions as their arguments. 

2. Return a function. 

The derivative function in calculus is a common example, since it maps a function to another 

function, e.g. 

As an example, consider function sort which takes as an argument a list, constructed through 

function list, and the comparison operator greater-than (» and returns a sorted list. 

>(sort (list 5 0 7 3 9 1 4 13 23) #'» 

(23 13 9 7 5 4 3 1 0) 

Common higher-order functions in Lisp that take functions as arguments are: 

mapcar takes as its arguments a function and one or more lists and applies the function to 

the elements of the list (s) in order. 

> (mapcar #'* '(2 3) '(10 10)) 

(20 30) 

Multiplication applies to successive pairs. 

funcall takes as its arguments a function and a list of arguments (does not require argu­

ments to be packaged as a list), and returns the result of applying the function to the 

elements of the list. 

> (funcall #'+ 1 3 4) Equivalent to (+ 1 3 4). 

8 

apply works like funcall, but requires that the last argument is a list. 
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> (apply #'+ 3 4 '(1 3 4)) 

15 

Example 7.4. Consider each of the following expressions and their corresponding output: 

1. (car (cdr (append (cons (list (* 242) '(* 2 4 2)) (list '(a b c) (+ 1 2 

3)))))) 

> (A B C) 

2. (mapcar #'max (append (cons 9 (list 6 15)) '(3)) (append 'C) (cons 10 '(4 

17 3)))) 

> CiO 6 17 3) 

3. (funcall #'min (- 9 6) 1 (+ 2 3 5)) 

> 1 

4. (apply #'+ 3 5 (append 'C) '(4) (cons 4 (list 3 2)))) 

> 21 

5. (apply #'+ 4 (mapcar #'* '(2 4) '(3 2))) 

> 18 

7.8 Anonymous functions 

An anonymous function is one that is defined, and possibly called, without being bound to an 

identifier. Unlike functions defined with defun, anonymous functions are not stored in mem­

ory. The general syntax of an anonymous function in Lisp (also called lambda expression) 

IS 

( lambda (formal parameter list) (body) ) 

where body is an expression to be evaluated. 

An anonymous function can be applied in the same way that a named function can, e.g. 
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> ((lambda (x) (* x x)) 3) 

9 

Example 7.5. In this example we combine a higher-order function with an anonymous 

function. Consider a function that takes a list as an argument and returns a new list whose 

elements are the elements of the initial list multiplied by 2. We can perform the multiplication 

with an anonymous function, and deploy mapcar to apply the anonymous function to the 

elements of the list as follows: 

> (mapcar (lambda (n) (* n 2)) '(2 357)) 

(4 6 10 14) 

Essentially, a lambda expression is a non-reusable inline function. We can deploy lambda 

expressions when we want to avoid having one-line functions which are unlikely to be reused. 

7.8.1 Equivalence between let and lambda 

We can demonstrate the equivalence between let and lambda through the following example: 

> (let ((x a)) (list x x)) 

(A A) 

> (setf 1st ((lambda (x) (list x x)) 'a)) 

(A A) 

where x is called a bound variable within the function. 

7.9 Parameter lists 

In this section we will discuss rest, optional and keyword parameters. 

7.9.1 Developing variable arity functions with rest parameters 

So far, we developed functions that would take a predetermined number of arguments. We 

should, however, be able to write a function of variable arity and we can do this through a 
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rest parameter. The token &rest before the last parameter in the parameter list, makes this 

last parameter a list that will contain all the remaining arguments. 

In the following example, we define function construct-list that takes any number of 

arguments and places them in a list. Notice that in the case where no second (or third etc.) 

argument is provided, the list represented by args is empty. 

(defun construct-list (thing &rest args) 

(cons thing args)) 

We can execute the function as follows: 

> (construct-list 'a) 

(A) 

> (construct-list 'a 'C)) 

(A NIL) 

> (construct-list 'a 'b 'c 'd) 

(A BCD) 

> (construct-list 'a '(b c)) 

(A (B C)) 

7.9.2 Optional parameters 

As the term suggests, an optional parameter (as opposed to required) is one that can be 

omitted. Additionally, an optional parameter can have a default value. The implicit default 

value is nil, but we can provide an explicit default. 

In the next example, we leave the default implicit value for the optional parameter arg: 

(defun make-quote (thing &optional arg) 

(list thing arg)) 

>(make-quote 'all) 

(ALL NIL) 
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Let us now modify the function slightly and also provide an explicit default value to param­

eter arg which we specify by enclosing it in a list with the parameter: 

(defun make-quote (thing &optional (arg 'die)) 

(list thing 'men 'must arg)) 

We can execute the function as follows: 

> (make-quote 'all) 

(ALL MEN MUST DIE) 

> (make-quote 'all 'serve) 

(ALL MEN MUST SERVE) 

7.9.3 Keyword parameters 

A more flexible kind of optional parameter is the keyword parameter. In a parameter list, 

all parameters after the &key symbol are optional. Additionally, they can be identified not 

by their position in the parameter list, but by symbolic tags that precede them. 

In the following example, function make-pairs takes four optional paremeters that combines 

into a list of two pairs: 

(defun make-pairs (&key abc d) 

(list (list a b) (list c d))) 

We now can execute the function by passing arguments under symbolic tags that would 

correspond to the function parameters: 

> (make-pairs :c 3 :a 5 :d 1 :b 9) 

((5 9) (3 1)) 

As the implicit default is nil, consider the following example: 

> (make-pairs) 

((NIL NIL) (NIL NIL)) 
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Consider another execution where we combine implicit defaults and symbolic tags: 

> (make-pairs :a 7 :d 6) 

((7 NIL) (NIL 6)) 

To specify explicit defaults we have to modify our function: 

(defun make-pairs (&key abc (d ' last)) 

(list (list a b) (list c d))) 

Finally, consider the example where we combine implicit and explicit defaults, and symbolic 

tags: 

> (make-pairs:a 7) 

((7 NIL) (NIL LAST)) 

Example 7.6. In the following example, we build a utility function, fn, that will read an 

argument and return a function based on the type of the argument. If the argument is a 

number, then the function will return +, otherwise if the argument is a list, then the function 

will return append. 

(defun fn (x) 

(cond 

((numberp x) #'+) 

((listp x) #'append))) 

Function combine takes any number of arguments (note that the assumption is that all 

arguments are of the same type and are either numbers or lists). It will call the utility 

function fn to read in the first argument and return a function that will in turn be used to 

combine all arguments accordingly: If the arguments are numbers, then they will be added. 

If the arguments are lists, then they will be concatenated. 

(defun combine (&rest args) 

(apply (fn (car args)) args)) 
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> (combine 2 3 4) 

9 

x g v f z 

X ----'r-----,f-----~ a 
y ~~r---_t_-~ b 

1 
2 

Z ---+------I--~ C ---+----Ir--~ 3 

Figure 7.1: Example of function composition. 

> (combine '(a b) '(c d)) 

(A BCD) 

7.10 Function composition 

We can construct a new function by combining simpler functions. Many times we use com­

position of functions even though we may not refer to it explicitly as such. The composition 

of two functions f and g is the function denoted by fog is defined as 

(f 0 g)(x) = f(g(x)) 

The composition makes sense only for values of x in the domain of g such that g(x) is in the 

domain of f. 

Example 7.7. In Figure 7.1, X is the domain of g and Y is the codomain of g. Values of 

g(x) are in Y which is the domain of f. For example, g(x) = a, and f(g(x)) = 2. 

Example 7.8. For the list L = (a, b), head(tail(L)) is a valid function composition, whereas 

tail(head(L)) is not a valid function composition because head(L) is an atom. 

Example 7.9. For f(x) = x + 2 and g(x) = x2 - 1, then (f 0 g)(x) yields (x2 - 1) + 2. 

Example 7.10. Consider function consR which places an element to the right of a list, just 

as function cons places an element on the left of a list. For example, 
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consR((a,b,c),d) = (a,b,c,d). 

We can provide a recursive computable function definition for consR(L, e) (either in math­

ematical or in natural language notation). 

consR(L, e) = if L = 0 then (e) 

else concatenate(head(L) , consR(tail(L), e)). 

We can translate the above definition into Common Lisp function consr (lst elt). Note 

that for the purpose of this example, we may not use append or anything equivalent to just 

attach an element to the end of the list. 

(defun consr (1st elt) 

(if (null 1st) (list el t) 

(cons (car 1st) (consr (cdr 1st) elt)))) 

Example 7.11. Let us define a Common Lisp function which takes two lists as its arguments 

and returns a list whose elements are the products of the corresponding pairs of its arguments. 

For example, 

> (product '(2 3) '(4 5)) 

(8 15) 

> (product '(2 2 4) '(3 4 5)) 

(6 8 20) 

In the case of arguments of different length, the function should ignore any remaining ele­

ments. For example, 

> (product '(2 3) '(4 5 6 7)) 

(8 15) 
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The function is defined as follows: 

(defun product (lst 1 1 st2) 

(if (or (null lstl) (null lst2)) 

nil 

( 1 e t (( a ( * (c ar 1 s t 1) ( car 1 s t 2 ) ) ) ) 

(cons a (product (cdr lstl) (cdr lst2)))))) 

7.11 Common built-in and predicate functions 

A non-exhaustive list of Common Lisp built-in functions and predicates is shown below: 

abs Returns the absolute value of its argument. 

> (abs -3) 

3 

> (abs 5.5) 

5.5 

atom Returns true if its argument is an atom; Returns false otherwise. 

> (atom 'a) 

T 

> (atom 1) 

T 

> (atom '()) 

T 

> (atom '(a be)) 

NIL 

equal Returns true if its arguments have the same value; Returns false otherwise. Compare 

it with function eq in Chapter 8: Side effects. 
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> (equal 'a 'a) 

T 

> (equal 3 3.0) 

NIL 

> (equal 5 5) 

T 

> (equal 'a '(a)) 

NIL 

evenp Returns true if argument is an even integer number; Returns false otherwise. An 

error occurs if the argument is not an integer number. 

> (evenp 2) 

T 

> (evenp 0) 

T 

> (evenp 3) 

NIL 

> (evenp -1) 

NIL 

> (evenp -2) 

T 

integerp Returns true if its argument is an integer number; Returns false otherwise. 

> (integerp 2) 

T 

> (integerp 2.5) 

NIL 

> (integerp -2) 

T 
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> (integerp (car '(1 2.5 ()))) 

T 

listp Returns true if its agrument is a list; Returns false otherwise. 

> (listp '0) 

T 

> (listp (car (cdr '(a (be))))) 

T 

null Returns true if its argument is the empty list; Returns false otherwise. 

>(null '0) 

T 

> (null '(a be)) 

NIL 

numberp Returns true if its argument is a number; Returns false otherwise. 

> (numberp 0) 

T 

> (numberp 'a) 

NIL 

> (numberp '(1 2 3)) 

NIL 

> (numberp (car '(1 2 3))) 

T 

oddp Returns true if its argument is an add integer number; Returns false otherwise. An 

error occurs if the argument is not a positive integer number. 
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> (oddp 0) 

NIL 

> (oddp 1) 

T 

plusp Returns true if its argument is a positive number; Returns false otherwise. 

> (plusp 0) 

NIL 

> (plusp -3.5) 

NIL 

> (plusp 2) 

T 
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Chapter 8 

Side effects 

Common Lisp is not a pure functional language as it allows side effects. 

8.1 Variables and assignments 

A variable is global if it is visible everywhere as opposed to a local variable which is visible 

only within the code block in which it is defined. A global variable is accessible everywhere 

except in expressions that create a new local variable with the same name. Inside code 

blocks, local values are always looked for first. If a local value for the variable does not exist, 

then a global value is sought. If no global value is found then the result is an error. 

To define a global variable we use 

( defparameter name value) 

where name is the name of the global variable and value is an expression to be evaluated 

and will set the initial value of the variable. In order to avoid unexpected name conflicts 

with local variables, it is conventional to give global variable names that lie within asterisks, 

e.g. 

> (defparameter *pi* 3.14) 

*PI* 
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> *pi* 

3.14 

We can now use defparameter again to modify the value of the variable. 

> (defparameter *pi* 3.14159265) 

*PI* 

> *pi* 

3.1415928 

To define a global constant we use 

( def constant name value) 

where name is the name of the global constant and value is an expression to be evaluated 

and will set the value of the constant. 

> (defconstant limit 100) 

LIMIT 

> limit 

100 

Once a constant is defined, if we attempt to modify it using defparameter, we will receive 

an error: 

> (defparameter limit 90) 

Error: LIMIT is a constant and cannot be set or bound. 

To verify whether or not a symbol is already in use to define a global variable or global 

constant, we can use 
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For example: 

> (boundp 'limit) 

T 

whereas 

> (boundp 'speed) 

NIL 

( boundp 'name) 

We use setf to assign both global and local variables. The general format is 

( setf place value) 

and it is used to assign a new value to a place (variable). More specifically, setf uses its 

first argument to define a memory location. it then evaluates its second argument and stores 

the result in this memory location. 

> (setf x '(a b c)) 

(A B C) 

> (car x) 

A 

> (cdr x) 

(B C) 

> (cdr (cdr (cdr x))) 

NIL 

> (setf x (append x 'Cd e))) 

(A BCD E) 

Variables are essentially pointers. Function eql will return true if its arguments point to 

the same object, whereas function equal returns true if its arguments have the same value. 
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> x 

(A BCD E) 

> (setf y '(a b c de)) 

(A BCD E) 

> (eql x y) 

NIL 

> (equal x y) 

T 

> (setf z x) 

(A BCD E) 

> (eql x z) 

T 

> (equal x z) 

T 

> (eql y z) 

NIL 

> (equal y z) 

T 

The function copy-list takes a list and returns a copy of it. 

> (setf w (copy-list x)) 

(A BCD E) 

> (eql x w) 

NIL 

> (equal x w) 

T 
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We can define our own function to copy a list, as follows: 

(defun copy-1ist2 (1st) 

(if (atom 1st) 

1st 

(cons (car 1st) (copy-1ist2 (cdr 1st))))) 

> (setf k '(a b (cd) 

(A B (CD) (E F G)) 

> (setf 1 (copy-list2 

(A B (CD) (E F G)) 

> (eql k 1) 

NIL 

> (equal k 1) 

T 

(e f g))) 

k)) 

We can use setf to modify a list. Consider the example below: 

> (setf x '(a b cd)) 

(A BCD) 

> (setf (car x) '(a b c)) 

(A B C) 

> x 

((A B C) BCD) 

> (setf (cdr x) '((b cd))) 

((B CD)) 

> x 

((A B C) (B C D)) 

8.2 Shared structure 

Lists can share structure. This implies that two variables may share elements. If the value 

of an element is modified through accessing one variable, this modification is reflected on 
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the other variable as well as both variables have common (shared) structure. 

Example 8.1. Consider the following example: 

(setf list1 '(a bed)) 

(setf list2 (cons 'x (cdr list!))) 

We can verify the contents of the two lists as 

> list1 

(A BCD) 

> list2 

(X BCD) 

Let us now modify the value of an element in list1 as follows: 

(setf (car (cdr list1)) 'y) 

This has changed list1 but also list2 which can be an undesired result. 

> list1 

(A Y C D) 

> list2 

(X Y C D) 

The example is illustrated in Figure 8.l. 

Example 8.2. Consider the following: 

> (setf lst1 '(a be)) 

(A B C) 

> (setf lst2 (cons 'x (cdr lst1))) 

(X B C) 
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(setf listl '(a bed» listl 

(setf list2 list2 
(cons 'x (cdr list1») 

(setf (car (cdr listl» 'y) listl 

list2 

Figure 8.1: Shared structure - Part 1 of 2. 

> (setf (cdr lst1) '(y z)) 

(y Z) 

> lst1 

(A Y Z) 

> lst2 

(X B C) 

Why has lst2 not changed? To answer the question we need to take a closer look at shared 

structure through a comparison between the current and the previous examples (Figures 8.1, 

and 8.2). Observe that since each element in a Common Lisp list is a two-compartmental 

box (one containing the value and another containing a pointer to the second element), for 

lst2 to have been changed, the pointer of the head of lst2 should be pointing not to B, but 
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(setf 1st1 '(a be» Istl 

Ist2 

Figure 8.2: Shared structure - Part 2 of 2. 

to the pointer (the second compartment) of the head of lst1. However, it does not. As a 

result, as we break the pointer from the head of lst1 to (B C) and we create a new pointer 

from that head to (Y Z), the structure of lst2 is not affected. The pointer of the head of 

lst2 still points to (B C). 

8.3 Control flow 

The loop form repeats until some condition is satisfied or when an explicit exit statement is 

encountered. This form allows you not to specify a condition, thus creating an infinite loop 

as follows: 

(loop (print "Inside an infinite loop!")) 

The above is obviously bad programming. A return from anywhere inside the loop will 

cause control to exit the loop; any value you specify becomes the value of the loop form. 
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The example below will display "Inside a loop" and return 7. 

(loop 

(print "Inside a loop.") 

(return 7) 

(print "Will never reach here.")) 

return can also be used in a conditional form to determine when the loop should terminate, 

as follows: 

(let ((n 0)) 

(loop 

o 0 

1 1 

2 8 

3 27 

NIL 

(when (> n 3) (return)) 

(print n) (write (* n n n)) 

Cincf n))) 

The dotimes form repeats for some fixed number of iterations: dotimes «counter> <limit> 

<result» <body» 

(dotimes (n 3) 

(print n) 

(write (* n n n))) 

o 0 

1 1 

2 8 

NIL 
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8.4 Blocks 

There are three basic operations for creating blocks of code: progn, block, and tagbody. 

With progn, the expressions within its body are evaluated in order, and the value of the last 

is returned: 

(progn 

xy 

3 

(format t "x") 

(format t "y") 

(+ 1 2)) 

A block is like a progn with a name and an emergency exit. The first argument should be 

a symbol and it becomes the name of the block. At any point within the body you can halt 

evaluation and return a value immediately by using return-from with the block's name. 

The second argument to return-from is returned as the value of the block named by the 

first. Expressions after the return-from are not evaluated. 

(block my-label 

(format t "Inside a block.") 

(return-from my-label Ex it) 

(format t "We will never see this.")) 

Inside a block. 

Exit 

Within tagbody you can use go, a statement which instructs execution to jump to the line 

containing an atom which appears inside the body and interpreted as a label. Consider the 

following example: 

(tagbody 

(setf x 0) 
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top 

(setf x (+ x 1)) 

(format t "-A" x) 

(if « x 10) (go top))) 

1 2 3 4 5 6 7 8 9 10 

NIL 

The statement go is found (usually by its semantic synonym goto) in many programming 

languages. It causes an unconditional jump of execution to another statement, identified by 

a label or a line number (depending on the language). 
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Chapter 9 

Recursion 

Recursion is a fundamental notion in Computer Science. In problem solving, the deployment 

of recursion implies that the solution to a problem depends on solutions to smaller instances 

of the same problem. Recursion refers to the practice of defining an object, such as a function 

or a set, in terms of itself. Every recursive function consists of: 

• One or more base cases, and 

• One or more recursive cases (also called inductive cases). 

Each recursive case consists of: 

1. Splitting the data into smaller pieces (for example, with car and cdr), 

2. Handling the pieces with calls to the current method (note that every possible chain 

of recursive calls must eventually reach a base case), and 

3. Combining the results into a single result. 

A mathematical function uses only recursion and conditional expressions. A mathematical 

conditional expression is in the form of a list of pairs, each of which is a guarded expression. 

Each guarded expression consists of a predicate guard and an expression: 

functionName(arguments) = expressionl - predicateGuard1 , ..• 

which implies that the function is evaluated by expressionn if predicateGuardn is true. 
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Example 9.1. Suppose we need to define the function f : N ---+ lists(N) that accepts an 

integer argument and returns a list, such that 

f(n) = (n, n - 1, ",,0) 

In this and similar problems, we can transform the definition of f(n) into a computable 

function using available operations on the underlying structure (list), We can use cons as 

follows: 

f(n) = (n, n - 1, .. " 1,0) 

= cons(n, (n - 1, .. " 1,0)) 

= cons(n, f(n - 1)), 

We can therefore define f recursively by 

f(O) = (0), 

f(n) = cons(n, f(n - 1)), for n > 0, 

We can visually show how this works with a technique called "unfolding the definition" (or 

"tracing the algorithm"), 
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We can unfold this definition for f(3) as follows: 

f(3) = cons(3, f(2)) 

= cons(3, cons(2, f(l))) 

= cons(3, cons(2, cons(l, f(O)))) 

= cons(3, cons(2, cons(l, (0)))) 

= cons(3, cons(2, (1,0))) 

= cons(3, (2,1,0)) 

= (3,2,1,0). 

We can implement function bsequence as follows: 

(defun bsequence (n) 

(if (= n 0) 

(cons 0 '()) 

(cons n (bsequence(- n 1))))) 

We can execute the function as follows: 

> (bsequence 0) 

(0) 

> (bsequence 3) 

(3 2 1 0) 

Example 9.2. Function factorial: No ---+ Nl is defined for non-negative integers by two 

guarded expressions as follows: 

1 for n = 0 

factorial ( n) = 

n x factorial(n - 1) for n > 0 
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We can implement function factorial as follows: 

(defun fact ori al (n) 

(if (= n 0) 

1 

(* n (factorial (- n 1))))) 

We can execute the function as follows: 

> (factorial 3) 

6 

> (factorial 5) 

120 

Example 9.3. The Ackermann function1 is defined as follows: 

n + 1 for m = 0 

Ack(m, n) = Ack(m - 1,1) for m > 0, n = 0 

Ack(m - 1, Ack(m, n - 1)) for m> 0, n > 0 

We can implement function ackermann as follows: 

(defun ackermann (m n) 

(cond ((zerop m) (+ n 1)) 

( (zerop n) (ackermann (- m 1) 1)) 

(t (ackermann (- m 1) (ackermann m (- n 1)))))) 

The function grows very quickly (i.e. many steps) and results in large numbers even for 

small arguments. We can execute the function as follows: 

> (ackermann 0 1) 

2 

> (ackermann 0 0) 

1 After German mathematician Wilhelm Friedrich Ackermann (1896 - 1962). 
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1 

> (ackermann 1 0) 

2 

> (ackermann 1 1) 

3 

> (ackermann 1 2) 

4 

> (ackermann 1 3) 

5 

> (ackermann 2 3) 

9 

> (ackermann 3 4) 

125 

Example 9.4. Consider function append2 which takes as its arguments two lists 1st1 and 

1st2 and returns a new list which forms a concatenation of 1st1 and 1st2. 

Base case: If 1st 1 is empty, then return 1st2. 

Recursive case: Return a list containing as its first element the head of 1st 1 with its tail 

being the concatenation of the tail of 1st1 with 1st2. 

We can implement function append2 as follows: 

(defun append2 (lstl Ist2) 

(if (null 1st!) 

Ist2 

(cons (car 1st!) (append2 (cdr 1st!) Ist2)))) 

We can execute the function as follows: 

> (append2 'C) '(a)) 

(a) 

> (append2 '(a b c) 'Cd e f)) 

(a bed e f) 
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We can trace the execution of (append2 '(a b c) '(d e f)) as follows: 

(append2 '(a b c) 'Cd e f)) 

cons (' a (append2 '(b c) 'Cd e f))) 

cons (' a (cons 'b (append2 ' (c) , (d e f)))) 

cons (' a (cons 'b (cons ' c (append2 '0 ' (d e f))))) 

cons (' a (cons 'b (cons ' c 'Cd e f)))) 

'(a bed e f) 

Example 9.5. Consider function sum which takes a list 1st as its argument and returns the 

summation of its elements. 

Base case: If the list is empty, then sum is O. 

Recursive case: Add the head element to the sum of the elements of the tail. 

We can unfold this definition for sum( (2,4,5)) as follows: 

sum( (2,4,5)) = 2 + sum( (4,5)) 

= 2 + 4 + sum( (5)) 

= 2 + 4 + 5 + sum( 0 ) 

=2+4+5+0 

=11 

We can implement function sum as follows: 

(defun sum (lst) 

(cond ((null 1st) 0) 

(t (+ (car 1st) (sum (cdr 1st)))))) 

We can execute the function as follows: 

> (sum '(1 2 345)) 

15 
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We can trace the execution of (sum '(1 2 3 4 5)) as follows: 

(sum '(1 2 3 4 5)) 

(+ 1 sum '(2 3 4 5)) 

(+ 1 (+ 2 sum '(3 4 5))) 

(+ 1 (+ 2 (+ 3 sum '(4 5)))) 

(+ 1 (+ 2 (+ 3 (+ 4 sum '(5))))) 

(+ 1 (+ 2 (+ 3 (+ 4 (+ 5 sum 'C)))))) 

(+ 1 (+ 2 (+ 3 (+ 4 (+ 5 0))))) 

15 

Example 9.6. Consider a function 1ast2 which takes a list 1st as its argument and returns 

the last element in the list. 

Base case: If the list has one element (its tail is the empty list), then return this element. 

Recursive case: Return the last element of the tail of the list. 

We can implement function 1ast2 as follows: 

(defun last2 (1st) 

(cond ((null 1st) nil) 

((null (cdr 1st)) (car 1st)) 

(t (last2 (cdr 1st))))) 

We can execute the function as follows: 

> (last2 '(a b 3 4 c d 5 6)) 

6 

> (last2 '(a b (c d 1))) 

(C D 1) 

Example 9.7. Consider a recursive function 1ength2 which takes a list 1st as its argument 

and returns the length of 1st. 

Base case: If the list is empty, then the length of the list is o. 
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Recursive case: Add 1 to the length of the tail. 

We can implement function 1ength2 as follows: 

(defun length2 (lst) 

(if (null 1st) 

o 

(+ 1 (length2 (cdr 1st))))) 

We can execute the function as follows: 

> (length2 '(a d c 123)) 

6 

> (length2 '(a (bc) (1 2 3))) 

3 

Example 9.8. Consider function reverse2 which takes a list as its argument and returns 

the reversed list. 

Base case: If the list is empty, then return the empty list. 

Recursive case: Recur on the tail of the list and the head of the list. 

We can implement function reverse2 as follows: 

(defun reverse2 (1st) 

(cond ((null 1st) '0) 

(t (append (reverse2 (cdr 1st)) (list (car 1st)))))) 

We can execute the function as follows: 

> (reverse2 '(a b cd)) 

(D C B A) 

Example 9.9. Consider function product which takes a list 1st as its argument and returns 

the product of its elements. This function is very similar to sum. 
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Base case: If the list is empty, then the product is 1 (by convention). 

Recursive case: Multiply the head of 1st to the product of the elements of the tail. 

We can implement function product as follows: 

(defun product (lst) 

(cond ((null 1st) 1) 

(t (* (car 1st) (product (cdr 1st)))))) 

We can execute the function as follows: 

> (product '(3 5 7)) 

105 

Example 9.10. Consider a function called cube-list, which takes as argument a list of 

numbers and returns the same list with each element replaced with its cube. 

We can implement function cube-list as follows: 

(defun cube-list (1st) 

(cond ((null 1st) nil) 

(t (let ((elt (car 1st))) 

(cons (* elt elt elt) 

(cube-list (cdr 1st))))))) 

We can execute the function as follows: 

> (cube-list '(1 3 5)) 

(1 27 125) 

Example 9.11. Consider function interleave which takes two lists Istl and Ist2 as 

its arguments and returns a new list whose elements correspond to lists 1st 1 and Ist2 

interleaved, i.e. the first element is the from Ist1, the second is from Ist2, the third from 

Istl, etc. 
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Base cases: 

1. If 1st 1 is empty, then return lst2. 

2. If lst2 is empty, then return 1st!. 

Recursive case: Concatenate the head of lst1 with a list containing the concatenation of 

the head of lst2 with the interleaved tails of 1st 1 and lst2. 

We can implement function interleave as follows: 

(defun interleave (lstl Ist2) 

(cond ((null Istl) Ist2) 

((null Ist2) 1st!) 

(t (cons (car Istl) (cons (car Ist2) 

(interleave (cdr 1st!) (cdr Ist2))))))) 

We can execute the function as follows: 

> (interleave 'C) '(1)) 

(1) 

> (interleave '(a b c) '(1 2 3)) 

(A 1 B 2 C 3) 

> (interleave '(a bed) '(1)) 

(A 1 BCD) 

> (interleave '(a b c) '(1 2 345)) 

(A 1 B 2 C 3 4 5) 

Example 9.12. Consider function remove-first-occurrence which takes as arguments a 

list 1st and an element elt, and returns 1st with the first occurrence of elt removed. 

Base cases: 

1. If 1st is empty, then return the empty list. 

2. If the head of 1st is the symbol we want to remove then return the tail of 1st. 
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Recursive case: Keep the head of 1st and recur on the tail of 1st. 

We can implement function remove-first-occurrence as follows: 

(defun remove-first-occurrence (1st elt) 

(cond ((null 1st) nil) 

((equal (car 1st) elt) (cdr 1st)) 

(t (cons (car Ist)(remove-first-occurrence (cdr 1st) elt))))) 

We can execute the function as follows: 

> (remove-first-occurrence '(a e bed e) 'e) 

(A BCD E) 

Let us trace the execution of (remove-first-occurrence '(a e bed e) 'e): 

(remove-first-occurrence '(a e bed e) 'e) 

(cons 'a ((remove-first-occurrence '(e bed e) 'e)) 

(cons 'a '(b c de)) 

'(a bed e) 

Example 9.13. Consider function remove-alI-occurrences which takes as arguments a 

list 1st and an element el t, and returns 1st with all occurrences of el t removed. 

Base case: If 1st is empty, return the empty list. 

Recursive cases: There are two cases to consider when the list is not empty. 

1. When the head of the list is the same as e 1 t, ignore the head of the list and recur 

on removing elt from the tail of the list. 

2. When the head of the list is not the same as elt, keep the head and recur on 

removing elt from the tail of the list. 
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We can implement function remove-a11-occurrences as follows: 

(defun remove-all-occurrences (1st elt) 

(if (null 1st) 

nil 

(if (equal (car 1st) elt) 

(remove-all-occurrences (cdr 1st) elt) 

(cons (car 1st) (remove-all-occurrences (cdr 1st) elt))))) 

We can execute the function as follows: 

> (remove-a11-occurrences '(z a z b z z c) 'z) 

(A B C) 

Example 9.14. Consider function merge2 which takes as its arguments two sorted lists of 

non-repetitive numbers and returns a merged list with no redundancies. 

Base cases: 

1. If 1st! is empty, then return lst2. 

2. If lst2 is empty, then return 1st!. 

Recursive cases: 

1. If the head of 1st! equals to the head of lst2 then ignore this element and recur 

on the tail of 1st! and lst2. 

2. If the head of 1st! is less than the head of lst2, then keep this element and 

recur on the tail of 1st! and lst2. 

3. Otherwise keep the head of lst2 and recur on 1st! and the tail of lst2. 

We can implement function merge2 as follows: 

(defun merge2 (lst1 lst2) 

(cond ((null lst1) lst2) 

((null lst2) 1st!) 

((= (car 1st!) (car lst2)) (merge2 (cdr 1st!) lst2)) 
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((< (car 1st!) (car 1st2)) 

(cons (car 1st!) (merge2 (cdr 1st!) 1st2))) 

(t (cons (car 1st2) (merge2 1st1 (cdr 1st2)))))) 

We can execute the function as follows: 

> (merge2 '(3 4 6 8) '(3 4 5 6)) 

(3 4 5 6 8) 

> (merge2 'C) '(6 7 8)) 

(6 7 8) 

> (merge2 '(2.5 6 7.5) '(6)) 

(2.5 6 7.5) 

9.1 Higher-order recursion 

When a recursive call is the last step in the definition of a recursive method, this is referred 

to as tail recursion. All the above examples fall into this category. When a recursive 

function makes more than a single recursive call, we say that the function uses higher-order 

recursion. This can be binary recursion (two recursive calls, each to solve two similar halves 

of the problem) or multiple recursion (potentially many recursive calls). 
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The Fibonacci sequence 

The Fibonacci sequence2 is defined as follows: 

Fo = O. 

We can unfold this definition for F5 as follows: 

= (F3 + F2) + (F2 + FI) 

= ((F2 + FI) + (FI + Fo)) + ((FI + Fo) + 1) 

= (((FI + Fo) + FI) + (FI + Fo)) + ((FI + Fo) + 1) 

=5 

We can now define function fibonacci which takes as its argument a non-negative integer 

k and returns the kth Fibonacci number Fk . 

We can implement function fibonacci as follows: 

(defun fibonacci (k) 

(if (or (zerop k) (= k 1)) 

k 

(+ (fibonacci (- k 1)) (fibonacci (- k 2))))) 

2 After Italian mathematician Leonardo Pisano Bigollo, also known as Leonardo Fibonacci (c. 1170 - c. 
1250). 



147

We can execute the function as follows: 

> (fibonacci 5) 

5 

The above program is correct but rather slow, the reason for this is that both Fk and Fk- 1 

must compute Fk - 2 . A iterative solution would be our best choice. 

Example 9.15. Suppose we need to define function max: lists(N) ----+ N which accepts a 

list of integers and returns an integer which represents the maximum element in that list. 

The function is not defined for an empty list and the function should issue false in that case. 

Let us transform the definition into a recursive computable function: 

false if lst is empty. 

max(lst) = head(lst) if tail(lst) is empty. 

greater - of (head(lst), max(tail(lst))) if tail(lst) is not empty. 

Let us unfold the definition for max( (3, 7, 5, 2)): 

max( (3,7,5,2)) = greater - of(3, max( (7,5,2))) 

= greater - of(3, greater - of(7, max ( (5, 2) ) ) ) 

= greater - of(3, greater - of(7, greater - of(5, max ( (2) ) ) ) ) 

= greater - of(3, greater - of(7, greater - of(5, 2)) ) 

= greater - of(3, greater - of(7, 5)) 

= greater - of(3, 7) 

= 7. 
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We can implement the mathematical function max as function max2: 

(defun max2 (lst) 

(cond ((null 1st) nil) 

((null (cdr 1st) ) (car 1st) ) 

(t (let (( a (car 1st)) 

(b (max2 (cdr 1st)))) 

(if (> a b) a b))))) 

Let us trace the execution of the function with the following sample input data: 

• The list (3 7 5 2): 

(max2 '(3 7 5 2)) 

1. a = 3, b max(7 5 2) 

2. a = 7, b max(5 2) 

3. a = 5, b max(2) 

4. singleton list 

4. return 2 

3. (5 > 2) is true, return 5 

2. (7 > 5) is true, return 7 

1. (3 > 7) is false, return 7 

• The empty list: For the empty list the code is straightforward: The function returns 

false (NIL). 

• The list (3): For any singleton list (i.e. one that has only one element) the function 

returns its only element. 

Example 9.16. Let us define a recursive definition and an implementation for function min2 

which takes a list 1st of integers as its argument and returns the minimum element of the 

list. 
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The recursive definition of min2 is as follows: 

Base case: 

1. If 1st is empty, then return nil. 

2. If 1st contains one element, then return that element. 

Recursive case: Return the smaller between the head of the list and the minimum of the 

tail of the list. 

We can implement function min2 as follows: 

(defun min2 (lst) 

(cond ((null 1st) '0) 

((null (cdr 1st) ) 

(t (let (( a (car 

(b (min2 

> (min2 '()) 

NIL 

> (min2 '(3)) 

3 

(if 

> (min2 '(6 7 241)) 

1 

« b 

> (min2 '(13 24 2 6823)) 

2 

(car 1st) ) 

1st)) 

(cdr 1st)))) 

a) b a))))) 

Example 9.17. Consider function swap which takes as an argument a list and returns a new 

list which represents the argument list where each two consecutive elements are swapped. 

Example runs are as follows: 

> (swap '()) 

NIL 
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> (swap , (a)) 

(A) 

> (swap '(a (b))) 

((B) A) 

> (swap '(1 "two" -3 "four")) 

(lltwo II 1 "four" -3) 

We can implement function swap as follows: 

(defun swap (1st) 

( if ( or ( null 1 s t ) ( null ( cdr 1 s t ) ) ) 

1st 

(cons (car (cdr 1st)) 

(cons (car 1st) (swap (cdr (cdr 1st))))))) 

Example 9.18. Consider function guess below. 

(defun guess (argl arg2) 

(cond ((null argl) arg2) 

((null arg2) argO 

((< (car argO (car arg2)) (cons (car arg2) 

(guess (cdr argO (cdr arg2)))) 

(t (cons (car argl) (guess (cdr argO (cdr arg2)))))) 

Let us execute the function with different arguments and from the output we will try to 

provide a brief description on what the function does. 

> (guess '(4 6 8 9 2) '(5 1)) 

(5 6 8 9 2) 

> (guess '(3 4 5) '(1 2 3)) 

(3 4 5) 

> (guess '0 '(6 1 9)) 

(6 1 9) 



151

The function takes two lists as arguments and returns a list constructed by the maximum 

elements after a pairwise comparison, i.e. it compares the corresponding first elements, then 

it compares the corresponding second elements, etc. 

Example 9.19. Provide a recursive definition and implementation of function compress 

which takes a list as its argument and returns a new list where all consecutive duplicates 

of its argument are replaced with a single copy of the element. The order of the elements 

should not be changed. As example runs, consider the following: 

> (compress '(a a a abc c dee e e)) 

(A BCD E) 

> (compress '(a abc c c a a)) 

(A B C A) 

The recursive definition of compress is as follows: 

Base case: If list is empty, or if list has one element then return the list as is. 

Recursive case: If the first element is equal to the second element, then ignore the first 

element and recur on the tail of the list. If the first element is not equal to the second, 

then keep the first element and recur on the tail of the list. 

We can implement function compress as follows: 

(defun compress (1st) 

(cond 

( ( or ( null 1 s t ) ( null ( cdr 1 s t ) )) 1 s t ) 

((equal (car 1st) (car (cdr 1st))) (compress (cdr 1st))) 

(t (cons (car 1st) (compress (cdr 1st)))))) 

Example 9.20. Provide the implementation of function pairs that returns a list of pairs 

of corresponding elements from two lists of equal length. For example, 

pairs((a,b,c), (x,y,z)) = ((a,x), (b,y), (c,z)) 
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The function is defined as follows: 

(defun pairs (lstl lst2) 

(if (or (null 1st!) (null lst2)) 

nil 

(cons (list (car 1st!) (car lst2)) (pairs (cdr 1st!) (cdr lst2) )))) 

Example 9.21. Provide the implementation of function insert that takes an integer nand 

a sorted list lst of integers and inserts n in its proper position. By convention we assume 

that the empty list is sorted. Assume that lst does not include duplicates, and does not 

already contain n. 

The function is defined as follows: 

(defun insert (n 1st) 

(cond ((null 1st) (list n)) 

((< n (car 1st)) (cons n 1st)) 

(t (cons (car 1st) (insert n (cdr 1st)))))) 

Example 9.22. Provide the implementation of function dist that accepts an atom nand 

a non-empty list lst, and returns a list composed of lists of two elements, the first being n 

and the second being each successive element of lst. For example, 

dist(a, (b,e,d)) = ((a,b), (a,e), (a,d)) 

To detect recursion, we can re-write the equation by splitting up the list into its head and 

its tail: 

dist(a, (b,e,d)) = ((a,b), (a,e), (a,d)) 

= ((a, b), dist(a, (e, d) )). 
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We can therefore provide the following computable function definition: 

dist(x, 0) = 0, 

dist(x, (L)) = cons((x,head(L)),dist(x, tail(L))). 

We can now unfold the definition as follows: 

dist(w, (x,y)) = cons((w, x), dist(x, (y))) 

= cons( (w, x), cons( (w, y), dist(x, 0 ))) 

= ((w,x), (w,y)). 

The function is defined as follows: 

(defun dist (n 1st) 

(if (null 1st) 

nil 

(cons (list n (car 1st)) (dist n (cdr 1st) )))) 

We can trace the execution of function dist as follows: 

(dist 'a '(b cd)) (cons (list 'a 'a) dist ('a '(b c))) 

(cons '(a a) (cons ((list 'a 'b) dist ('a '(c))))) 

(cons ' (a a) (cons ' (a b) (cons (list ' a ' c) , 0)))) 

(cons ' (a a) (cons ' (a b) (cons ' (a c) , 0))) 

, ((a a), (a b) (a c)) 

Example 9.23. Provide the implementation of function front that returns the list obtained 

by removing the last element of a non-empty list. For example front( (a, b, c)) = (a, b). 
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The function is defined as follows: 

(defun front (1st) 

(cond ((null 1st) nil) 

((null (cdr 1st)) '0) 

(t (cons (car 1st) (front (cdr 1st)))))) 

Example 9.24. Provide the definition of a function that takes a list of integers as its argu­

ment and returns the maximum integer among them. 

This problem can be addressed in a number of ways. One possible solution is provided 

by function max2 that deploys let bound variables. Other possible solutions include the 

following: 

(defun max3 (1st) 

(cond ((null 1st) nil) 

((null (cdr 1st)) (car 1st)) 

((> (car 1st) (car (cdr 1st))) 

(max3 (cons (car 1st) (cdr (cdr 1st))))) 

(t (max3 (cdr 1st))))) 

(defun max4 (1st) 

(cond ((null 1st) nil) 

((null (cdr 1st)) (car 1st)) 

(t (greater (car 1st) (max4 (cdr 1st)))))) 

(defun greater (a b) 

(if (> a b) 

a 

b) ) 
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(defun max5 (1st) 

(cond ((null 1st) nil) 

((null (cdr 1st)) (car 1st)) 

((> (car 1st) (max5 (cdr 1st))) (car 1st)) 

(t (max5 (cdr 1st))))) 

(defun max6 (1st) 

(cond ((null 1st) nil) 

((null (cdr 1st)) (car 1st)) 

((< (car 1st) (max6 (cdr 1st))) (max6 (cdr 1st))) 

(t (max6 (cons (car 1st) (cdr (cdr 1st))))))) 

Example 9.25. Let us define function diff that takes two non-empty lists of equal length as 

arguments and produces a list whose elements correspond to the cubed differences between 

the corresponding elements of the two arguments. We may assume that non-empty list 

arguments contain only numeral elements. Example executions are as follows: 

> (diff '3 '(5 1 -4)) 

NIL 

> (diff ' () , (3 4)) 

NIL 

> (diff ' (5 7) , (1 3 7 9)) 

NIL 

> (diff '(3 5 -2) '(5 1 -4)) 

(-8 64 8) 
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(defun diff (lstl lst2) 

(cond 

((or 

(not (and (listp 1st!) (listp lst2))) 

(or (null 1st!) (null lst2)) 

(not (= (length 1st!) (length lst2)))) nil) 

(t (let 

( ( d (- (c ar 1 s t 1) ( car 1 s t 2 ) ) ) ) 

(cons (expt d 3) (diff (cdr 1st!) (cdr lst2))))))) 

Let us trace the execution of the function for (diff ' (4 2 -2) , (2 -1 -4)). 

> (diff '(4 2 -2) '(2 -1 -4)) 

-> (cons '8 (diff '(2 -2) '(-1 -4))) 

-> (cons '8 (cons '27 (diff '(-2) '(-4)))) 

-> (cons '8 (cons '27 (cons '8 (diff 'C) 'C))))) 

-> (cons '8 (cons '27 (cons '8 'C)))) 

-> (8 27 8) 

Example 9.26. Let us define function remove-alI-odds that takes a list as its argument 

and returns a new list which contains all the elements of its argument with all odd numbers 

removed. We may assume that a non-empty list argument contains only numeral elements. 

Example executions are as follows: 

> (remove-alI-odds '7) 

NIL 

> (remove-alI-odds 'C)) 

NIL 

> (remove-alI-odds '(3)) 

NIL 
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> (remove-alI-odds '(1 234 5 6 789 10)) 

(2 4 6 8 10) 

(defun remove-all-odds (1st) 

(cond 

((not (listp 1st)) nil) 

((null 1st) , 0) 

((oddp (car 1st)) (remove-all-odds (cdr 1st))) 

(t (cons (car 1st) (remove-all-odds (cdr 1st)))))) 

Let us trace the execution of the function for (remove-all-odds ' 00 9 8 12 14 3 11)). 

> (remove-alI-odds '(10 9 8 12 14 3 11)) 

-> (cons '10 (remove-alI-odds '(9 8 12 14 3 11))) 

-> (cons '10 (remove-alI-odds '(8 12 14 3 11))) 

-> (cons '10 (cons '8 (remove-alI-odds '(12 14 3 11)))) 

-> (cons '10 (cons '8 (cons '12 (remove-alI-odds '(14 3 11))))) 

-> (cons '10 (cons '8 (cons '12 (cons '14 (remove-alI-odds '(3 11)))))) 

-> (cons '10 (cons '8 (cons '12 (cons '14 (remove-alI-odds '(11)))))) 

-> (cons '10 (cons '8 (cons '12 (cons '14 'C))))) 

-> 00 8 12 14) 

Example 9.27. Let us define function (mins listl list3 list3) that takes three non-empty 

lists of equal length and produces a list whose elements correspond to the cubed minimum 

between the corresponding elements of the three arguments. We may assume that non-empty 

list arguments contain only numeral elements. Example executions are as follows: 

> (mins ' 1 ' (3 1 1) , (2 3 4)) 

NIL 

> (mins ' () , 0 2 7) , (2 3 4)) 

NIL 
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> (mins ' (2) , (1 2 4) , (2 3 4)) 

NIL 

> (mins '(2 1 5) '(1 2 4) '(2 3 4)) 

(1 1 64) 

(defun mins (lst1 lst2 lst3) 

(cond 

((or 

(not (and (listp 1st!) (listp lst2) (listp lst3))) 

(or (null 1st!) (null lst2) (null lst3)) 

(not (= (length 1st!) (length lst2) (length lst3)))) nil) 

(t (let 

((m (min (car 1st!) (car lst2) (car lst3)))) 

(cons (expt m 3) (mins (cdr 1st!) (cdr lst2)(cdr lst3))))))) 

Let us trace the execution of the function for (mins ' (2 3 5) , (4 2 4) , (7 3 3)). 

(mins '(2 8 3) '(2 4 2) '(7 3 3)) 

-> (cons '8 (mins '(8 3) '(4 2) '(3 3))) 

-> (cons '8 (cons '27 (mins '(3) '(2) '(3)))) 

-> (cons '8 (cons '27 (cons '8 '0 '0 '0))) 

-> (8 27 8) 

Example 9.28. Let us define function (filter list numeral) that takes two arguments, a) 

a non-empty list of integers, and b) a positive integer, and produces a list whose elements 

are those elements of the first argument that are larger than the second argument. We may 

assume that a non-empty list argument contains only numeral elements. Example executions 

are as follows: 

> (filter '5 3) 

NIL 
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> (filter ' () 5) 

NIL 

> (filter '(7 9 11) '(2)) 

NIL 

> (filter '(3 4 5) '0) 

NIL 

> (filter '(3 4 5) '2.5) 

NIL 

> (filter '(3 4 5) '0) 

NIL 

> (filter '(5 932 11) '7) 

(9 11) 

(defun filter (1st el) 

(cond 

((not (listp 1st)) ni1) 

((null 1st) , 0) 

((not (atom el)) nil) 

(( or «= el 0) (not Cintegerp e1))) ni1) 

((<= (car 1st) e1) (filter (cdr 1st) e1)) 

(t (cons (car 1st) (filter (cdr 1st) el))))) 

Let us trace the execution of the function for (filter ' (12 9 3 2 7) , 6). 

> (filter '(12 9 327) '6) 

-> (cons '12 (filter '(9 3 2 7) '6)) 
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-> (cons '12 (cons '9 (filter '(3 2 7) '6)) 

-> (cons '12 (cons '9 (filter '(2 7) '6))) 

-> (cons '12 (cons '9 (filter '(7) '6))) 

-> (cons '12 (cons '9 (cons '7 (filter 'C) '6)))) 

-> (cons '12 (cons '9 (cons '7 'C)))) 

-> (12, 9, 7) 

Example 9.29. Let us define a function list2set (lst) that takes a list as an argument 

and returns a set representation of the list. Example executions of the function are as follows: 

> (list2set ' 0 ) 

NIL 

> (list2set ' 3) 

NIL 

> (list2set '(a b c 1 4 f)) 

(A B C 1 4 F) 

> (list2set '(a a a a a b b b bee a a be)) 

(A B C) 

> (list2set '(a b b a)) 

(B A) 

(defun list2set (1st) 

(cond 

((not (listp 1st)) nil) 

((null 1st) , 0) 

((member (car 1st) (cdr 1st)) (list2set (cdr 1st))) 

(t (cons (car 1st) (list2set (cdr 1st)))))) 
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Let us trace the execution of the function for (list2set '(a b b a)). 

(list2set '(a b b a) 

-> (list2set '(b b a)) 

-> (list2set '(b a)) 

-> (cons 'b (list2set '(a))) 

-> (cons 'b (cons 'a 'C))) 

-> (cons 'b '(a)) 

-> (b a) 

Example 9.30. Let us define function setp (lst) that takes a list as its argument and 

returns true if the list represents a set, and it returns false otherwise. Example executions 

of the function are as follows: 

> (setp '3) 

NIL 

> (setp '()) 

T 

> (setp '(9)) 

T 

> (setp '(4 5 7 8)) 

T 

> (setp '(3 2 6 8 2)) 

NIL 
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(defun setp (lst) 

(cond 

((not (listp 1st)) nil) 

((null 1st) t) 

((not(member (car 1st) (cdr 1st))) (setp (cdr 1st))) 

(t nil))) 

Example 9.31. Let us define function cartesian (lst1 lst2) that takes as arguments 

two lists that represent sets and returns the Cartesian product of the two sets. The function 

deploys setp (lst) as auxiliary function. Example executions of the function are as follows: 

> (cartesian '3 '(4)) 

NIL 

> (cartesian 'C) '(a b c)) 

NIL 

> (cartesian '(1 1 2) '(a b c)) 

NIL 

> (cartesian '(1 2) '(a b c)) 

NIL 

> (cartesian '(1 2 3) '(a b c)) 

((1 A) (1 B) (1 C) (2 A) (2 B) (2 C) (3 A) (3 B) (3 C)) 

(defun distribute (el 1st) 

(cond 

((null 1st) nil) 

(t (cons (list el (car 1st)) (distribute el (cdr 1st)))))) 

" (distribute '1 '(a b)) => ((1 A) (1 B)) 
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(defun cartesian-aux (lst1 lst2) 

(cond 

((null lst1) '()) 

(t (append (distribute (car 1st!) lst2) 

(cartesian-aux (cdr 1st 1) lst2))))) 

(defun cartesian (lst1 lst2) 

(cond 

((or 

(or (not (listp 1st!)) (not (listp lst2))) 

(not (and (setp 1st!) (setp lst2))) 

(not (= (length lst1) (length lst2)))) nil) 

(t (cartesian-aux lst1 lst2)))) 

Let us trace the execution of the function for (cartesian '( 1 2 3) '( abc) ) . 

(cartesian '(1 2 3) '(a b c)) 

-> (cartesian-aux '(1 2 3) '(a b c)) 

-> (append '((1 A) (1 B) (1 C)) (cartesian-aux '(2 3) '(a b c)))) 

-> (append '( (1 A) (1 B) (1 C)) 

(append '((2 A) (2 B) (2 C)) 

(cartesian-aux '(3) '(a b c))))) 

-> (append '( (1 A) (1 B) (1 C)) 

(append '((2 A) (2 B) (2 C)) 

(append '((3 A) (3 B) (3 C)) 

(cartesian-aux 'C) '(a b c)))) 

-> (append '( (1 A) (1 B) (1 C)) 

(append '((2 A) (2 B) (2 C)) 

(append '( (3 A) (3 B) (3 C)) '0)))) 

-> (append '(1 A) (1 B) (1 C)) 

(append '( (2 A) (2 B) (2 C)) ((3 A) (3 B) (3 C)))) 
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-> (append '( (1 A) (1 B) (1 C)) '( (2 A) (2 B) (2 C) 

(3 A) (3 B) (3 C))) 

-> ((1 A) (1 B) (1 C) (2 A) (2 B) (2 C) (3 A) (3 B) (3 C)) 

Example 9.32. Let us define a pure function that accepts a non-empty binary tree as an 

argument and returns a list of nodes that represents the pre-order traversal of the tree. Note 

that in doing that your function may invoke auxiliary pure functions. The function must 

reject any other argument as invalid by returning nil. 

(defun btreep (btree) 

(cond 

((null btree) t) 

((not (listp btree)) nil) 

((not (= (length btree) 3)) nil) 

((listp (car btree)) nil) 

((not (btreep (car (cdr btree)))) nil) 

((not (btreep (car(cdr (cdr btree))))) nil) 

(t t))) 

(defun preorder (btree) 

(if (btreep btree) 

(pre btree) 

nil) ) 

(defun pre (btree) 

(cond 

((null btree) nil) 

(t (append (list (car btree)) 

(pre (car(cdr btree))) 

(pre(car (cdr (cdr btree)))))))) 
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9.2 From specification to code: summary and guide­

lines 

Below is a summary of steps involved in the definition of a computable function starting 

from a specification: 

1. We obtain a specification (definition) in a plain natural language. For example, consider 

a function f that accepts an integer n and returns the list < n, n - 1, ... ,0 >. 

2. We transform the definition into a computable function. To do that, we reuse available 

(i.e. built-in, or previously defined) operations (functions). Most likely we would also 

have to deploy recursion, i.e. 

f(n) = (cons (n, f(n - 1)) 

3. We unfold the definition by tracing the algorithm from the previous step, i.e. 

f(3) = cons(3, f(2)) 

= cons(3, cons(2, f(l))) 

= cons(3, cons(2, cons(l, f(O)))) 

= cons(3, cons(2, cons(l, (0)))) 

= cons(3, cons(2, (1,0))) 

= cons(3, (2,1,0)) 

= (3,2,1,0). 

4. Now that we are confident that our function definition (from step 2) produces the 

desired output, we can translate it into (Common Lisp) code, i.e. 
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(defun f (n) 

(if (= n 0) 

(cons 0 '()) 

(cons n (f(- n 1))))) 

5. We now can trace the execution of the Common Lisp function with sample input data, 

e.g. 

£(2) (cons 2, f (1)) 

(cons 2, (cons 1 , £(0))) 

(cons 2, (cons 1 , (cons 0, ())) ) 

(cons 2, (cons 1 , (0))) 

(cons 2, (1 0)) 

(210). 

9.2.1 Additional guidelines for defining functions 

We list some additional general guidelines below: 

• Unless the function is trivial, we can break the logic into cases (multiple selection) with 

condo 

• When handling lists, you would normally adopt a recursive solution. Treat the empty 

list as a base case. 

• Normally you would operate on the head of a list (accessible with car) and recur on 

the tail of the list (accessible with cdr). 

• To skip the head of the list, simply recur on the tail of the list. 

• To keep the head of the list as is, use cons to place it as the head of the returning list 

(whose tail is determined by the recursive call). 

• Use else (or t) to cover remaining (and to protect against forgotten) cases. 
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Chapter 10 

Structures 

Structures are collections that hold data and they can be unordered or ordered. 

10.1 Unordered structures: Sets and bags 

A set is a collection of objects, called its elements (also: members). If S is a set and x is 

an element in S, then we write xES. If x is not an element of S we write x t/:. S. The set 

of no elements is called the empty set (also: null set), denoted by {} or 0. Sets have two 

characteristics: 

1. No element repetition is allowed. 

2. The ordering of the elements is not important. 

One way to define a set is to explicitly list all its elements, separated by commas and enclosed 

within braces ({ ... }). Two sets are equal if they have the same elements. We denote the 

fact that two sets A and B are equal by A = B. If sets A and B are not equal, we write 

A#B. 

Note that since order is not important, 

{a,b,c} = {c,a,b} 
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as opposed to 

(a,b,c) =I- (c,a,b) 

Note also that 

a =I- {a} =I- {{a}} 

since a is a single object, {a} is a set with one element, namely a, whereas {{a}} is a set 

with one element, namely the set {a} which contains one element, a. 

If A and B are sets and every element of A is also an element of B, then we say that A is a 

subset of B, denoted by A c B. It follows, from the definition, that every set is a subset of 

itself. It also follows that the empty set is a subset of any set A, i.e. 0 C A. We can use the 

notion of subsets to define set equality A = B to mean A c Band B c A. 

The cardinality of a set A, denoted by IAI, is a measure of how many elements A has. 

10.1.1 Operations on sets 

We can define the following operations on sets: 

The union of two sets A and B, denoted as A U B, is given by 

Au B = {x : x E A or x E B} 

The intersection of two sets A and B, denoted as A n B, is given by 

An B = {x : x E A and x E B} 

The difference between two sets A and B, denoted as A\B (or A - B), is given by 

A\B = {x: x E A and x ~ B} 
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The symmetric difference of two sets A and B, denoted as A EEl B, is given by 

A EEl B = {x : x E A or x E B but not both} 

=A\B U B\A 

Two sets A, B are called disjoint iff their intersection is empty, i.e. 

AnB=0 

Example 10.1. Consider function issubsetp which takes as arguments two lists represent­

ing sets, set1 and set2, and returns true if set1 is a subset of set2. Otherwise, it returns 

false (nil). 

Base case: If set 1 is empty, then return true. 

Recursive case: If the first element of set1 is a member of set2, then recur on the rest of 

the elements of set1, otherwise return false (nil). 

We can implement function issubsetp as follows: 

(defun issubsetp (set1 set2) 

(if (null set!) 

t 

(if (member (car set!) set2) 

(issubsetp (cdr set1) set2) 

nil))) 

We can now run the function as follows: 

> eissubsetp 'e) 'ea)) 

T 

> eissubsetp 'ea b c) 'ea bed)) 

T 

Example 10.2. Consider function setunion which takes as its arguments two lists lst1 

and lst2 representing sets and returns the set union. 
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Base cases: 

1. If 1st 1 is empty, then return lst2. 

2. If lst2 is empty, then return lst1. 

Recursive cases: 

1. If the head of lst1 is a member of lst2, then ignore this element and recur on 

the tail of lst1, and lst2. 

2. If the head of lst1 is not a member of lst2, return a list which is the concate­

nation of this element with the union of the tail of lst1 and lst2. 

We can implement function setunion as follows: 

(defun setunion (lst1 lst2) 

(cond 

((null lst1) lst2) 

((null lst2) lst1) 

((member (car 1st!) lst2) (setunion (cdr 1st!) lst2)) 

(t (cons (car 1st!) (setunion (cdr 1st!) lst2))))) 

We can execute the function as follows: 

> (setunion '(a bed) '(a d)) 

(B C A D) 

Example 10.3. Consider function setintersection which takes as its arguments two lists 

lst1 and lst2 representing sets, and returns a new list representing a set which forms the 

intersection of its arguments. 

Base case: If either list is empty, then return the empty set. 

Recursive cases: 

1. If the head of lst1 is a member of lst2, then keep this element and recur on the 

tail of lst1 and lst2. 
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2. If the head of lst1 is not a member of lst2, ignore this element and recur on 

the tail of lst1 and lst2. 

We can implement function set intersection as follows: 

(defun setintersection (lst1 lst2) 

(cond 

((null 1st!) '()) 

((null lst2) '()) 

((member (car 1st!) lst2) 

(cons (car 1st!) (setintersection (cdr 1st!) lst2))) 

(t (setintersection (cdr lst1) lst2)))) 

We can execute the function as follows: 

> (setintersection '(a b c) 'C)) 

NIL 

> (setintersection '(a b c) '(a de)) 

(A) 

Example 10.4. Consider function setdifference which takes as its arguments two lists 

lst1 and lst2 representing sets and returns the set difference. 

Base case: If lst1 is empty, then return the empty set. If lst2 is empty, then return lst1. 

Recursive cases: 

1. If the head of lst1 is a member of lst2, then ignore this element and recur on 

the tail of lst1, and lst2. 

2. If the head of lst1 is not a member of lst2, keep this element and recur on the 

tail of lst1 and lst2. 
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We can implement function setdifference as follows: 

(defun setdifference (lstl lst2) 

(cond 

((null lstl) '()) 

((null lst2) lstl) 

((member (car 1st!) lst2) (setdifference (cdr 1st!) lst2)) 

(t (cons (car 1st!) (setdifference (cdr 1st!) lst2))))) 

We can execute the function as follows: 

> (setdifference '(a b c) '(a d e f)) 

(B C) 

Example 10.5. Consider function setsymmetricdifference which takes as its arguments 

two lists representing sets and returns a list representing their symmetric difference. We can 

define this function as the difference between the union and the intersection sets, i.e. 

AEElB = (AUB) \ (AnB) 

We can implement function setsymmetricdifference as follows: 

(defun setsymmetricdifference (lstl lst2) 

(setdifference (union lstl lst2)(intersection lstl lst2))) 

Alternatively we can say 

A EEl B = (A\B) U (B\A) 

We can implement function setsymmetricdifference2 as follows: 

(defun setsymmetricdifference2 (lstl lst2) 

(union (setdifference lstl lst2)(setdifference lst2 lstl))) 

We can now run the function as follows: 

> (setsymmetricdifference '(a bed e f) 'Cd e f g h)) 
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(H GAB C) 

> (setsymmetricdifference2 '(a b c d e f) 'Cd e f g h)) 

(H GAB C) 

> (setsymmetricdifference '(a b (cd) e) '(e (f h))) 

((F H) A B (CD)) 

> (setsymmetricdifference2 '(a b (cd) e) '(e (f h))) 

((F H) A B (CD)) 

10.1.2 Bags 

A bag (or multiset) is a structure which contains a collection of elements. Like a set, the 

ordering of the elements in not important in a bag. However, unlike a set, repetitions are 

allowed in a bag. 

Note that since order is not important and repetitions are allowed, 

{a,b,b,c} = {c,a,b,b} 

{a,b,c} # {c,a,b,b} 

Example 10.6. Consider function bag-to-set which takes as its argument a list represent­

ing a bag and returns the corresponding set. 

Base case: If the list is empty, then return the empty list. 

Recursive cases: 

1. If the head of the list is a member of the tail of the list, then ignore this element 

and recur on the tail of the list. 

2. If the head of the list is not a member of the tail of the list, keep the head element 

and recur on the tail of the list. 
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We can implement function bag-to-set as follows: 

(defun bag-to-set (bag) 

(cond ((null bag) '0) 

((member (car bag) (cdr bag)) (bag-to-set (cdr bag))) 

(t (cons (car bag) (bag-to-set(cdr bag)))))) 

We can execute the function as follows: 

> (bag-to-set '(a a be)) 

(A B C) 

> (bag-to-set '(a a a b b c b a)) 

(C B A) 

> (bag-to-set '(a bed)) 

(A BCD) 

10.2 Ordered structures: Tuples 

We have already seen an ordered structure, namely the list. A tuple is a structure which 

contains a collection of elements. Unlike sets and bags, the ordering of the elements matters 

in a tuple. Unlike a set repetitions are allowed in a tuple. 

Note that since order is important and repetitions are allowed, 

(a, b, b, c) -I- (c, a, b, b) 

(a,b,c) -I- (c,a,b,b) 
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Summary 

We can summarize the restrictions imposed by the collections discussed in this chapter as 

follows: 

Collection Order Repetitions allowed 

Set No No 

Bag (multiset) No Yes 

Tuple Yes Yes 
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Chapter 11 

Trees 

We can use a list to represent a non-empty binary tree as (atom, 1 - list, r - list), where 

atom is the root of the tree, and l-list and r -list are lists that represent the left and right 

subtrees respectively. For an empty binary tree, the list representation can be o. 
Example 11.1. Consider the binary tree in Figure 11.1. Let us translate this representation 

into Lisp. 

'(40 

) 

(. .. ) 

(. .. ) 

Root. 

Left subtree. 

Right subtree. 

The left subtree of 40 can be represented as 

(30 

) 

(. .. ) 

(. .. ) 

; Root of left subtree of 40. 

with the left and right subtrees of 30 can be represented as 

(25 0 0) 

(35 0 0) 

; Left subtree of 30. 

; Right subtree of 30. 
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Figure 11.1: Binary tree. 

where their respective left and right subtrees are null, represented by the empty list. 

The right subtree of 40 can be represented as 

(60 

) 

(. .. ) 

o 
Left subtree of 60. 

Right subtree of 60. 

where the left subtree of 60 can be represented as 

(50 (0) 

We can now put everything together and represent the entire tree as one list: 

'(40 Root. 

(30 Root of left subtree. 

(25 0 0) 

(35 0 0) 

) 

(60 Root of right subtree. 

(50 o 0) 0) ) 
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or '(40 (30 (25 0 0 )(35 0 0) )(60 (50 0 0) 0)) 

Recall that the entire tree is represented by the list (atom, l -list, r -list). We can obtain 

the root of the tree by getting the head of the list: 

> (car '(40 (30 (25 0 0) (35 0 0)) (60 (50 0 0) 0)) 

40 

We can obtain the left subtree, l - list, of the tree by getting the head of the tail of the list: 

> (car (cdr '(40 (30 (25 0 0)(35 0 0))(60 (50 0 0)0)))) 

(30 (25 NIL NIL) (35 NIL NIL)) 

We can obtain the right subtree, r - list, of the tree by getting the head of the tail of the 

tail of the list: 

> (car (cdr (cdr '(40 (30 (25 () ())(35 () ()))(60 (50 () ())()))))) 

(60 (50 NIL NIL) NIL) 

Example 11.2. Consider the binary tree in Figure 11.2. The height of this tree is 3. Recall 

that the height of an empty tree, or the height of a tree with a single node is zero. 

Level 1 

Level 2 

Level 3 

Figure 11.2: A binary tree of height 3. 
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We can represent the tree as follows: 

'(50 

(40 (30 0 0) 0) 

(70 (60 0 (65 0 0)) (75 0 0))) 

Consider function tree-height, which takes as an argument a list representing a tree and 

returns the height of the tree. 

We can provide a recursive definition of tree-height is as follows: 

Base case: If tree is empty, or if the tree has one node (root) then return O. 

Recursive case: Add one to the maximum of the heights of the left and right subtrees. 

We can implement function tree-height as shown below. Note that the implementation 

needs an auxiliary function take-max. 

(defun tree-height (tree) 

(if (or (null tree) 

(and (null (car (cdr tree))) 

(null (car (cdr (cdr tree)))))) 

o 

(+ 1 (take-max (tree-height (car (cdr tree))) 

(tree-height (car (cdr (cdr tree)))))))) 

(defun take-max (n1 n2) 

(if (> n1 n2) 

n1 

n2)) 
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We can execute tree-height as follows: 

> (tree-height '(50 (40 (30 0 0) 0) (70 (60 0 (65 0 0)) (75 0 0)))) 

3 

Example 11.3. Let us define and implement function count-nodes which takes as argument 

a list representing a binary tree and returns the total number of (non-null) nodes. We can 

transform the above problem specification into a recursive computable function definition in 

mathematical notation and in English notation as follows: 

count - nodes( 0) = o. 

count - nodes( (atom, 1 - list, r - list)) = 1+ 

Base case: If tree is empty, then return O. 

count - nodes(l - list)+ 

count - nodes(r - list). 

Recursive case: Add one to the number of nodes of the left and of the right subtree. 

We can implement function count-nodes as follows: 

(defun count-nodes (tree) 

(if (null tree) 

o 
(+ 1 

(count-nodes (car (cdr tree))) 

(count-nodes (car (cdr (cdr tree))))))) 

Let us execute count-nodes with the tree of the previous example: 

> (count-nodes '(50 (40 (30 0 0) 0) (70 (60 0 (65 0 0)) (75 0 0)))) 

7 
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For the tree of Figure 11.3 we can trace count-nodes as follows: 

Figure 11.3: Binary tree. 

(count-nodes '(50 (40 (20 0 0) (45 0 0) )) (65 (55 0 0) 0)) 

(+ 1 count-nodes(40 (20 0 0) (45 0 0)) count-nodes(65 (55 (0) 0)) 

(+ 1 (+ 1 count-nodes (20 () ()) count-nodes(45 () ())) 

(+ 1 count-nodes (55 () ()) count-nodes(())) 

(+ 1 (+ 1 (+ 1 (count-nodes(()) count-nodes(())) 

(+ 1 count-nodes(()) count-nodes(())) 

(+ 1 (+ 1 count-nodes(()) count-nodes(())) 0)))) 

(+ 1 (+ 1 (+ 1 0 0) (+ 1 0 0) (+ 1 1 0 0)))) 

6 
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Chapter 12 

Numbers 

12.1 Exponentiation 

The exponentiation operation, an, involves two numbers, the base a and the exponent n. 

When n is a positive integer, exponentiation corresponds to repeated multiplication. We can 

define power(a, n) as follows: 

power(a, 0) = 1 

power(a, 1) = a = a x power(a, 0) 

power(a, 2) = a x a = a x power(a, 1) 

We can then define a recursive pattern as follows: 

Base case: power(a, 0) = 1 

Recursive case: power(a, n) = a x power(a, n - 1) 
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We can unfold the definition of power(3, 4) as follows: 

power(3, 4) = 3 x power(3, 3) 

= 3 x 3 x power(3, 2) 

= 3 x 3 x 3 x power(3, 1) 

= 3 x 3 x 3 x 3 x power(3, 0) 

=3x3x3x3x1 

= 81. 

We can now define function power as follows: 

(defun power (a n) 

(if (zerop n) 

1 

(* a (power a (- n 1))))) 

We can execute the function as follows: 

> (power 3 0) 

1 

> (power 3 2) 

9 

> (power 3 4) 

81 

12.2 Cartesian system 

For two points (Xl, YI) and (X2' Y2), the distance between them is given by 
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Example 12.1. A point on the Cartesian plane can be represented as a two-element list. 

The first element of the list represents the x coordinate and it can be obtained by the head 

of the list. The second element of the list defines the y coordinate and it can be accessed as 

the head of the tail of the list. We can define function second2 to take as its argument a 

Cartesian point and return the y coordinate: 

(defun second2 (1st) 

(car (cdr 1st))) 

We can now use second2 as an auxiliary to function distance, which takes as arguments 

two two-atom lists, each one representing a point on the Cartesian plane. The function 

returns the distance between the points. To improve readability, we will use first in place 

of the (admittedly less readable) car. 

(defun distance (pi p2) 

(sqrt (+ (expt (- (first pi) (first p2)) 2) 

(expt (- (second2 pi) (second2 p2)) 2)))) 

We can execute the function as follows: 

> (distance '(0 0) '(2 2)) 

2.828427 

12.3 Factorial of a number 

The factorial of an integer number is defined as follows: 

Base case: If the number is zero, return 1. 

Recursive case: Return the product between n and the factorial of n - 1. 
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Consider the unfolding of the definition for f(5) as follows: 

factorial (5) = 5 x factorial ( 4) 

= 5 x 4 x factorial(3) 

= 5 x 4 x 3 x factorial(2) 

= 5 x 4 x 3 x 2 x factorial(l) 

= 5 x 4 x 3 x 2 x 1 x factorial (0) 

=5x4x3x2x1x1 

= 120. 

We can now define function factorial as follows: 

(defun fact ori al (n) 

(if (= n 0) 

1 

(* n (factorial (- n 1))))) 

We can now execute the function as follows: 

>(factorial 5) 

120 

12.4 Prime numbers 

An integer p > 1 is called prime if it cannot be the product of two integers greater than 1, 

or alternatively if its only positive factors are 1 and itself. Positive integers which can be 

expressed as the product of two integers greater than 1 are called composite. 
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12.5 Greatest common divisor 

The greatest common divisor (gcd) of two integers a and b (not both zero) is the largest 

integer d that is a divisor both of a and of b. We can implement function gcd as follows: 

(defun gcd (a b) 

(cond ((equal a b) a) 

12.6 

((> a b) (gcd (- a b) b)) 

(t (gcd a (- b a))))) 

Relative primality 

Two numbers are relatively prime (or coprime) if their greatest common divisor (gcd) is 

1. We can implement a predicate function coprimep which determines whether or not two 

positive integer numbers a and b are coprime. 

(defun coprime (a b) 

(equal (gcd a b) 1)) 

We can now run the function as follows: 

>(coprime 35 64) 

T 

12.7 Division remainder 

Example 12.2. Consider function remainder, which takes as arguments two positive non­

zero numbers, nand m, and returns the remainder of the division n/m. 

Base case: If n < m then return n. 

Recursive case: Return the remainder of (n - m) and m. 
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(defun remainder (n m) 

(cond ((< n m) n) 

(t (remainder (- n m) m)))) 

We can now run the function as follows: 

> (remainder 3 5) 

3 

> (remainder 5 3) 

2 
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Chapter 13 

Sorting 

Sorting is a technique that puts the elements of an unordered collection in a certain order. 

13.1 Bubble sort 

Bubble sort is based on successive pairwise comparisons between elements of a collection 

performed possibly over many iterations. Each iteration results in a single element eventu­

ally ending up in its proper position (like a bubble moving up). 

We can demonstrate this with an example: Consider the collection (9,8,13,6). The first 

iteration will work as follows: 

Collection Observations and actions 

(~,13,6) Compare 1st with 2nd. Not in order. Swap them! 

(8,~,6) Compare 2nd with 3rd. In order. 

(8,9,~) Compare 3rd with 4th. Not in order. Swap them! 

(8,9,6,13) One element (13) has reached its proper position. 

We have reached the end of the collection and 

the end of the current iteration. 

Note that the collection is not yet sorted and more iterations are required. 
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Example 13.1. Consider the implementation of function bubble-sort which takes as its 

argument a list, and returns the same list with its elements sorted in ascending order. We 

first need to build some auxiliary functions, the first one is bubble which performs one 

iteration, thus placing one element in its proper position. 

(defun bubble (1st) 

(cond ((or (null 1st) (null (cdr 1st))) 1st) 

(( < (car 1st) (car (cdr 1st))) 

(cons (car 1st) (bubble (cdr 1st)))) 

( t (cons (car (cdr 1st)) 

(bubble (cons (car 1st) (cdr (cdr 1st)))))))) 

We can test the function as follows: 

> (bubble '(3 2 1)) 

(2 1 3) 

Another auxiliary function is is-sortedp which returns True or False based on whether or 

not its list argument is sorted. 

(defun is-sortedp (1st) 

(cond ((or (null 1st) (null (cdr 1st))) t) 

(( < (car 1st) (car (cdr 1st))) (is-sortedp (cdr 1st))) 

(t nil))) 

We can test the function as follows: 

> (is-sortedp '(2 1 3)) 

NIL 

> (is-sortedp '(1 2 3)) 

T 
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We can now put everything together and define bubble-sort as follows: 

(defun bubble-sort (lst) 

(cond ((or (null 1st) (null (cdr 1st))) 1st) 

((is-sortedp 1st) 1st) 

(t (bubble-sort (bubble 1st))))) 

We can execute the function as follows: 

> (bubble-sort '(4 2 759)) 

(2 4 5 7 9) 
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Chapter 14 

Searching 

Searching is a technique to locate a given element from a sorted collection of elements. We 

will deploy a list to represent a collection of elements. 

14.1 Linear search 

If element elt appears in list 1st then we would like to return its position in the list. 

Consider the following function: 

(defun search (1st elt pos) 

(if (null 1st) 

nil 

(if (equal (car 1st) elt) 

pos 

(search (cdr 1st) elt (+ 1 pos))))) 

(defun linear-search (1st elt) 

(search 1st elt 1)) 

We can execute the function as follows: 

> (linear-search '(4 6 158 9) 9) 

6 
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> (linear-search '(a (bc) d) '(bc)) 

2 

14.2 Binary search 

Recall that we can use a list to represent a non-empty tree as (atom, l-list, r -list), where 

atom is the root of the tree and l - list and r - list represent the left and right subtrees 

respectively. 

(defun binary-search (1st elt) 

(cond ((null 1st) nil) 

((= (car 1st) elt) t) 

((< elt (car 1st)) (binary-search (car (cdr 1st)) elt)) 

((> elt (car 1st)) (binary-search (car (cdr (cdr 1st))) elt)))) 

We can execute the function as follows: 

> (binary-search 'C) 9) 

NIL 

> (binary-search '(7 (3 (1 () ())) (9 () ())) 1) 

T 

> (binary-search '(7 (3 (1 () ())) (9 () ())) 9) 

T 

> (binary-search '(7 (3 (1 () ())) (9 () ())) 7) 

T 

> (binary-search '(7 (3 (1 () ())) (9 () ())) 6) 

NIL 
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Part III 

Procedural Programming with C 
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Chapter 15 

Functions II 

15.1 Functions 

We have already seen that similarly to its mathematical counterpart, a computing function 

is a (named) block that normally receives some input, performs some task and normally 

returns a result. Unlike its mathematical counterpart, a computing function may receive no 

input or may produce no output. A function call implies transfer of control of execution 

to the function. When a function completes its task and terminates, control of execution is 

transferred back to the client. 

Synonyms for function exist in various languages (such as method, procedure, or subroutine). 

It is also important to note that some languages make a distinction between functions that 

return a result and those that do not, the latter ones being referred to as procedures. 

We will use the C programming language to discuss procedural programming. The general 

form of a function definition in C is 

return-type function-name ( parameter-list) { body} 

where return-type is the type of the value that the function returns, function-name is the 

name of the function, and parameter-list is the list of parameters that the function takes, 

defined as 
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( type1 parameter1, type2 parameter2, ... ) 

If no type is in front of a variable in the parameter list, then int is assumed. Finally, the 

body of the function is a sequence of statements. 

If the function will be accessed before it is defined, then we must let the compiler know 

about the function by defining the function's prototype (or declaration) as follows: 

return-type function-name (parameter-type-list); 

where return-type and function-name must correspond to the function definition. The 

parameter-type-list is a list of the types of the function's parameters. Function main () 

requires no prototype. 

15.2 Recursion 

C supports recursion. Like its mathematical counterpart and very similarly to the Lisp 

functions that we have seen, a function in C can call itself. 

Example 15.1. Consider the program below that computes the factorial of a non-negative 

integer. The program is composed by two functions: mainO and factorial( .. ). The 

statement 

long factorial(int); 

defines the prototype for function factorial. The code below 

long factorial(int n) { 

} 

is the actual function definition. In C, execution always starts from main () which calls all 

other functions, directly or indirectly. 
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#include<stdio.h> 

long factorial(int); 

int main 0 { 

} 

int n; 

long f; 

printf (" Enter an non -negat i ve integer: "); 

scanf("%d", &n); 

if (n < 0) 

printf (" Negat i ve integers are not allowed. \n") ; 

else { 

f = factorial(n); 

printf("%d! = %ld\n", n, 0; 

} 

return 0; 

long factorial(int n) { 

if (n == 0) 

} 

return 1; 

else 

return(n * factorial(n-1)); 

In long factorial(int n) .. , n is called the parameter (or formal argument, also dummy 

argument) of the function. The result of a function is called its return value and the data 

type of the return value is called the function's return type. The return type of main 0 is 

int (integer), whereas the one of factorial is long (long integer). A function call allows us to 

use a function in an expression. In 

f = factorial(n); 

the function on the right-hand-side executes and the value that it returns is assigned to the 

variable f on the left-hand-side. We refer to n as the actual argument (or just argument if 

the distinction is clear from the context). Obviously the actual argument (s) to a function 



200

would normally vary from one call to another. The values of the actual arguments are copied 

into the formal parameters, with a correspondence in number and type. 

Let us execute the program: 

Enter an non-negative integer: 5 

51 = 120 

Example 15.2. In this example we are writing a program whose main function requests and 

receives the value of the fahrenheit temperature to be converted to celsius and proceeds to 

call function f2c 0 to perform this conversion. The function f2c 0 will apply the conversion 

formula and return its result to the caller (function main 0). 

#include <stdio.h> 

int f2c (int fahrenheit); 

int main (void) { 

} 

int fahrenheit; 

printf (" Enter the temperature in degrees f ahrenhe it: "); 

scanf ("%d", &fahrenheit); 

printf ("The corresponding temperature in celsius is %d\n" , 

f2c(fahrenheit)); 

return 0; 

int f2c (int fahrenheit) { 

int celsius; 

} 

celsius = (5.0/9.0) * (fahrenheit-32); 

return celsius; 

Let us execute the program: 

Enter the temperature in degrees fahrenheit: 30 

The corresponding temperature in celsius is -1 
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15.3 G 10 bal and local variables 

We distinguish between global and local variables. A global variable is defined at the top 

of the program file and can be accessed by all functions. A local variable is accessed only 

within the function which it is declared, called the scope of the variable. Though not a good 

programming practice, in the case where the same name is used for a global and local variable 

then the local variable takes preference within its scope. This is referred to as shadowing. 

Global variables have default initializations, whereas local variables do not. 

Consider the following program that contains a global and a local variable with the same 

name. Within function func( .. ) the global variable a is not visible as the local variable a 

takes precedence. 

#include<stdio.h> 

int a = 3; 

int func 0 { 

} 

int a = 5; 

return a; 

int main 0 { 

} 

printf (" From main: %d \n", a); 

printf("From func: %d\n", func()); 

printf (" From main: %d \n", a); 

The output is: 

From main: 3 

From func: 5 

From main: 3 



202

15.4 Variable and function modifiers 

Two modifiers are used to explicitly indicate the visibility of a variable or function: The 

extern modifier indicates that a variable or function is defined outside the current file, 

whereas the static modifier indicates that the variable or function is visible only from 

within the file it is defined in. The default (i.e. no modifier) indicates that the variable or 

function is defined in the current file and it is visible in other files. A summary is given 

below: 

MODIFIER DESCRIPTION 

extern Variable/function is defined outside of current file. 

<blank> 
Variable/function is defined in current file and vis-

ible outside. 

static Variable/function is visible only in current file. 

Consider a program that reads in a collection of elements and proceeds to sort them by 

calling a function bubbleSort () that is defined outside the current file and thus must be 

declared extern. 

#include <stdio.h> 

extern void bubbleSort (int [], int); 

int main 0 { 

} 

int array [10], numberOfElements; 

printf (" Enter number of elements: II); 

scanf("%d", &numberOfElements); 

printf("Enter %d integers: ", numberOfElements); 

for (i n t i = 0; i < n um be r 0 f E 1 em e n t s; i + + ) 

scanf("%d", &array[i]); 

bubbleSort(array, numberOfElements); 

printf("Sorted list (ascending order): "); 

for Cint i = 0 ; i < numberOfElements ; i++) 

printf ("%d ", array [i]); 

return 0; 



203

Function bubbleSort (), defined in some other file, makes use offunction swap () that swaps 

two elements. As function swap () need not be visible outside the file in which it is defined, 

it is declared static: 

static void swap (int *a, int *b) { 

int temp = *a; 

*a *b; 

*b temp; 

} 

void bubbleSort (int numbers [], int array_size) { 

int i, j; 

for (i (array_size - 1); i > 0; i--) { 

for (j = 1; j <= i; j ++) { 

if ( n urn be r s [j - 1] > n um be r s [j ] ) 

s w a p (& n um be r s [j - 1], & n urn be r s [j ] ) ; 

} 

} 

} 

The output of the program is as follows: 

Enter number of elements: 10 

Enter 10 integers: 4 6 8 12 45 66 23 43 11 2 

Sorted list (ascending order): 2 4 6 8 11 12 23 43 45 66 

15.5 The C standard library 

An application programming interface (API) is a protocol that constitutes the interface of 

software components. In the C language this is a collection of functions grouped together 

according to their domain. We can access this API (called the C standard library) by adding 

the #include directive at the top of our program file. Perhaps the most common is the 
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group of functions that support input-output and are accessed by <stdio. h>. This and 

other common header files are listed in the table below: 

HEADER DESCRIPTION 

<math.h> Defines common mathematical functions. 

<stdio>.h Defines core input and output functions. 

Defines numenc converSIOn functions, pseudo-

<stdlib.h> random number generation functions, memory al-

location, process control functions. 

<string.h> Defines string manipulation functions. 

15.6 Formatted output 

You may be surprised to know that the C language defines no input/ouput functionality. The 

printf function is part of the standard library. The following is a list of format specifiers: 

SPECIFIER DISPLAYS EXAMPLE 

%i or %d int %3d displays as a decimal integer with a width of at least 3 wide. 

%c char 

%f float %4f displays as a floating point with a width of at least 4 wide. 

%. 1f displays as a floating point with a precision of one 

character after the decimal point. 

%2 . 2f displays as a floating point at least 2 wide and 

a precision of 2 characters after the decimal point. 

%If double 

%s string 

The \n we used in some printf statements is called an escape sequence and it represents a 

newline character. The following are common escape sequences: 



205

ESCAPE SEQUENCE DESCRIPTION 

\n newline 

\t tab 

\v vertical tab 

\f new page 

\b backspace 

\r carriage return 

\n newline 

Example 15.3. The following program demonstrates some of the formatting rules: 

#include<stdio.h> 

main () { 

} 

int a, b; 

float c, d; 

a = 7; 

b a / 2; 

c = 10.5; 

d c / 2; 

printf("%d\n", b); 

printf("%3d\n", b); 

printf("%3.2f\n", c); 

printf("%3.3f\n",d); 

return 0; 

The output is: 

3 

3 

10.50 

5.250 
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Chapter 16 

Data types 

A program is composed by constructs, such as functions and variables. A data type (or sim­

ply a type) is a description of the possible values that a construct can store or compute to, 

together with a collection of operations that manipulate that type, e.g. the set of integers 

together with operations such as addition, subtraction, and multiplication. Common types 

among most programming languages include booleans, numerals, characters and strings. 

16.1 Classes of data types 

The Boolean type contains the values true and false. The numeral type includes integers 

that represent whole numbers and floating points that represent real numbers. The character 

type is a member of a given set (ASCII) and, finally, strings are sequences of alphanumeric 

characters. We can distinguish between simple types and composite (or aggregate) types 

based on whether or not the values of a type can contain subparts. As an example, we can 

say that integer is a simple type, whereas record is composite. A data item is an instance 

(also: a member) of a type. 
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16.2 Primitive data types 

With respect to a given programming language, a primitive type is one that is built in 

(provided by the language). The C language supports two different classes of data types, 

namely numerals and characters, which are divided into four type identifiers (int, float, 

double, char), together with four optional specifiers (signed, unsigned, short, long): 

IDENTIFIER TYPE RANGE 

int integer -32, 768 to 32, 767 

float real 1.2 x 10-38 to 3.4 X 1038 

double real 2.2 x 10-308 to 1.8 X 10308 

char character ASCII 

16.2.1 Optional specifiers: Short, long, signed and unsigned 

The four specifiers define the amount of storage allocated to the variable. We distinguish 

between shori and long numeral data types that differ in their range. The amount of storage 

is not specified, but ANSI places the following rules: 

short int :::; int :::; long int 

and 

float:::; double:::; long double 

Further, we can distinguish between signed and unsigned numeral data types. Signed vari­

ables can be either positive or negative. On the other hand unsigned variables can only be 

positive, thus covering a larger range. 
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OPTIONAL SPECIFIER RANGE 

short int -32, 768 to 32, 767 

unsigned short int o to 65,535 

unsigned int o to 4, 294, 967, 295 

long int -2,147,483,648 to 2,147,483,647 

16.2.2 Type conversion 

Type conversion is the transformation of one type into another. In C, implicit type conver­

sion (or coercion) is the automatic type conversion done by the compiler. In the following 

example, the value of a float variable is assigned to an integer variable which in turn is 

assigned to another float variable. 

#include <stdio.h> 

int main 0 { 

} 

int intvar; 

3.14; float floatvar 

float floatvar2; 

intvar = floatvar; 

floatvar2 = intvar; 

printf("%d : %.2f : %1.3f\n", intvar, floatvar, floatvar2); 

return 0; 

The output of the program is as follows: 

3 3.14 3.000 
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16.2.3 Defining constants 

A constant defines a data type whose value cannot be modified. We can define a constant 

either with the const keyword as in 

float const pi = 3.14 

or with #def ine as in 

#define TRUE 1 

#define FALSE 0 

16.2.4 Constant declarations in function parameters 

A constant declaration in a function parameter states that the function is not going to change 

the value of the parameter. 

16.3 Composite data types 

A composite type is one that is composed by primitive types or other composite types. 

Normally a composite type is called a data structure: a way to organize and store data so 

that it can be accessed and manipulated efficiently. Common composite types include arrays 

and records. 

16.4 Arrays 

An array is a collection of values (called its elements), all of the same type, held in a specific 

order (and in fact stored contiguously in memory). Arrays can be either static (i.e,. fixed­

length) or dynamic (i.e. expandable). An array of size n is indexed by integers from 0 up to 

and including n -1. The composition of primitive (and possibly other composite) types into 

a composite type results in a new type. For example, integers can be composed to construct 

an array of integers. 
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Example 16.1. In the following program, we declare and initialize an array, numbers, and 

then pass it as an argument, together with its size, to function getAverage 0 that will 

compute and return the average of the elements of the array. 

#include<stdio.h> 

float get Average (float [], int); 

int main () { 

} 

flo at numb e r s [5] = {1, 2. 5, 9, 11. 5, 23. 5} ; 

printf (" Array average: % .1f . \n", getAverage (numbers, 5)); 

return 0; 

float get Average (float list [], int size) { 

} 

int i; 

flo at sum = O. 0 ; 

float average = 0.0; 

for (i=O; i<size; i++) 

sum = sum + list[i]; 

average = (sum/size); 

return average; 

The output is: 

Array average: 9.5. 

16.5 Pointers 

A pointer is a type that references ( "points to") another value by storing that other value's 

address. A pointer variable (also called an address variable) is declared by putting an asterisk 

* in front of its name, as in the following statement that declares a pointer to an integer. 

int *ptr; 

There are two operators that are used with pointers, namely "dereferencing" and "obtaining 

the address of." 
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* The "dereference" operator: Given a pointer, obtain the value of the object referenced 

(pointed at). 

& The "address of" operator: Given an object, use & to point to it. The & operator returns 

the address of the object pointed to. 

Example 16.2. The following code segment declares an integer variable a which is assigned 

to 42 (line 3), and a pointer p that points to an integer object (line 4). In line 5, the pointer 

p is assigned the address of variable a, and in line 6 we display the contents of the object 

pointed to by p. Accessing the object being pointed at is called dereferencing the pointer. 

An illustration of this is shown in Figure 16.1. 

1 #include <stdio.h> 

2 int main () { 

3 int a = 42; 

4 int *p; 

5 p = &a; 

6 printf("p: %d\n", *p); 

7 return 0; 

8 } 

The output of the program is p: 42. 

Example 16.3. In this example an integer pointer ptr points to an integer variable my_var. 

We then proceed to modify the contents of my _var through ptr and finally we verify that 

the value of my_var has indeed been modified. An illustration ofthis is shown in Figure 16.2. 

#include<stdio.h> 

int main () { 

} 

int my_var = 13; 

int *ptr = &my_var; 

*ptr = 17; 

printf ("my_var: %d\n", my_var); 
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int a = 42j 
a is an integer variable, assigned 
the value 42. 

int *pj 

p is is an integer pointer. 

p = &aj 

p is assigned the address of a. 

printf("p: %d\n", *p)j 

Displays the contents of the object 
pOinted to by p: 42. 

Address: OxlOOO 

Type: int 

Name: a 

Value: 42 

Address: OxlOOO 

Type: int 

Name: a 

Value: 42 

Address: OxlOOO 

Type: int 

Name: a 

Value: 42 

~ 

-

Address: Oxl004 

Type: int 

Name: p 

Value: 

Address: OxlOO4 

Type: int 

Name: p 

Value: OxlOOO 

Figure 16.1: An initial illustration of pointers. 

Note that a statement such as *my_var would have been illegal as it asks C to obtain the 

object pointed to by my_var. However, my_var is not a pointer. Similarly, a statement such 

as &ptr though legal is rather strange as it asks C to obtain the address of ptr. The result 

is a pointer to a pointer (i.e. the address of an object that contains the address of another 

object). 

16.5.1 Aliasing 

Aliasing is a situation where a single memory location can be accessed through different 

variables. Modifying the data through one name implicitly modifies the values associated to 

all aliased names. Consider the program below: 

#include<stdio.h> 

int main 0 { 

int a = 7; 

int *ptr; 
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int my_var = 13; 
my_var is an integer variable, 
assigned the value 13. 

int *ptr = &my_var; 

ptr is is an integer pointer, 
assigned the address of my_var. 

*ptr = 17; 

The object pointed to by ptr is 
assigned the value 17. 

printf("my_var: %d\n", my_var); 

Displays the contents of my_var: 17. 

Address: Ox1000 

Type: int 

Name: my var 

Value: 13 

Address: Ox1000 

Type: int 

Name: mLvar 

Value: 13 

Address: Ox1000 

Type: int 

Name: mLvar 

Value: 17 

~ 

~ 

Figure 16.2: Illustration of pointers. 

ptr = &a; 

printf ("a: %d\n", a); 

printf ("a: %d\n", *ptr); 

a = 9; 

printf("a: %d\n", a); 

printf("a: %d\n", *ptr) ; 

*ptr = 11 ; 

printf("a: %d\n", a); 

printf("a: %d\n", *ptr) ; 

return O· , } 

Address: Ox1004 

Type: int 

Name: ptr 
'--- Value: Ox1000 

Address: Ox1004 

Type: int 

Name: ptr 

- Value: Ox1000 

In this example, we create an integer variable a and an integer pointer ptr that points to a. 

We then verify that the two variables contain the same value: 

int a = 7; 

int *ptr; 

ptr = &a; 
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printf("a: %d\n", a); 

printf ("a: %d\n", *ptr); 

This will display 

a: 7 

a: 7 

We then proceed to modify the value of a, first directly 

a = 9; 

printf("a: %d\n", a); 

printf ("a: %d\n", *ptr); 

and then through the pointer 

*ptr = 11; 

printf("a: %d\n", a); 

printf("a: %d\n", *ptr); 

This will display 

a: 9 

a: 9 

a: 11 

a: 11 

16.5.2 Constant pointers and pointers to constants 

In this subsection we will discuss three things: Constant pointers, pointers to constants and 

constant pointers to constants. Consider the statements below 

int a = 3; 

int const b 5· , 

int c = 7· , 

int * const ptr1 &a; 
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where ptrl is a constant pointer of integer type, initialized to the address of variable a. As 

its name suggests, the content of a constant pointer once assigned cannot change. In other 

words, the pointer cannot change the address it holds. If we attempted to do that, as for 

example with 

ptr1 = &c; 

we would get an error from the compiler: 

error: Assignment to const identifier 'ptrl'. 

The statement 

int const * ptr2 = &b; 

declares and initializes a pointer of constant integer type. This implies that we cannot modify 

the value of the object pointed to by the pointer. If we attempted to do that as for example 

with 

*ptr2 = 7; 

we would get an error from the compiler: 

error: Assignment to const location. 

We can change the content of this pointer but we cannot modify the value of the object 

pointer to. In the statements below 

ptr2 = &a; 

*ptr2 = 11; 

we first point the pointer to variable a which is accepted, but when we attempt to modify 

the value of a we get an error from the compiler: 

error: Assignment to const location. 

The statement 

int const * const ptr3 &b; 
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declares and initializes a constant pointer of constant integer type. We can change neither 

the address the pointer holds nor the value of the object it is pointed at. The following 

statements result in errors: 

ptr3 = &ai »>error: Assignment to const identifier 'ptr3'. 

*ptr3 = 9i »>error: Assignment to const location. 

Let us put everything together: 

#include <stdio.h> 

int main () { 

} 

int a = 3; 

int const b 5· , 

int c = 7· , 

1* a constant pointer of integer type *1 

1* a pointer of constant integer type *1 

1* a constant pointer of constant integer type *1 

int * const ptrl &a; 

int const * ptr2 &b; 

int const * const ptr3 = &b; 

printf("Pointers: ptrl: %d, ptr2: %d, ptr3: %d.\n", 

*ptrl, *ptr2, *ptr3); 

return 0; 

The output of the program is 

Pointers: ptrl: 3, ptr2: 5, ptr3: 5. 

16.5.3 Pointers and arrays 

The elements of an array are assigned consecutive addresses. We can use a pointer to an 

array in order to iterate through the array's elements. Suppose we have the following: 

int arr [5J ; 

int *ptr; 

In the following statement, we assign the first element of the array as the value of the pointer: 
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ptr = &arr [OJ; 

Pointer arithmetic makes * Cptr + 1) the same as arr [1J . 

Example 16.4. In this example we explore pointer arithmetic to assign an array to a pointer, 

and then use the pointer to display the values of the first three elements of the array. We 

say that we are displaying the contents of the array by dereferencing the pointer. 

#include <stdio.h> 

int main 0 { 

int arr [5J {1, 3, 5, 7, 11}; 

int *ptr; 

ptr = &arr [OJ; 

} 

printf ("arr [OJ: %d, arr [lJ: %d, arr [2J: %d\n", 

*ptr, *(ptr + 1), *(ptr + 2)); 

return 0; 

The output is: 

arr[O] 1, arr[l] 3, arr[2] 5 

Note that * Cptr + 1) is not the same as * Cptr) + 1. In the latter expression the addition 

of 1 occurs after the dereference, and it would be the same as arr [OJ + 1. In the above 

program, the statement 

printf("arr[lJ: %d\n", *(ptr) + 1); 

will display 

arr[l] 2 

16.5.4 Pointers as function parameters 

In the program that follows, we deploy function swap that defines two integer formal param­

eters, and with the help of a temporary variable it swaps their values: 
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#include <stdio.h> 

void swap (int a, int b) { 

int temp = a; 

a = b; 

b temp; 

} 

int main () { 

} 

int first, second; 

printf (" Enter two integers: "); 

scanf ("%d%d", &first, &second); 

printf("First: %d, Second: %d.\n", first, second); 

printf("Swap in progress ... \n"); 

swap (first, second); 

printf("First: %d, Second: %d.\n", first, second); 

return 0; 

Let us execute the program: 

Enter two integers: 5 7 

First: 5, Second: 7. 

Swap in progress ... 

First: 5, Second: 7. 

What is wrong with the program? In C, arguments are passed by value, i.e. a copy of the 

value of each argument is passed to the function. As a result, a function cannot modify the 

actual argument(s) that it receives. To make the function swap the actual arguments we 

must pass the arguments by reference, i.e. pass the addresses of the actual arguments. 
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The correct program is shown below: 

#include <stdio.h> 

void swap(int *a, int *b) { 

int temp = *a; 

*a *b; 

*b temp; 

} 

int main 0 { 

} 

int first, second; 

printf (" Enter two integers: II); 

scanf ("%d%d", &first, &second); 

printf("First: %d, Second: %d.\n", first, second); 

printf("Swap in progress ... \n"); 

swap(&first, &second); 

printf("First: %d, Second: %d.\n", first, second); 

return 0; 

We can execute the program as follows: 

Enter two integers: 5 7 

First: 5, Second: 7. 

Swap in progress ... 

First: 7, Second: 5. 

16.5.5 Function pointers 

Pointers to variables and arrays are examples where a pointer refers to data values. A pointer 

can also refer to a function, since functions have addresses. We refer to these as function 

pointers. Consider the following (rather cryptic) declaration: 

long (*ptr)(int); 
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This declares a function pointer; It points to a function that takes an integer argument and 

returning a long integer. We could now initialize the pointer by making it point to an actual 

function as follows: 

ptr = &factorial; 

This makes ptr point to function factorial ( .. ). The function can be invoked by derefer­

encing the pointer while passing arguments as any regular function call, only in this case we 

refer to this as an indirect call. We can put everything together as follows: 

#include <stdio.h> 

long factorial(int); 

int main 0 { 

} 

int n; 

long f; 

long (*ptr)(int); 

ptr = &factorial; 

printf (" Enter a non -negat i ve integer: II); 

scanf("%d", &n); 

if (n < 0) 

printf("Negative integers are not allowed.\n"); 

else 

f = ptr (n) ; 

printf("%d! 

return 0; 

%ld\n", n, f); 

long factorial(int n) { 

if (n == 0) 

} 

return 1; 

else 

return(n * factorial(n-1)); 
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We can execute the program as follows: 

Enter a non-negative integer: 5 

51 = 120 

16.6 Records 

A record, or structure, is a collection of elements, fields (or members), which can possibly of 

different types. The syntax of declaring a structure in C is 

struct <name> { 

field declarations 

}; 

Record initialization and assignment 

To create a structure to represent a coordinate on the Cartesian plane, we can say: 

struct coordinate { 

} ; 

float x; 

float y; 

To create a coordinate variable we can now say 

struct coordinate p; 

We can eliminate the word struct every time we declare a coordinate variable by declaring 

coordinate as a new type with typedef. 

typedef struct { 

float x; 

float y; 

} coordinate; 

We can now create a coordinate variable with 

coordinate p; 
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In the following program we define a new type coordinate to be a record (struct) with two 

float members. We declare and initialize four variables of type coordinate. Members of the 

coordinate type can be initialized during declaration either inline as in 

coordinate pi = {O, O}; 

or by designated initializers, as in 

coordinate p2 = {. x = i, . Y = 3}; 

Members of a record can also be assigned values as in 

p3.x 2· , 

p3.y 7; 

or by assigning the value of one record to another, as in 

p4 = p3; 

that copies the member values from p3 into p4. 

#include<stdio.h> 

typedef struct { 

float x; 

float y; } coordinate; 

int main 0 { 

coordinate pi {O, O}; 

coordinate p2 {.x = i , .y 

coordinate p3; 

coordinate p4; 

p3.x 2· , 

p3.y 7· , 

p4 = p3; 

printf("pi (%. Of , %.Of)\n", 

printf("p2 (%. Of , %.Of)\n", 

printf("p3 (%. Of , %.Of)\n", 

printf("p4 (%. Of , %.Of)\n", 

return 0; } 

3}; 

pi.x, 

p2.x, 

p3.x, 

p4.x, 

p1.y); 

p2. y) ; 

p3. y) ; 

p4. y) ; 
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The output of the program is 

pI (0, 0) 

p2 (I, 3) 

p3 (2, 7) 

p4 (2, 7) 

16.6.1 Records and pointers 

A pointer can be deployed to point to a record as in 

coordinate p = {a, a}; 

coordinate *ptr = &p; 

The pointer can subsequently be dereferenced using the * operator as in 

(*ptr).x=3; 

An alternative binary operator exists (-»: The left operand dereferences the pointer, where 

the right operand accesses the value of a member of the record: 

ptr->y = 3; 

Let us put everything together in the program below and an illustration of this is shown in 

Figure 16.3. 

#include<stdio.h> 

typedef struct { 

float x; 

float y; 

} coordinate; 

int main 0 { 

coordinate p = {a, a}; 

printf("p = (%.Of, %.Of)\n", p.x, p.y); 

coordinate *ptr = &p; 

3· , 

ptr->y = 3; 
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printf("p (%.Of, %.Of)\n", p.x, p.y); 

return 0; 

} 

The output of the program is 

p (0, 0) 

P (3, 3) 

typedef struct { 
float X; 
float y; 

} coordinate; 

coordinate p = {0 J 0}; 

coordinate *ptr &p; 

(*ptr).x = 3; 
ptr->y = 3; 

Type: coordinate 

Name: p 

x = 0; 

y = 0; 

Type: coordinate 
ptr---*------------~ 

Name: p 

x = 0; 

y = 0; 

ptr ~ Type: coordinate 

Name: p 

x = 3; 

Y = 3; 

Figure 16.3: A pointer to a record. 
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Example 16.5. Consider the following program: 

#include<stdio.h> 

1* Declare JcoordinateJ, a data type that *1 

1* can hold a cartesian point *1 

typedef struct { 

float x; 

float y; 

} coordinate; 

int main () { 

1* We will create three points of type coordinate, and *1 

1* use three alternative ways to assign them to values *1 

1* Inline declaration and initialization *1 

coordinate point1 = {O, O}; 

1* Declaration with designated initializers *1 

coordinate point2 = {. x = 1, . Y = O}; 

1* Declare Jpo int3 J *1 

coordinate point3; 

1* Assign Jpo int3 J to (1,5) *1 

point3.x 

point3.y 

1· , 

5· , 

1* Declare JcollectionJ, an array of coordinates *1 

coordinate collection[3]; 

1* Enter the three points into the array *1 

collection [0] 

collection [1] 

collection [2] 

point1 ; 

point2; 

point3; 

1* Declare Jptr J, a pointer to type coordinate *1 

coordinate *ptr; 

1* Point ptr to array JcollectionJ *1 

ptr = &collection [0] ; 
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} 

1* We will use two alternative ways to display the three points. 

*1 

The exact output should be: 

Point1: (0, 0) 

Point2: (1, 0) 

Point3: (1, 5) 

1* Display the first coordinate by dereferencing the pointer *1 

printf("Point1: (%.Of, %.Of)\n", (*ptr).x, (*ptr).y); 

1* Display the second coordinate by dereferencing the pointer *1 

printf("Point2: (%.Of, %.Of)\n", (*(ptr+1)).x, (*(ptr+1)).y); 

1* Display the third coordinate using the binary operator -> *1 

printf("Point3: (%.Of, %.Of)\n", (ptr + 2)->x, (ptr + 2)->y); 

return 0; 

16.6.2 Records and arrays 

In the program below we make use of an array of records. More specifically, line [] is an 

array of type coordinate, itself defined as a record. The elements of the array are initialized 

at the time of declaration. We use the dot (.) operator to access fields of individual records. 

For example line [0] . x accesses the x field of the first element (record) of line. 

#include<stdio.h> 

typedef struct { 

float x; 

float y; 

} coordinate; 

int main 0 { 

coordinate line[2] { 

{O, O}, 

{11, 19} 

}; 
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} 

printf ("Line points: (%.Of, %.Of), and (%.Of, %.Of). \n", 

line[O].x, line[O].y, line[1].x, line[1].y); 

The output of the program is 

Line points: (0, 0), and (II, 19). 

16.7 Unions 

A union is a variant of a record (structure). Unlike a record where there exists a separate 

memory location for each of its fields, the union associates all of its fields to a single memory 

location. In other words, union fields share the same space. This implies that only one field 

of a union can be accessed at a time, and modifying trhe value of one field results in the 

modification of the values of the rest of the fields. 

Example 16.6. In this example we declare a union type called package that contains two 

fields: inLlabel is of type integer and chaLlabel is of type char. 

#include <stdio.h> 

typedef union { 

int int_label; 

char char_label; 

} package; 

int main () { 

} 

package p; 

p.int_label = 12; 

printf("%d\n", p.int_label); 

p.char_label = 'c'; 

printf("%c\n", p.char_label); 

printf("%d\n", p.int_label); 

return 0; 
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The following segment 

p.int_label = 12; 

printf("%d\n", p.int_label); 

will display 12. We subsequently assign a value to chaLlabel and then proceed to display 

the values of both fields. The following segment 

p.ehar_label = 'e'; 

printf("%e\n", p.ehar_label); 

printf("%d\n", p.int_label); 

will display 

c 

99 

the second line of which is the value of inLlabel which corresponds to an unexpected result. 

99 is the ASCII number for the character 'c.' 

16.8 Enumerated data types 

Consider the case where a variable contains only a limited set of values which are referenced 

by name. For example, week takes the values Monday, Tuesday, ... , Sunday, or boolean 

takes the values true, false. The enumerated data type supports such variables, where the 

compiler assigns each name (called a tag) an internal integer value. For example, 

enum boolean { TRUE, FALSE}; 

enum boolean bool; 1* a variable of type boolean *1 

The general form of an ennumeration statement is 

enum enum-name { tag-1, tag-2, ... } 

where the tags are normally in uppercase. It is important to note that even though tags 

look like strings, they are not. Tags constitute keywords that we define for our program. 
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Chapter 17 

Memory management 

We have already seen that when declaring an array, we have to specify not just the type of 

its elements but also the size of the array. This allows the system to allocate the appropriate 

amount of memory. Once specified, we cannot change the size of the array dynamically, i.e. 

during the execution of the program. Through one of its standard libraries, the C language 

offers a number of functions that allow us to circumvent this problem and manage memory 

dynamically. Consider the program below: 

#include<stdio.h> 

#include <stdlib.h> 

int main () { 

int * array malloc(3 * sizeof(int)); 

if (array == NULL) { 

printf (" ERROR: Out of memory. \n" ) ; 

return 1; 

} 

* array = 1 . , 

*(array + 1) 3' , 

*(array + 2) 5; 

printf("%d\n", * array) ; 

printf("%d\n", *(array + 1) ) ; 

printf("%d\n", *(array + 2)); 
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} 

free (array) ; 

return 0; 

In the first statement 

int *array = malloc(3 * sizeof(int)); 

we request the allocation of enough memory for an array of three elements of type into We 

stress the fact that this is merely a request and the allocation of memory is not guaranteed 

to succeed. If successfull, function malloe returns a pointer to a block of memory. If not 

successfull, malloe will return the special value NULL to indicate that for some reason the 

memory has not been allocated. As a result, to indicate success we now have to verify that 

our array pointer is not NULL. 

if (array == NULL) { ... } 

We then proceed to assign values to the elements of the array and subsequently display 

them. Once we no longer need the array, we have to release the allocated memory back to 

the system. We do this with function free: 

free (array) ; 

Memory that is no more needed but it is not deallocated cannot be reused by the system. 

This waste of resources can accumulate and can lead to allocation failures when resources 

are needed but have been exhausted. Even though memory not released with free is au­

tomatically released once the program terminates, it is a good practice to ensure that we 

explicitly release memory once it is not needed. The output of the program is 

1 

3 

5 

All memory management functions are listed in Table 17.1. 
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FUNCTION DESCRIPTION 
malloe Allocates the specified number of bytes. 
realloe Increases or decreases the size of the specified block of memory. 
ealloe Allocates the specified number of bytes and initializes them to zero. 
free Releases the specified block of memory back to the system. 

Table 17.1: Memory management functions and their corresponding descriptions. 
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Chapter 18 

Data structures and abstract data 

types I 

18.1 ADTs vs. data structures 

An abstract data type (ADT) is a definition for a data type solely in terms of the set of values 

and a set of operations on that data type. The behavior of each operation is determined by 

its inputs and outputs. This implies that an ADT is implementation-independent. 

A data structure is a specific implementation of an ADT. The implementation details are 

hidden from the clients of the ADT. This is referred to as information hiding. Clients of the 

ADT are unaffected by any changes to the implementation as long as they conform to the 

interface of the ADT. The choice of a data structure for the implementation of a particular 

ADT involves benefits and costs. Because of these trade-offs, rarely (if at all) one data 

structure is better than another in all situations. In identifying the trade-offs for a data 

structure to implement a particular ADT, we need to consider the following requirements: 

• The space for each data item it stores. 

• The time to perform each basic operation. 

• The programming effort involved. 
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18.2 Data structures vs. data types 

In a previous chapter we discussed data types and we distinguished between primitive and 

composite. We can view composite data types as data structures. As an example, arrays 

and records are both composite data types as well as data structures, whereas integers and 

characters are primitive data types and not data structures. 

18.3 The linked list data structure 

The linked list is among the most common data structures. It can be used to implement 

several common abstract data types, including stacks, and queues. Among the different 

variants, the singly linked list is the simplest: It represents a chain of elements, called nodes, 

where each node contains a minimum of two fields: the data field (or value field) and the 

next link (or next pointer) that points to the next node in the chain. Additionally, the head 

of a list is the list's first node and the tail either points to the rest of the list (thus following 

the corresponding mathematical structure), or it can sometimes point to the last node in 

the list. 

Example 18.1. In this example, we will construct a linked list with two nodes. A node is 

represented as a record: 

struct node { 

int data; 

struct node *next; 

} ; 

Initially the list is empty, thus the head of the list points to NULL: 

struct node *head = NULL; 

We are now ready to request memory for the head of the list: 

head = malloc(sizeof(struct node)); 

if (head == NULL) { 

printf (" ERROR: Out of memory. \n" ) ; 

return 1;} 
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Once memory has been allocated we need to a) have the head's next field point to null and 

b) assign some value to the data field: 

head->data 5; 

head->next NULL; 

We follow the same procedure with the second node of the list, but at the end we need to 

make sure that a) the next field of the new item points to the node currently pointed to by 

head and b) the new item becomes the new head, i.e. the head pointer is updated to point 

to the new node: 

new->next = head; 

head = new; 

An illustration of this is shown in Figure 18.1. 

#include<stdio.h> 

#include <stdlib.h> 

struct node { 

int data; 

struct node *next; 

} ; 

int main 0 { 

struct node *head NULL; 

struct node *new; 

head = malloc(sizeof(struct node)); 

if (head == NULL) { 

printf (" ERROR: Out of memory. \n" ) ; 

return 1; 

} 

head->data 5· , 

head->next NULL; 

new = malloc(sizeof(struct node)); 
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} 

if (new == NULL) { 

printf (" ERROR: Out of memory. \n" ) ; 

return 1; 

} 

new->data 11 ; 

new->next head; 

head = new; 

printf ("%d" head->data); 

printf ("%d" (head->next)->data); 

return 0; 

node *head = NULL; 

head = malloc(sizeof(struct node»; 

head->next = NULL; 

head->data = 5; 

new = malloc(sizeof(struct node»; 
new->data = 11; 

new->next = head; 
head = new; next 

h~ 

he1 

H 

head ~NULL 

data 

data: 
5 

data: 
11 

data: 
5 

data: 
5 

r----r--------, 
head 
~ data next 

; next ~ NULL 

I next ~ NULL 

next 

I next ~ NULL 

I next ~ NULL 

Figure 18.1: The creation of a linked list. 



239

Example 18.2. In this example we will construct a linked list of several items. Once the 

list has been created, we start at the head 

current = head; 

and as long as we do not encounter the NULL value, we iterate through the list, displaying 

the value of each node's data field: 

current = head; 

while(current) { 

} 

printf (" %d ", current ->data) ; 

current = current->next; 

#include<stdio.h> 

#include <stdlib.h> 

struct node { 

int data; 

struct node *next; 

} ; 

int main () { 

struct node *head = NULL; 

struct node *current; 

int counter; 

for (counter=l; counter<=10; counter++) { 

current = malloc(sizeof(struct node)); 

if (current == NULL) { 

printf("ERROR: Out of memory.\n"); 

} 

return 1; 

} 

current ->data 

current ->next 

head = current; 

current head; 

counter; 

head; 
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} 

while(current) { 

} 

printf (" %d ", current ->data) ; 

current = current->next; 

return 0; 

The output of the program is 

10 9 8 7 6 5 4 3 2 1 
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Chapter 19 

File I/O 

The general form to access a file is 

file-pointer = file-liD-function (file-name, mode); 

Assume that we need to specify that we want to open a file, out. txt, in order to write. We 

can do this as follows: 

FILE *fp; 

fp = fopen("out.txt", "w"); 

where fp is a pointer that will keep track of this file, f open () is a function to open a file 

(from the stdio library), and iN is the writing mode. 

Function fopenO returns a pointer. It would return NULL if for some reason the system has 

been unable in creating the file. No matter how unlikely this may be, it is a good practice 

to handle abnormal conditions: 

if (fp==NULL) { 

} 

printf("Could not open out.txt\n"); 

return 1; 

In order to write to a file, we use the function fprintf 0 (part of stdio) where the first 

argument is the file pointer, fp. 
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fprintf (fp, II %s II , II Sample text. ") ; 

We should not forget to close the file upon completion of our task. Function iclose () takes 

as argument a file pointer and closes the file referenced by the pointer: 

fclose(fp); 

Putting everything together, we have the following example program that writes the sentence 

Sample text. into file out. txt. 

#include <stdio.h> 

int main () { 

} 

FILE *fp; 

fp fopen("out.txt","w"); 

if (fp==NULL) { 

} 

printf (" Could not open out. txt \n ") ; 

return 1; 

fprintf (fp , II %s II , II Sample text. ") ; 

fclose (fp); 

return 0; 

A list of file I/O functions is shown in Table 19.1 and a list of the different file opening modes 

is shown in Table 19.2. 
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FUNCTION DESCRIPTION 
fopen opens a text file. 
fclose closes a text file. 
feof detects end-of-file marker in a file. 
fscanf reads formatted input from a file. 
fprintf prints formatted output to a file. 
fgets reads a string from a file. 
fputs prints a string to a file. 
fgetc reads a character from a file. 
fputc prints a character to a file. 

Table 19.1: File functions and their corresponding descriptions. 

STRING LITERAL MODE 
w open for writing (file need not exist) 
r open for reading (file must exist) 
a open for appending (file need not exist) 
r+ open for reading and writing, start at beginning 
w+ open for reading and writing (overwrite file) 
a+ open for reading and writing (append if file exists) 

Table 19.2: String literals and their corresponding modes. 
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Part IV 

Object-oriented programming with 

Java 
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Chapter 20 

Object-oriented programming with 

message passing I 

20.1 Object creation and initialization 

A class is both a type and a factory. As a type, it defines the kind of data any element of this 

type can hold. As a factory, it provides facilities for its clients to instantiate it. Consider 

the class definition below: 

public class Book { 

private String author; 

private String title; 

private String year; 

public Book (String author, String title, String year) { 

this. author = author; 

this.title = title; 

this.year = year; 

} 

public void display () { 

System. out. println (" Author: " + author + "\n" + 

"Title: " + title + "\n" + 

"Year: "+ year + "\n"); } ... } 
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A constructor is a special method which automatically initializes an object immediately 

upon creation. A Java constructor has the exact same name as the class in which it resides 

and it has no return type (not even void). 

20.1.1 Order of initialization 

We will use the terms attribute, (data) field and variable interchangeably. The distinction 

between instance vs. class scope attributes (see later) and between local vs. non-local 

variables will be made clear from the context and only mentioned explicitly when it would 

be necessary. The set of attributes and methods is referred to as the set of features of a class. 

During instantiation, all attributes are set to their default values (integers to zero, booleans 

to false and objects to nUll). The attributes with initializers are set in the order in which 

they appear in the class definition. Following that, the constructor body is executed. 

20.2 Field shadowing 

The assignment statement this. author = author; in the constructor of the class, dis­

tinguishes between the attribute author (on the left-hand side of the statement) and the 

argument with the same name (on the right-hand side). Assume that we had the statement 

String author = author; in the constructor. This would not compile since the left-hand 

side would define a local variable author, and the compiler would have no way of distin­

guishing it with the attribute of the same name. 

Now, assume that we have the following class definition: 

public class Book { 

private String author; 

private String title; 

private String year; 

public Book (String author1, String title, String year) { 
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} 

} 

this. author = author1; 

String author = II Jill II ; 

this.title = title; 

this.year = year; 

System.out.println("Author: II + author); 

public void displayAuthor () { 

System. out. println (" Author: II + author); 

} 

The statement String author = II Jill II ; defines a local variable which shadows the at­

tribute of the same name. We have changed the name of the first parameter to author! to 

avoid duplication with the local variable of the same name and allow the code to compile. 

Hence, the output of the print statement in the constructor is Author: Jill. However, 

once the body of the constructor terminates, the local variable author is discarded and the 

attribute author is Budd. The main method will display Author: Budd. 

20.3 Parameter passing 

Objects are passed by reference, whereas primitive types are passed by value i.e. modifica­

tions are made on copies of the actual parameters. Note, however, that not all classes are 

equal: wrapper classes are immutable (they have no mutator methods). 

Example 20.1. In the following example, an instance of the wrapper class Integer is passed 

as an argument to method inc 0 and its value is incremented by one. This, however, has 

no effect on the actual object. The output of the program will be 7. 
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public class WrapperClassTest { 

} 

public static void inc (Integer in) { 

in = in + 1; 

} 

public static void main(String [J args) { 

Integer i = 7; 

inc (i) ; 

System.out.println(i); 

} 

20.4 Type signature 

The type signature of a method (or a constructor) is a sequence that consists of the types of 

its parameters. Note that the return type, parameter names, and possible final designations 

of parameters are not part of the type signature. 

In class Book, the type signature of the constructor is (String, String, String) whereas 

the type signature of method display is (). 

20.5 Static features 

Instance features (parameters and methods) can be accessed only through an object ref­

erence. Static features are used outside of the context of any instances and they may be 

accessed through either the class name (preferred method) or an object reference. 

ClassName.staticMethod(parameterList) 

ClassName.staticVariable 

objectReference.staticMethod(parameterList) 

objectReference.staticVariable 
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Example 20.2. In the following example, each time a Counter object is created, the static 

variable numberOflnstances is incremented by one. Unlike instance attributes which can 

have a different value for each instance of Counter, the static attribute numberOfInstances 

is universal to the class. 

public class Counter { 

private int value; 

private static int numberOflnstances o· , 

public Counter() { 

numberOflnstances++; 

} 

public void reset() { 

value = 0; 

} 

public int getValue() { 

return value; 

} 

public void click() { 

value++; 

} 

public static int howMany() { 

return numberOflnstances; 

} 

} 

Counter cl new Counter C) ; 

Counter c2 

cl.clickC); 

cl.clickC); 

c2.clickC); 

new Counter C) ; 

System.out.println(lI c l value 

System.out.println(lI c 2 value 

II + cl.getValue()); 

II + c2.getValue()); 

System. out. println (" Number of Counter obj ects: II + Counter. howMany C)) ; 
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The output will be as follows: 

c1 value 2 

c2 value 1 

Number of Counter objects: 2 

20.5.1 Static blocks 

Static blocks run once as soon as the class is loaded and before the main () method executes. 

Example 20.3. Consider the following program: 

public class StaticBlockTest { 

static int a = 2; 

static int b; 

static void method (int x) { 

System.out.println("Static method: x 

} 

static { 

} 

System.out.println("Static block."); 

b = a * 3; 

System.out.println(b); 

public static void main (String [] args) { 

method(13); }} 

The output will be as follows: 

Static block. 

6 

Static method: x 13 

" + x); 
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20.5.2 Initialization of static attributes 

Static attributes can be initialized in three ways: 

1. With their default values as in private static int numberOfInstances; 

2. With an explicit initializer as in private static int globalMoveCount = 0; 

3. By the static initialization block: 

private static int numberOflnstances; 

static { 

numberOflnstances 0; 

} 
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Chapter 21 

Inheritance 

Inheritance is a mechanism under which one abstraction can be defined in terms of another. 

Inheritance supports the reuse of implementation and interface, normally to model an is-a 

relationship. With inheritance defined, we can now define Object-Oriented Programming 

(OOP) as: 

loop = ADTs + Inheritance I 
We can define a new class from other classes (called its superclasses or component classes). 

The newly defined class is called a subclass 1 of its superclasses. A subclass inherits both 

structure and behavior from its superclasses. The immediate superclass( -es) of a class is 

called its direct superclass(-es), or parent class (-es), (as opposed to other component classes 

which are indirect superclasses). The newly defined class is a direct subclass of its direct su­

perclass. Note that inheritance is transitive, i.e. a class can inherit features from superclasses 

many levels away. This implies that a class is built not only from its direct superclass(-es), 

but also from each of their direct superclasses, and so on. 

21.1 Single vs. multiple inheritance 

In single inheritance all classes considered have only one direct superclass. The collection 

of classes extending from a common superclass is called an inheritance hierarchy. The path 

lSome authors use the term extended, which is not always true for subclasses. 
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from a particular class to its ancestors in the inheritance hierarchy is called its inheritance 

chain. In multiple inheritance a class has more than one direct superclass. In Java, all public 

and protected features of a superclass are accessible in all subclasses. 

Example 21.1. Consider the following class definitions which specify an inheritance hier­

archy: 

class Person { ... } 

class Student extends Person { ... } 

class Professor extends Person { ... } 

class UndergraduateStudent extends Student { ... } 

class GraduateStudent extends Student { ... } 

class TeachingAssistant extends GraduateStudent { ... } 

If we start from TeachingAssistant, the inheritance chain includes: TeachingAssistant, 

GraduateStudent, Student, Person, Object (the latter is implicitly included). 

21.2 Subclass initialization 

The initialization of a subclass consists of two phases: 

1. The initialization ofthe attributes inherited from the superclass (one ofthe constructors 

of the superclass must be invoked). 

2. The initialization of the attributes declared in the subclass. 

21.3 Modifiers 

Classes, class features, interface features, method parameters, and local variables can be 

qualified with modifiers. 

A public class is visible to all classes everywhere. If a class has no modifier (the default, 

also known as package-private), then it is visible only within its own package. Class features 
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that are package-private are not accessible to classes defined outside the package, including 

subclasses of the class. 

21.3.1 Modifiers and inheritance 

What happens to inherited features? Based on the types of modifiers attached to features, 

we can distinguish between the following cases: 

Public features can be accessed outside the class definition including outside the package 

in which they are declared. This is the default modifier for all features declared in an 

interface. 

Protected features can be accessed within the class definition in which they appear, or 

within other classes in the same package, or within the definitions of subclasses. 

Private features can be accessed only within the class definition in which they appear. 

21.3.2 Preventing inheritance: Final classes 

We can use the final modifier in a class definition to prevent a class from being subclassified. 

We can also make a specific method in a class final in which case no subclass can modify the 

behavior of this method (see later on overriding). 

21.3.3 Enforcing inheritance: Abstract classes 

An abstract class (as opposed to concrete) cannot be directly instantiated. An abstract class 

defines a specification and possibly partial implementation to be inherited. Any class that 

contains an abstract method must itself be declared abstract. Any concrete subclass of an 

abstract class must implement all of the abstract methods defined in the superclass. Alter­

natively, if a subclass implements some (but not all) of the inherited abstract functionality, 

or if it additionally defines its own abstract functionality, then that subclass must itself be 

declared abstract. 
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21.4 Method overloading 

If two methods or constructors in the same class or in related classes i.e. in a superclass­

subclass pair have different type signatures, then they may share the same name. We say that 

they are overloaded on the same name with multiple implementations. When an overloaded 

method is called, the number and the types of the arguments are used to determine the 

signature of the method that will be invoked. Overloading is resolved at compile time. 

In an inheritance hierarchy, we can overload a superclass method to provide additional 

functionality. 

21.5 Method overriding 

A subclass can modify the behavior inherited from a superclass. This is done through a 

mechanism called overriding which refers to the introduction of an instance method in a 

subclass that has the same name, same type signature and same return type of an inherited 

method, but a different implementation. The implementation of the method in the subclass 

replaces the implementation of the inherited method from the superclass. 

21.6 Overriding vs. hiding 

When a subclass declares an attribute or a static feature that is already declared in a super­

class, it is not overridden; it is hidden. When a hidden feature is invoked or accessed, the 

copy that will be used is determined at compile time. In other words, hidden features are 

statically bound, based on their declared type. 

In comparing hiding to overriding, we note that instance methods can only be overridden. 

When an overridden method is invoked, the implementation that will be executed is chosen 

at run time. 
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21.7 Static and dynamic type of an object 

Consider an assignment statement of the form 

type variable = expression; 

The type that is explicitly mentioned in the assignment statement next to the variable is 

the variable's declared or static type. On the right-hand side of an assignment statement, a 

variable may be assigned an object of a type different to its static type. We call this the run 

time or dynamic type of the variable. Consider the following class definitions: 

public class Dog { 

} 

public static void describe() { 

System. out. println (" I am a dog."); 

} 

public void whatldo() { 

System.out.println("I play in the park."); 

} 

public class Collie extends Dog { 

} 

public static void describe() { 

System.out.println("I am a dog too!"); 

} 

public void whatldo() { 

System.out.println("I save people who are in danger."); 

} 

In the code segment that follows, the declared (static) type of lassie is Dog, and its run 

time (dynamic) type is Collie. 

Dog lassie = new Collie(); 

lassie.describe(); 

lassie.whatldo(); 



260

21.8 Subtype relationships 

Classes and interfaces define types and all instances of a class constitute legitimate values of 

that type. The inheritance relationship among classes (and between classes and interfaces) 

creates a related set of types (subtype relationship). Type Tl is a subtype of type T2 if every 

legitimate value of Tl is also a legitimate value of T2. In this case, T2 is the supertype of 

Tl. This implies that every instance of a subclass is also an instance of a superclass, but 

not vice-versa. A value of a subtype Tl can appear wherever a value of the supertype T2 is 

expected. This implies that an instance of a subclass can appear wherever an instance of a 

superclass is expected. The type defined by a subclass is a subset of the type defined by its 

superclass(-es) as the set of all instances of a subclass is included in the set of all instances 

of its superclass( -es). For example, the pair (shape, triangle) defines a subtype relationship 

as every triangle is a shape (but not vice versa) and thus the set of shapes is a superset of 

the set of triangles. Furthermore, instances of class Triangle can appear in any place where 

an instance of class Shape is expected. 

Example 21.2. The relationship between square and quadrilateral in geometry defines a 

subtype relationship, since a square is a special type of quadrilateral. On the other hand, the 

relationship between stack and vector does not define a subtype relationship even though it 

may be practical to deploy inheritance and define the former in terms of the latter. 

21.9 Compiler and run time system responsibilities 

We are now ready to explicitly define the responsibilities of the compiler and of the run time 

system2 . 

The compiler has the following responsibilities: 

Check the validity of assignment statements The type of the expression on the right­

hand side (RHS) of an assignment statement must the same or a subtype of that of 

2Note that these responsibilities are laid in the absence of explicit casting. In § 21.14 we amend them in 
the presence of explicit casting. 
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the variable on the left-hand side (LHS). In other words, the validity of an assignment 

statement is based on the static type of a variable. This is referred to as static type 

checking. In the previous example, the compiler asks "Is Collie a subtype of Dog?" 

Check the validity of messages (method calls) The compiler needs to verify that the 

static type ofthe object (this includes its declared type and all its supertypes) contains 

a method with a name and signature that can match the message (method call). In 

the previous example the compiler asks "Is there a method whatldo 0 with signature 

o in the static type of lassie?" 

The run time system has the following responsibilities: 

Choice of method invocation A method invocation is determined based on the run time 

type of the object, where the run time system will try to match the message with a 

method. The run time system will start a lookup from the class definition of the run 

time type of the object. If such method exists it will be invoked. Otherwise, the run 

time system searches for a match along the inheritance chain until it finds a matching 

method. This procedure is called dynamic binding (or dynamic dispatch). In the above 

example, the run time system will start looking for a method to match whatldo 0 from 

the definition of class Collie, the run time type of lassie. 

Example 21.3. Let us trace the code of the main method in the previous example: 

Dog lassie new Collie 0; The assignment statement is valid as Collie is a subclass 

of Dog. 

lassie. describe 0; The declared type of lassie is Dog. The call to the static method 

descri be 0 is resolved statically, i.e. based on the declared type of the variable, hence the 

call to describe 0 invokes method describeO in class Dog which will display I am a dog. 

lassie. whatldo 0; The compiler needs to check whether the declared type of lassie 

contains a method to match the message whatldo O. The declared type indeed contains 
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such a method and thus compilation is successful. The run time system will perform a 

lookup starting from the run time type of lassie to locate a method that can match the 

message. Recall that the whatldo () method in class Collie overrides the behavior of the 

inherited method of the same name and signature from class Dog. The run time system 

locates method whatldo () in class Collie and invokes it, displaying I save people who 

are in danger. 

Example 21.4. In this example, class Point contains two overloaded constructors. The 

one with no arguments is called the default constructor. The keyword this is used inside 

instance methods (or constructors) to refer to the receiving object, i.e. the instance of the 

class through which the method is invoked. In this example, the default constructor calls 

the constructor Point (double, double) by passing the arguments (0, 0) as the initial 

( default) coordinates for any point instance. Note that thi s cannot be invoked inside static 

methods. 

public class Point { 

} 

protected double x, y; 

public final String description = "Class Point"; 

public Point(double x, double y) { 

this.x x' , 

this.y y; 

} 

public Point () { 

thi s (0, 0); 

} 

public String toString() { 

return "x: " + x + " " + "y: " + y; 

} 

Class Point3D extends class Point and it also contains two overloaded constructors. During 

the execution of its default constructor, the instance variable z is initialized, and the default 

constructor of its parent class will be invoked. If the parent class contained no default con-
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structor, an error would occur. 

The constructor Point3D (double, double, double), initializes the instance variable z. 

Instance variables (x, y) are initialized through the constructor of the parent class which 

is called by the keyword super. This keyword must be the first statement in the constructor 

of the subclass. 

public class Point3D extends Point { 

private double z; 

public final String description = "Class Point3D"; 

public Point3D (double x, double y, double z) { 

} 

super (x, y); 

this.z = z; 

public Point3D() { 

this.z = 0; 

} 

public String toString() { 

return "x: " + x + " " + "y: " + y + " " + "z: " + z; }} 

The code segment that follows simulates the creation and initialization of several objects. 

Point p1 new Point () ; 

Point p2 new Point (1, 1) ; 

Point3D p3 new Point3D () ; 

Point3D p4 new Point3D (1, 1, 2) ; 

Point p5 = new Point3D(); 

System.out.println(p1.toString()); 

System.out.println(p2.toString()); 

System.out.println(p3.toString()); 

System.out.println(p4.toString()); 

System.out.println(p5.toString()); 

System.out.println(p3.description); 

System.out.println(p5.description); 
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Variables p3 and p5 both contain Point3D objects. The statement 

System. out. printlnCp3. description) will display Class Point3D. Consider the state­

ment System. out. printlnCp5. description). As fields are statically bound, the variable 

description refers to the one in the declared type of p5, which is type Point. Hence the 

output will be Class Point. 

The output of the program is shown below: 

x: 0.0 y: 0.0 

x: 1.0 y: 1.0 

x: 0.0 y: 0.0 Z : 0.0 

x: 1.0 y: 1.0 z : 2.0 

x: 0.0 y: 0.0 z : 0.0 

Class Point3D 

Class Point 

21.10 Design recommendations for inheritance 

You may consider the following design recommendations for inheritance: 

1. First and foremost, use inheritance to model an is-a relationship. For example, a linked 

list is a list, but neither a stack nor a queue are vectors. 

2. Place common variables and methods in the superclass. 

21.11 Types of inheritance 

Based on the objective for its deployment, we can identify the following types of inheritance: 

Specialization This is the most common use of inheritance. The subclass is a specialized 

version of the parent class, and thus satisfies the specification (interface) of the par­

ent class in all relevant aspects, adding any particular behavior through overriding. 

Subclasses are subtypes. 
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Specification This type of inheritance is deployed to enforce a specification (interface) on a 

subclass. The subclass implements the abstract specification of the parent class. There 

are two ways to perform this type of inheritance: through interfaces, and through the 

inheritance of abstract classes. Subclasses are subtypes. 

Construction There is no logical relationship between the two classes. A subclass inherits 

functionality to be reused for practical reasons. Subclasses are not necessarily subtypes. 

Extension A subclass merely adds new behavior and does not modify or alter any of the 

inherited features. Subclasses are subtypes. 

Limitation The behavior in the subclass is smaller or more restrictive than the behavior 

of the parent class. Subclasses are not subtypes. 

Combination A subclass is formed by combining features from more than one type. In 

Java, we can subclassify from a single class but we can implement one or more inter­

faces. 

21.12 Inheritance vs. delegation 

What happens when a subclass uses only part of a superclass' interface or does not need 

to inherit data? What do we do when it is very practical to use inheritance, but an is-a 

relationship does not hold? Can we just adopt this scheme? Consider class Stack in the 

java. uti! library which inherits class Vector (which in turn implements interface List) 

by extending its functionality with operations that would allow a vector to be treated as 

a stack. In the following example, we create a stack instance and place some items in the 

collection. 

Stack<String> s = new Stack<String>(); 

s.push("first") ; 

s.push("second"); 

s.push("third") ; 

System.out.println(s.elementAt(O)); 
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Note that we have managed to violate the Stack ADT protocol by calling method elementAt () 

inherited from Vector. The output ofthe program is first. In order to avoid this problem, 

it is more advisable to deploy delegation where we create a new class Stack with a variable 

of a type such as a Vector which will hold the collection of objects to be held in the stack. 

import java.util.Vector; 

public class Stack { 

} 

Vector<String> container 

int index; 

new Vector<String>(); 

public void push(String element) { 

} 

container.addElement(element); 

index++; 

public Object pope) { 

return container.elementAt(index-1); 

} 

Stack stack = new Stack(); 

stack.push("first"); 

stack.push("second"); 

stack.push("third"); 

System.out.println((String)stack.pop()); 

Note that methods in class Stack delegate to the vector variable. The Stack ADT protocol 

is now enforced. The output of the program is third. 

Classes formed with inheritance are assumed to be subtypes of their superclasses. No as­

sumption of substitutability is present during delegation. The interface of a subclass is 

(usually) a superset of that defined in the superclass. Delegation more clearly indicates 

exactly the interface of the subclass. Furthermore, inheritance does not prevent users from 

sending inappropriate messages to the subclass (invoking operations from the superclass). 

With delegation this is not possible. 
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In the delegation example, the fact that class Vector is used is an implementation detail. 

It would be easy to reimplement class Stack to make use of a different technique (such as a 

linked list) with minimal or no impact on the users of the stack abstraction. If users counted 

on the fact that a stack is merely is specialized form of vector, such changes would be more 

difficult to implement. 

21.13 Interfaces 

An interface defines a type and it provides an encapsulation of (abstract) methods and 

constants. The general form of an interface is: 

interface inter faceN ame 

{ 

returnType method1 (parameter List); 

type final variableN ame = value; 

} 

Interface methods cannot be static and they have a default public visibility as opposed to 

methods in classes which have a default package-private visibility. An interface can extend 

other interfaces (but not classes). 

A class may implement one or more interfaces and classes that implement an interface should 

provide implementation for all methods declared in that interface. A class that implements 

an interface has the following general form: 
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class classN arne [extends superclassN arne] 

[implements interfacel [, interface2 .. . ]] 

{ 

class body 

} 

Example 21.5. In the following example, we have two classes: class Counter and its subclass 

LockableCounter. The subclass implements the interface LockIF. Class LockableCounter 

inherits all methods from Counter and implements all methods declared in LockIF. 

public class Counter { 

} 

private static String description 

int value; 

public void reset() { 

value = 0; 

} 

public int getValue() { 

return value; 

} 

public void click() { 

value++; 

} 

public interface LockIF { 

void lock () ; 

void unlock () ; 

boolean isLocked(); 

} 

"The foundation of all counters."; 
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public class LockableCounter extends Counter implements LockIF { 

static String description = "A lockable counter."; 

} 

private boolean lock; 

public void lock() { 

this. lock = true; 

} 

public void unlock() { 

this. lock = false; 

} 

public boolean isLocked() { 

return this.lock; 

} 

public void click() { 

this.value = this.value + 2; 

} 

Consider the following code segment: 

Counter cl = new LockableCounter(); 

LockableCounter c2 = new LockableCounter(); 

LockIF c3 = new LockableCounter(); 

cl.click(); 

System.out.println(cl.getValue()); 

System.out.println(cl.description); 

c2.click(); 

System.out.println(c2.getValue()); 

c2. unlock () ; 

System.out.println(c2.isLocked()); 

System.out.println(c2.description); 

c3.click(); 

c3. unlock () ; 
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System.out.println(c3.isLocked()); 

System.out.println(c3.description); 

Let us dissect the code segment by considering its statements one by one. In each case, we 

will describe and distinguish between the responsibilities of the compiler and those of the 

run time system. 

The statement Counter c1 = new LockableCounterO; will be checked (statically) by the 

compiler. Class LockableCounter is a subclass and therefore a subtype of class Counter. 

Similarly, the statements 

LockableCounter c2 = new LockableCounter(); 

LockIF c3 = new LockableCounter(); 

are valid and type checking will be successful. 

For the statement c1. clickO; the compiler will check to see if a matching method to mes­

sage clickO is defined in the declared type of the object, namely Counter. As a result, 

method invocation is valid. In the case such as this example where the subclass overrides the 

method being called, the run time system will make a decision which method to call based 

on the dynamic type of the variable. In the example, the dynamic type of the variable is 

LockableCounter and the run time system will invoke the overriding method click O. 

The statement System.out.println(c1.getValueO); is statically valid because method 

getValue 0 is defined in the declared type ofthe variable, namely class Counter. The state­

ment will display 2 because the overriding method clickO increments the variable value 

by 2. 

The statement System.out.println(c1.description); accesses a static variable. The 

binding is based on the declared type of the variable and this will display "The foundation 

of all counters." 
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The statement c2. clickO ; will be successfully statically checked as there is a method match 

to the message clickO in the declared type ofthe variable, namely LockableCounter. The 

run time system will call the method ofthe dynamic type, namely the one in LockableCounter. 

The statement System. out. println(c2. getValue 0) ; will be successfully statically checked 

and display 2. 

The statement c2. unlock () ; will be successfully statically checked as there exists a matched 

method to unlockO in the declared type of the variable, namely the interface LockIF. 

Similarly the statement System.out.println(c2.isLockedO); will display false. 

The statement System.out.println(c2.description); is an example of hiding. As the 

binding of a static variable is done on the declared type of the variable, the statement ac­

cesses and displays the value of description variable in class LockableCounter. 

The statement c3. clickO; will fail type checking because there is no matching method in 

the declared type of the variable c3, namely the interface LockIF. 

The statement c3. unlock (); will be successfully statically checked as there is a matching 

method to the message unlockO in the declared type of the variable c3. 

The statement System. out. println(c3. isLockedO) ; will be successfully statically checked 

and it will display false. 

The statement System.out.println(c3.description); will fail. 
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Resolving name collisions of interface features 

To avoid problems associated with multiple inheritance, Java allows only single inheritance 

for class extension but allows multiple inheritance for interface implementation. This does 

not guarantee that no potential problems may show up, as name collisions may exist between 

features of different interfaces or between features of interfaces and classes. 

If two inherited methods have the same name, then: 

• If they have different signatures, they are overloaded. 

• If they have the same signature and the same return type, they are considered to be 

the same method. 

• If they have the same signature but different return types, then a compilation error 

will occur. 

• If they have the same signature and the same return type but throw different excep­

tions, they are considered to be the same method, and the resulting throws list is the 

union of the two throws lists. 

If two constants have the same name, then they are considered two separate constants and 

a distinction is made by using the interface name with dot (.) operator. 

Example 21.6. Consider the two interfaces IF1 and IF2 below: 

public interface IFl { 

void methodl(int i); 

void method2 (int i); 

void method3 (int i); 

} 
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public interface IF2 { 

void method1(double d); 

vo id method2 (int i); 

double method3 (int i); 

} 

The method void method3(int i) from interface IF1 and the method double method3(int 

i) have the same name and signature but different return types, hence a compilation error 

occurs. 

Consider a class C which implements both interfaces: 

public class C implements IF1, IF2 { 

public void method1(int i) { 

System.out.println("Signature: method1(int)"); 

} 

public void method1(double i) { 

System.out.println("Signature: method1(double)"); 

} 

public void method2(int i) { 

System. out. println (" Signature: method2 (int) "); }} 

The two implementations of method1 () are inherited from interfaces IF1 and IF2. They have 

the same name but different signatures, hence they are overloaded. Furthermore, method2 

is inherited from both interfaces with the same name, signature and return type, hence the 

two interfaces essentially declare the same method. Consider the following program: 

C c = new C () ; 

c.method1(3); 

c.method1(5.0); 

c.method2(5); 
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The output of the program is as follows: 

Signature: methodl{int) 

Signature: methodl{double) 

Signature: method2{int) 

21.14 Casting 

We can convert between types as follows: the conversion of a subtype to one of its super­

types is called widening and it is carried out implicitly whenever necessary. In other words, 

a reference to an object of class C can be implicitly converted to a reference to an object of 

one of the superclasses of C. 

On the other hand, the conversion of a supertype to one of its subtypes is called narrowing. 

Narrowing of reference types requires explicit casts. As an example, consider class Parent, 

being the superclass of Child and object p being an instance of Parent. Let Child define 

method calculate O. In the following statement 

((Child)p).calculate(); 

both the compiler and the run time system are involved in validating the explicit casting as 

follows: 

The compiler will obtain the static type of p, namely Parent. Next, the compiler needs to 

ensure that the object is (in the case of downcasting) casted downwards in its inheritance 

chain which is indeed the case in this example. In other words, one cannot cast an object 

to a non-related type. If, in our example, we had class Friend that contained method 

calculate 0 and we attempted to do 

((Friend)p).calculate(); 

the compiler will issue an error. 



275

Back to our initial example, the compiler will proceed to check if a method signature exists 

that matches the message calculate () in the static type of the object, that includes the 

now "forced" type, namely Child and all its supertypes. Compilation is successful in this 

example. 

The run time system must ensure that the dynamic type of object p is Child (or one of 

its subtypes). Once this validation is successful, the run time system will invoke method 

calculate () in the class that corresponds to the dynamic type, in this case class Child. If 

not successful, the run time system will throw an exception. 

What is the motivation for narrowing? Recall that the functionality of a superclass is 

available to all subclasses and that the subclasses normally contain extended functionality. 

Narrowing allows us to temporarily achieve the opposite: to extend the functionality of a 

superclass with that of a subclass. 

Example 21. 7. Consider the class definitions below: 

public class Parent { } 

public class Child extends Parent { 

public String greet () {return "Good morning!";} 

} 

public class Grandchild extends Child { 

public String greet () {return "I want ice cream.";} 

} 

public class Friend { 

public String greet () {return "Hello there!";} 

} 
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Scenario Compilation Run time and 
output 

Parent p = new Child(); Not successful. 
System.out.println(((Friend)p).greet()); 

Parent p = new Child(); Successful. Good morning! 
System.out.println(((Child)p).greet()); 

Parent p = new Parente); Successful. Exception 
thrown: 

System.out.println(((Child)p).greet()); Parent cannot 
be cast to Child. 

Grandchild p = new Child(); Not successful. 
System.out.println(((Child)p).greet()); 

Parent p = new Grandchild(); Successful. I want ice cream. 
System.out.println(((Child)p).greet()); 

Parent p = new Child(); Successful. Exception 
thrown: 

System.out.println(((Grandchild)p) .greet()); Child cannot be 
cast to Grand-
child. 

Table 21.1: Demonstrating explicit casting. 

In Table 21.1 we demonstrate various scenarios where explicit casting is used, and list the 

result of the compilation and the run time processes, together with any possible output. 

Example 21.8. In the Java built-in hierarchy, class LinkedList is an ordered list, and it is 

a subclass of List, offering more functionality such as removeFirst O. Other subclasses of 

List include ArrayList and Vector. Consider method trimO which takes a parameter of 

type List (or any of its subclasses) and proceeds to delete its first element by downcasting it 

to LinkedList and calling removeFirst O. In the main method we instantiate a LinkedList 

object and add two elements to it. We then pass it to method trimO. To verify whether 

trimO performed as expected, we proceed to check whether our linked list object contains 

either element. 
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import java.util.*; 

public class CastingTest { 

} 

public static void trim(List 1st) { 

((LinkedList)lst).removeFirst(); 

} 

public static void main(String [J args) { 

LinkedList<String> list = new LinkedList<String>(); 

list. add("a"); 

} 

list. add("b"); 

trim (list) ; 

System.out.println(list.contains(" a ")); 

System.out.println(list.contains("b")); 

The output of the program is as follows: 

false 

true 

We indeed did not expect to see element "a" in the list. 

Example 21.9. What would happen if in the previous example we replaced the LinkedList 

type with an ArrayList? 

public static void main(String [J args) { 

ArrayList<String> list = new ArrayList<String>(); 

list.add("a"); 

} 

list.add("b"); 

trim (list) ; 

System.out.println(list.contains(" a ")); 

System.out.println(list.contains("b")); 
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Recall that the validity of explicit casting is checked not at compile time but at run time. 

The program will successfully compile. However, the explicit casting in method trimO is 

not valid since types LinkedList and ArrayList are siblings, and thus incompatible for 

type conversion. As a result, the run time system will throw an exception: 

Exception in thread "main" java.lang.ClassCastException: 

java.util.ArrayList cannot be cast to java.util.LinkedList 

21.15 Additional examples 

Example 21.10. Consider the definitions of the following classes. We will use the code 

in method main () to describe all explicit responsibilities of the compiler and the run time 

system. If a statement does not compile, we will provide a brief explanation why and we 

will consider it as being commented out. 

public interface MyIF { 

public void callback(); 

} 

public class Cl { 

} 

public void callCint i) {System.out.println("il: "+i);} 

public void callme(String s) {System.out.println(s);} 

public class C2 extends Cl implements MyIF { 

} 

public void call(int i) {System.out.println("i2: "+i);} 

public void callback () {System. out. println (" bbb") ;} 

public class C3 extends C2 { 

public void callme(String s) {System.out.println("s: "+ s);} 

} 
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public class Test { 

} 

public static void main(String args[J) { 

Cl objl new Cl(); 

} 

C2 obj2 new C2(); 

C2 obj3 new C3(); 

MyIF obj4 = new C3(); 

objl.call(O); 

obj 2. call (1) ; 

obj3.call(2); 

obj4.call(3); 

obj4. callback (); 

((C2)obj4).call(4); 

((C2)objl).callback(); 

C1 obj 1 = new C10; Compilation successful: The right-hand side (RHS) and the left­

hand side (LHS) are of same type, namely C1. 

C2 0 b j 2 = new C20; Compilation successful: RHS and LHS are of same type, namely 

C2. 

MyIF obj4 = new C30; Compilation successful: The RHS (C3) is a subtype of the LHS 

(MyIF). 

C2 obj3 = new C30; Compilation successful: The RHS (C3) is a subtype of the LHS 

(C2). 

obj 1. call (0); Compilation successful: Method call (int) is defined in the static type 

of obj 1, namely C1. The run time system executes successfully method call (int) in 

class C1 (the dynamic type of obj 1) and the output is: i1: o. 
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obj 2. call (1); Compilation successful: Method call (int) is defined in the static type 

of 0 b j 2, namely C2. The run time system executes successfully method call (int) in 

class C2 (the dynamic type of obj2) and the output is: i2: 1. 

obj3. call (2); Compilation successful: Method call (int) is defined in the static type of 

obj3, namely C2. The run time system checks if the dynamic type of obj3, namely 

C3 has method call (int) but fails to locate it. Consequently, a check is performed to 

the parent class, namely C2. Since the method exists, it is executed and provides the 

following output: i2: 2. 

obj4. call (3); Compilation error: The declared type of obj4 namely MyIF does not con­

tain a definition for method call (int) . 

obj4.callbackO; Compilation successful: Method callbackO is defined in the static 

type of obj4 namely MyIF. The run time system checks if the dynamic type of obj4 

namely C3 has method callback 0 but fails to locate it. Consequently, a check is 

performed to the parent class namely C2. Since the method exists, it is executed and 

provides the following output: bbb. 

((C2) obj4) . call (4); Compilation successful: The static type of obj4, namely MyIF, is 

a supertype of the class to which the object is casted (C2) and class C2 contains a 

definition for method call (int). The run time system checks if the actual reference 

of obj4 is of type (or subtype of) C2 (i.e. the type to which the object is casted). The 

check is successful. Next, the run time system checks if the dynamic type of obj4, 

namely C3 includes method call (int) but fails to locate it. Consequently, a check is 

performed to the parent class, namely C2. Since the method exists, it is executed and 

provides the following output: i2: 4. 

((C2) obj 1) . callback 0 ; Compilation successful: The static type of obj 1, namely Cl, is 

a supertype of the class to which the object is casted (C2) and class C2 contains a def­

inition for method callback O. The run time system throws a ClassCastException 

exception, since the dynamic type of obj 1 is Cl but Cl is not of type (or a subtype of) 

C2 as expected from the cast. 



281

Example 21.11. Consider the class definitions below: 

interface MyIF { 

} 

public static String name="MyIF.name"; 

public String call(int x); 

class Cl { 

} 

private static String name="Cl.name"; 

public Obj ect callme () { 

return "Cl. callme () called"; 

} 

class C2 extends Cl implements MyIF{ 

public String callme() { 

return "C2. callme () called"; 

} 

} 

public class Dispatch { 

} 

public static void main(String args[J) { 

MyIF i = new C2(); 

} 

Cl cl = new C2(); 

C2 c2=(C2)new Cl(); 

System.out.println(i.callme()); 

System.out.println(cl.callme()); 

System.out.println(i.name); 

System.out.println(cl.name); 

1. There are possibly multiple compilation errors in class C2. Provide a description of 

them and modify only class C2 in a way that compilation can be successful. 
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2. For each subsequent method, describe 1) Whether this introduction can be character­

ized by overloading or overriding and 2) Whether this introduction will result in an 

error. Justify your answers. 

public Object call(int x) { 

return "Hello"; 

} 

String call(int x) { 

return "Hello"; 

} 

public int call(double d) { 

return Math.floor(d)*5; 

} 

public String callme(String str) { 

return "C2. callme with: " + str; 

} 

1. Class C2 must implement the inherited method MyIF. call (int). There is no such 

method in C2. We must add the following method in C2: 

public String call (int x) { 

return "C2.call called"; 

} 

2. Consider the following: 

public Object call(int x) { 

return "Hello"; 

} 

The attempt to override MyIF.call(int) will fail because Object is not a subtype of 

String. 

String call(int x) { 

return "Hello"; } 
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The attempt to override MyIF. call (int) will fail since the visibility is reduced from 

public to package-private (default). 

public int call(double d) { 

return Math.floor(d)*5; 

} 

Overloading My IF. call ( in t) . 

public String callme(String str) { 

return "C2. callme with: " + str; 

} 

Overloading C2. callme () . 

Example 21.12. The Observer design pattern supports a many-to-one dependency from 

a number of observer objects to one subject object where observers attach themselves to a 

subject. The objective is for observers to maintain the same state as the subject. Upon 

a change of state in the subject, the subject must deploy a notification mechanism for its 

observers. The pattern can support two models of notification: 1) Pull and 2) Push. 

Pull model: In the pull model, upon a change of state in the subject, the subject activates 

a notification mechanism whereby it sends a message to all observers indicating that 

a change of state has occurred. The observers will then explicitly request the details 

of the change. 

Push model: In the push model, upon a change of state in the subject, the subject activates 

a notification mechanism whereby it sends its own state to all observers (whether they 

want it or not). 

Consider the code segment that follows, the computation that it performs, and its output. 

Provide an implementation of all definitions involved using the pull model. 



284

Subject subject = new Subject(); 

Observer observer1 

Observer observer2 

Observer observer3 

new Observer(subject); 

new Observer(subject); 

new Observer(subject); 

II assign state to subject 

subj ect . setState (" Best band: Pink Floyd"); 

II by this point, subject must have notified all observers 

System.out.println(observer1.getState()); 

System.out.println(observer2.getState()); 

System.out.println(observer3.getState()); 

subj ect . setState (" Best band: The Doors"); 

System.out.println(observer1.getState()); 

System.out.println(observer2.getState()); 

System.out.println(observer3.getState()); 

The output of the program is as follows: 

Best band: Pink Floyd 

Best band: Pink Floyd 

Best band: Pink Floyd 

Best band: The Doors 

Best band: The Doors 

Best band: The Doors 

The definitions are as follows: 

public interface SubjectIF { 

} 

public void attach (Observer observer); 

public void detach (Observer observer); 

public void update(); 
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public interface Observer IF { 

public void update(); 

} 

import java.util.Vector; 

public class Subject implements SubjectIF { 

private int count = 0; 

private Vector<Observer> observers; 

private String subjectState; 

public Subject() { 

observers = new Vector(O); 

} 

public void attach (Observer observer){ 

observers.addElement(observer); 

} 

public void detach (Observer observer) { 

observers.removeElement(observer); 

} 

public void update() { 

for (Observer observer: observers) { 

observer.update(); 

} 

1* 

} 

* For earlier versions of Java: 

* 
Observer tempObserver; 

for (int i = 0; i < observers. size (); i++) { 

tempObserver = (Observer)observers.elementAt(i); 

tempObserver.update(); } 

*1 
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} 

public String getState() { 

return subjectState; 

} 

public void setState(String newState) { 

subjectState = newState; 

this.update(); 

} 

public class Observer implements Observer IF { 

private Subject subject; 

} 

private String observerState; 

public Observer(Subject subject) { 

} 

this. subject = subject; 

this.subject.attach(this); 

public void update() { 

observerState = subject.getState(); 

} 

public String getState() { 

return observerState; 

} 
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Example 21.13. Consider the class definitions below: 

public class Counter { 

private static String description 

int element; 

public void click() { 

element++; 

} 

public int getValue() { 

return element; 

} 

public void reset() { 

this. element = 0; 

} 

"A counter."; 

public static String getDescription() { 

return description; 

} 

} 

public interface Lockable { 

void lock () ; 

void unlock () ; 

boolean isLocked(); 

} 

public class LockableCounter extends Counter implements Lockable { 

static String description = "A lockable counter."; 

private boolean lock; 

public void lock() { 

this. lock = true; 

} 

public void unlock() { 

this. lock = false; } 
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} 

public boolean isLocked() { 

return this.lock; 

} 

public void reset() { 

this. element = this.element % 5; 

} 

public static String getDescription() { 

return description; 

} 

public class LockableCounterTest { 

} 

public static void main(String [J args) { 

Counter lockl = new LockableCounter(); 

Lockable lock2 = new LockableCounter(); 

System.out.println(lockl.getDescription()); 

lockl . click () ; 

lock2. click () ; 

} 

1. Trace the body of the main method, and for each statement in that method describe the 

explicit responsibilities of the compiler and the run time system. In case a statement 

fails compilation, consider it as being commented out. 

2. What is the output of the program? 

Counter lock1 = new LockableCounter (); Compilation successful: The type of the ex­

pression on the right-hand side of the assignment statement is a subtype of the type 

of the variable on the left-hand side. 

Lockable lock2 = new LockableCounter (); Compilation successful: The reasoning is 

similar to the above. 
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System. out. println(lock1. getDescription()); This is an example of hiding. The 

choice of static features is resolved based on the declared type of the object. The 

declared type of lock! is Counter. The method will display A counter. 

lock!. click(); Compilation successful: There exists a method (click()) in the declared 

type ofthe object (Counter) that matches the message. The run time system will start 

from the dynamic type of the object (the actual reference held) to see if a method exists 

that can match the message. Such a method does not exist in LockableCounter. As 

a result, the run time system will perform a look-up in the immediate supertype of the 

object and find a matching method click() in class Counter. 

lock2. click(); Compilation error: There is no method in the declared type of lock2 to 

match the message. 

Example 21.14. Consider the class definitions below. For each statement in method main () 

describe the responsibilities and tasks undertaken by the compiler and by the run time 

system, and describe the outcomes. If you have to refer to a property of some element, make 

sure you distinguish between static vs. dynamic properties. 

public interface Behavior { 

public String act(); 

public String reason(); 

} 

public class Human implements Behavior { 

public String type = "HUMAN."; 

public boolean empathy = true; 

public String act() { 

return "I am an human and I can act."; 

} 

public String reason() { 

return "I am a human and I can reason."; 

} 

public boolean hasEmpathy() {return empathy;}} 
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public class Bladerunner extends Human { 

} 

public String type = "BLADERUNNER."; 

public String rank; 

Bladerunner(){} 

Bladerunner (String r) { 

} 

this.rank r' , 

String rank = "OFFICER."; 

System.out.println(rank); 

public String reason() { 

return "I am bladerunner and I can reason."; 

} 

public abstract class Machine implements Behavior { 

public static String type = "MACHINE."; 

} 

public class Android extends Machine { 

public int version; 

Android (int version) { 

this.version = version; 

} 

public String whatIhave() { 

return "I have physical power."; 

} 

public static String whatIneed() { 

return "I need more time."; 

} 

public String act() { 

return "I am an android and I can act."; 

} 
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public String reason() { 

return "1 am an android and I can reason."; 

} 

} 

public interface Behavior2 { 

public boolean empathy = true; 

public boolean memories = true; 

public boolean hasEmpathy () ; 

public boolean hasMemories () ; 

} 

public class Android2 extends Android implements Behavior2 { 

Android2 (int version) { 

} 

super (version); 

} 

Android2 () { 

super (8) ; 

} 

public String whatlhave() { 

return "1 have an infinite time."; 

} 

public boolean hasEmpathy() { 

return empathy; 

} 

public boolean hasMemories() { 

return memories; 

} 
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public static void main(String [] args) { 

1 Machine Leon = new Android(7); 

2 System.out.println(Leon.whatlneed()); 

3 Android Roy = new Android2(7); 

4 System.out.println(((Android2)Roy).whatlhave()); 

5 Behavior2 Pris = new Android2(11); 

6 System.out.println(Pris.whatlhave()); 

7 Android2 Zohra = new Android(); 

8 Behavior2 Hodge = new Android2(); 

9 System.out.println(Hodge.whatlhave()); 

10 Android Rachel = new Android(7); 

11 System.out.println(((Android2)Rachel).hasMemories()); 

12 Human Gaff = new Bladerunner(); 

13 System.out.println(Gaff.type); 

14 System. out. println (" Gaff has empathy?: II + Gaff. hasEmpathy ()) ; 

15 System.out.println(Gaff.reason()); 

16 Bladerunner Harry = new Bladerunner(ICHIEF."); } 

Let us trace the program: 

1. Machine Leon = new Android (7) ; Compilation successful: Type checking succeeds 

as the static type of the expression on the RHS is a subtype of the static type of the 

variable on the LHS. 

2. System. out. println (Leon. whatlneed 0) ; Compilation error: Static features are ac­

cessed based on the declared (static) type of the object (Machine). Method whatlneedO 

does not exist in the declared type. 

3. Android Roy = new Android2 (7); Compilation successful: Type checking succeeds 

as the static type of the expression on the RHS is a subtype of the static type of the 

variable on the LHS. 

4. System. out. println( ((Android2)Roy) . what Ihave 0) ; Compilation successful: Static 

type of Roy (Android) is a supertype of Android2. The run time system will perform 
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the following: a) it checks the validity of explicit cast. This is successful since the 

run time type of Roy (Android2) is the same or a subtype of Android2, and b) it will 

invoke the dynamic dispatcher to call method what Ihave 0 defined in the run time 

type of the object, namely Android2, and it will display "I have an infinite time." 

5. Behavior2 Pris = new Android2(11); Compilation successful: Type checking suc­

ceeds as the static type of the expression on the RHS is a subtype of the static type of 

the variable on the LHS. 

6. System. out. println(Pris. what Ihave 0) ; Compilation error: Method what Ihave 0 

does not exist in declared type (Behavior2). 

7. Android2 Zohra = new Android 0; Compilation error: Static type checking fails: 

Static type of expression on RHS is not a subtype as the static type of variable on 

LHS. 

8. Behavior2 Hodge = new Android20; Compilation successful: Type checking suc­

ceeds as the static type of the expression on the RHS is a subtype of the static type of 

the variable on the LHS. 

9. System. out. println(Hodge. what Ihave 0) ; Compilation error: Method what Ihave 0 

does not exist in the declared type of Hodge (Behavior2). 

10. Android Rachel = new Android (7); Compilation successful: Type checking succeeds 

as the static type of the expression on the RHS is the same as the static type of the 

variable on the LHS. 

11. System.out.println(((Android2)Rachel) .hasMemoriesO); Compilation successful: 

The static type of Rachel, namely Android, is a supertype of Android2. However, 

the run time system will not verify the explicit cast since the dynamic type of Rachel, 

namely Android is not a subtype of Android2. 

12. Human Gaff = new Bladerunner 0; Compilation successful: Type checking succeeds 

as the static type of the expression on the RHS is a subtype of the static type of the 

variable on the LHS. 
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13. System. out. println(Gaff. type) ; Variables are accessed based on the declared (static) 

type of the object (Human). It will display HUMAN. 

14. System. out. println( II Gaff has empathy?: II + Gaff. hasEmpathyO) ; 

Compilation successful: Type checking succeeds as method hasEmpathy 0 exists in 

the declared type or one of its supertypes (Human). The run time system invokes 

the dynamic dispatcher and performs a search for a method to match the message 

starting from the definition of Bladerunner. An appropriate method is not found. 

The dispatcher continues its search and finds a matching method in the superclass. 

The method returns true and the statement displays Gaff has empathy?: true 

15. System. out. println(Gaff. reasonO); Compilation successful: Type checking suc­

ceeds as method reasonO exists in the declared type of the object (Human). The run 

time system invokes the dynamic dispatcher and performs a search for a method to 

match the message starting from the definition of Bladerunner and it is successful. It 

will display I am bladerunner and I can reason. 

16. Bladerunner Harry = new Bladerunner("CHIEF. II); Compilation successful: Type 

checking succeeds as the static type of the expression on the RHS is the same as the 

static type of the variable on the LHS. The class constructor displays the value of its 

local variable ("OFFICER") because of shadowing. 

Let us provide the definition of class Bladerunner2 who is an Android2 but also behaves 

exactly like a Bladerunner and can be instantiated as follows: 

Bladerunner2 Deckard = new Bladerunner2(); 

We can model this requirement with a combination of inheritance (of class Android2) and 

delegation (to class Bladerunner). 

public class Bladerunner2 extends Android2 { 

Bladerunner b = new Bladerunner(); 

public String act() { 

return b. act (); } 
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} 

public String reason() { 

return b.reason(); 

} 

public boolean hasEmpathy() { 

return b.hasEmpathy(); 

} 

What is the output of the code below and why? 

System.out.println(Deckard.reason()); 

The output is I am bladerunner and I can reason. since message reason () sent to ob­

ject Deckard was captured and delegated to class Bladerunner. 

Let us provide a statement to verify whether object Deckard is human. The statement is 

System. out. println (Deckard. type); and it will display MACHINE. 

Last, let us identify 1) a pair of overloaded features, 2) a pair of overriding features, 3) a 

pair of shadowed features, and 4) a pair of hidden features. 

Overloaded features: Constructors of class Bladerunner, or method what Ihave () in in 

classes Android and Android2. 

Overriding features: Methods reason () in classes Human and Bladerunner. 

Shadowed features: Instance variable rank and local variable of the same name in the 

constructor of Bladerunner. 

Hidden features: String variable type in classes Human and Bladerunner. 

Example 21.15. Provide brief answers to the following: 

1. In the context of Java, compare inheritance to delegation in terms oftype substitutabil­

ity, interface, and security. 
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2. Many OOP textbooks, refer to subclasses as extended classes where an is-a relation­

ship holds between subclass and superclass. Does this provide a full description of 

inheritance? Justify your answer. 

3. In OOP, what type of reuse is provided by inheritance? 

1. Type substitutability: Classes formed with inheritance are assumed to be subtypes 

of their parent class. No assumption of substitutability is present during delegation. 

Interface: Delegation more clearly indicates exactly the interface of the subclass. Se­

curity: the protocol of the subclass can be violated with inheritance in case where 

the subclass is not a subtype of the superclass. With delegation this is normally not 

possible. 

2. Not every form of inheritance is for extension and not all forms create subtype rela­

tionships. For example, in inheritance by construction, There is no logical relationship 

between the two classes. A subclass inherits functionality to be reused for practical 

reasons. Subclasses are not necessarily subtypes. 

3. With inheritance we can reuse a) implementation and b) specification. 

Example 21.16. Consider the following classes: 

public interface Hunter { 

String goAfter(String str); 

} 

public interface Guide { 

void navigate () ; 

void work () ; 

} 

public class Animal { 

String name; 

public Animal () {} 

public Animal (String name) {this.name name;} 
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} 

public String toString() { 

return this.name; 

} 

public class Cat extends Animal implements Hunter { 

String description = "I am a domesticated animal"; 

protected int lifeSpan = 14; 

} 

public Cat 0 { 

this("Ella"); 

} 

public Cat (String name) { 

super (name) ; 

} 

public void describe() { 

System.out.println(description); 

} 

public void what1do() { 

System.out.println("1 hunt vermin and household pests."); 

} 

public String goAfter(String str) { 

return str; 

} 

public class Dog extends Animal implements Hunter { 

String description = "I am the first domesticated animal."; 

static int lifeSpan = 12; 

public Dog () {} 

public Dog (String name) { 

super (name) ; 

} 
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} 

public void describe() { 

System.out.println(description); 

} 

public String whatldo(String str) { 

return"I like to " + str + 

} 

It II. . , 

public String goAfter(String str) { 

return str; 

} 

public class Labrador extends Dog implements Guide { 

String description = "1 am a type of gun dog."; 

static int lifeSpan = 14; 

public Labrador () {} 

public Labrador (String name) { 

super (name) ; 

} 

public void describe() { 

System. out. println (" I am athletic and playful and " + 

super.description);} 

public void whatldo() { 

System.out.println("I retrieve game for a hunter."); 

} 

public void navigate() { 

System.out.println("I am trained to aid blind and" + 

"autistic people.");} 

public void work() { 

System. out. println (" I can track, I can detect and " + 

"1 can do therapy work.");} 

public String goAfter() { 

return "thieves"; }} 
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For each of the statements below, let us describe in detail the explicit responsibilities of the 

compiler and the run-time system as well as the outcome of each of their tasks. Whenever 

applicable we will write down and underline the exact output. Additionally, we will indicate 

any other event such as hiding, overloading, overriding, or shadowing. 

1 Dog Max = new Labrador (" Max ") ; 

2 Labrador Duke = new Animal("Duke"); 

3 Guide Buddy new Labrador("Buddy"); 

4 Cat Molly = new Cat (" Molly ") ; 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Hunter Oscar 

Hunter Bella 

Hunter Rocky 

Hunter MyCat 

new Cat("Oscar"); 

new Dog("Bella"); 

new Labrador("Rocky"); 

new Cat () ; 

Labrador Luna = new Labrador("Luna"); 

Guide Roxy = new Labrador("Roxy"); 

Hunter Zeus = new Labrador("Zeus"); 

Animal Bobby = new Labrador("Bobby"); 

Guide Honey = new Dog (" Honey ") ; 

System.out.println(Max.lifeSpan); 

Max. describe (); 

System.out.println(Max.whatldo("retrieve")); 

System.out.println(Max.description); 

Buddy. whatldo (); 

Buddy.work(); 

((Labrador)Buddy).whatldo(); 

((Labrador)Molly).whatldo(); 

((Labrador)Oscar).whatldo(); 

Bella. goAfter () ; 

System.out.println(((Dog)Bella).whatldo(" run in parks")); 

System. out. println (" I am II + Rocky. toString () + 

II and I go after II + 

(( Labrador) Rocky) . goAfter () + ". ") ; 
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26 System.out.println(MyCat.toString()); 

27 System.out.println("I go after II + Luna.goAfter(lcats") + "."); 

28 System.out.println(Roxy.goAfter()); 

29 Zeus.work(); 

30 ((Labrador)Bobby).whatIdo(); 

1 Dog Max = new Labrador(IMax"); Compilation is successful. The compiler validates 

the assignment statement as the type of the RHS expression is a subtype of the LHS 

variable. 

2 Labrador Duke = new Animal ("Duke II); Compilation is not successful. The compiler 

does not validate the assignment statement as the type of the RHS expression is not 

the same or a subtype of the LHS variable. 

For lines 3-12, compilation is successful as all assignment statements are validated. 

13 Guide Honey = new Dog(IHoney"); Compilation is not successful. The compiler does 

not validate the assignment statement 

14 System. out. println (Max . lifeSpan) ; The choice of attribute is based on the static 

type of Max, namely Dog, and the binding is done at compile-time. This is an example 

of hiding. The statement will display 12. 

15 Max. descri be (); Compilation is successful. The compiler validates the method call 

since there exists a method describe () in the static type of Max, namely Dog. The 

run-time system has the responsibility to choose the appropriate method to invoke. It 

will perform a search starting from the run-time type of Max, namely Labrador where 

it will locate the overriding method describe () which displays 

I am athletic and playful and I am the first domesticated animal. 

16 System. out. println (Max. whatldo (ll retrieve ")); Compilation is successful. The 

compiler validates the method call since there exists a method whatldo (String) in 

the static type of Max, namely Dog. The run-time system has the responsibility to 

choose the appropriate method to invoke. It will perform a search starting from the 
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run-time type of Max, namely Labrador where it will not locate such method. The 

run-time system will continue its search up the inheritance chain and it will locate the 

overloaded method whatIdo (String) in Dog which displays I like to retrieve. 

17 System. out. println (Max. description); The choice of attribute is based on the 

static type of Max, namely Dog, and the binding is done at compile-time. This is 

an example of hiding. The statement will display I am the first domesticated animal. 

18 Buddy. whatIdo 0; Compilation is not successful. The compiler does not validate the 

method call as there does not exist a method whatIdo 0 in the static type of Buddy, 

namely Guide. 

19 Buddy. work 0; Compilation is successful. The compiler validates the method call since 

there exists a method work 0 in the static type of Buddy, namely Guide. The run-time 

system has the responsibility to chose the appropriate method to invoke. It will perform 

a search starting from the run-time type of Buddy, namely Labrador where it will locate 

such method which displays I can track, I can detect and I can do therapy work. 

20 ((Labrador) Buddy) . what Ido 0; Compilation is successful since the static type of 

Buddy, namely Guide, can be downcast to Labrador. Additionally, the compiler vali­

dates the method call since there exists a method what Ido () in the casted type, namely 

Labrador. The run-time system has the responsibility to validate the explicit cast. 

This will succeed as the run-time type of Buddy is Labrador. The run-time system 

also has the responsibility to choose the appropriate method to invoke, performing a 

search starting from the run-time type of Buddy, namely Labrador where it will locate 

the overloaded method whatIdo 0 which displays I retrieve game for a hunter. 

21 ((Labrador)Molly) . whatIdo 0 ; Compilation is not successful, as the static type of 

Molly, namely Cat, cannot be downcasted to Labrador. 

22 ((Labrador) Oscar) . what Ido () ; Compilation is successful as the static type of Oscar, 

namely Hunter can be downcasted to Lambrador. Additionally, the compiler validates 

the method call as there exists method whatIdo 0 in the casted type. However, the 
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run-time system will not validate the explicit cast since the run-time of Oscar, namely 

Cat, cannot be casted to Labrador. 

23 Bella. goAfter (); Compilation is not successful. The compiler does not validate the 

method call as there does not exist a method goAfterO in the static type of Bella, 

namely Hunter. 

24 System. out. println (( (Dog) Bella) . whatldo (ll run in parks ")) ; Compilation is suc­

cessful as the static type of Bella, namely Hunter can be downcasted to Dog. Addition­

ally, the compiler validates the method call as there exists method whatldo (String) in 

the casted type. The run-time system will validate the explicit cast since the run-time 

of Bella is Dog. Additionally the run-time system is responsible to chose the appro­

priate method to call, performing a search starting from the run-time type of Bella, 

namely Dog where it will locate the overloaded method whatldo (String) which dis­

plays I like to run in parks. 

25 System. out. println (" I am II + Rocky. toString 0 + II and I go after II + 

( (Labrador) Rocky) . goAfter 0 + ". II); Compilation is successfull. The static type 

of Rocky, namely Hunter can be downcasted to Labrador. Additionally, the compiler 

validates both cases of method call: First, method toStringO exists in the static type 

of Rocky, namely Animal, and second, method goAfterO exists in the casted type, 

namely Labrador. The run-time system successfully validates the explicit casting as 

the run-time type of Rocky is Labrador. Additionally, the run-time system has the 

responsibility to choose the appropriate method to invoke string from the run-time 

type of Rocky, namely Labrador where it locates method goAfter O. The statement 

displays I am Rocky and I go after thieves. 

26 System. out. println (MyCat . toString 0); Compilation is successful. The compiler 

validates the method call as there exists method toString () in the static type of 

MyCat, namely Object (the root of all classes in the Java system). The run-time system 

is responsible to chose the appropriate method to call performing a search starting from 

the run-time type of MyCat, namely Cat where it invokes method toStringO which 
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displays Ella. 

27 System. out .println("1 go after II + Luna.goAfter(l cats") + ". II); Compilation 

is successful. The compiler validates the method call as there exists method 

goAfter(String) in the static type of Luna, namely Dog. The run-time system is 

responsible to choose the appropriate method to call performing a search starting from 

the run-time type of Luna, namely Labrador where it does not locate such method. 

The run-time system continues its search up in the inheritance chain, locating and 

invoking the overloaded method goAfter (String) in Dog. The statement displays 

I go after cats. 

28 System. out. println (Roxy . goAfter 0); Compilation is not successful. The compiler 

does not validate the method call as there does not exist method goAfter 0 in the 

static type of Roxy, namely Guide. 

29 Zeus. work () ; Compilation is not successful. The compiler does not validate the method 

call as there does not exist method workO in the static type of Zeus, namely Hunter. 

30 ((Labrador)Bobby) . whatldo 0 ; Compilation is successful. First, the static type of 

Bobby, namely Animal, can be casted to Labrador. Second, the compiler validates the 

method call as there is method whatldo 0 in the casted type. The run-time system 

has the responsibility to validate the explicit casting. This is successful as the run-time 

type of Bobby is Labrador. Additionally, the run-time system has the responsibility to 

choose the appropriate method to call performing a search starting from the run-time 

type of Bobby, namely Labrador where it locates and invokes the overloaded method 

whatldo 0 which displays I retrieve game for a hunter. 

Example 21.17. Consider the following classes: 

public abstract class Human { 

String name; 

public static String description 

public abstract void speake); 

"Human" ; 
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public stat i c void whatAmI () {System. out. println (" I am " + 

description + ".");}} 

public class Commoner extends Human { 

public void speake) { 

System. out. println (" Yes, m' lord. ") ; 

} 

} 

public class Noble extends Human { 

String house; 

public Noble(String name, String house) { 

this.name = name; 

this.house = house; 

} 

public Noble(String name) { 

this.name = name; 

} 

public void speake) { 

System.out.println("Yes, my lord."); 

} 

public String toString() { 

return "I am " + this.name + " of " + this.house + 

} 

} 

public interface Faceless { 

public void declare(); 

public String declare(String str); 

} 

II II. . , 
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public class Free extends Noble implements Faceless { 

public Free(String name) { 

} 

sup e r (n am e, 10 no h 0 use 10 ) ; 

} 

public void declare() { 

System.out.println(IOValar morghulis. IO ); 

} 

public String declare(String str) { 

return str; 

} 

public class NightsWatch extends Noble { 

public NightsWatch(String name) { 

super (name) ; 

String house = 10 The NightsWatch 10 ; 

System.out.println(101 am 10 + name + 10 of 10 + house + 10.10); 

} 

public void speak () {System. out. println (10 Winter is coming. 10) ;}} 

Consider the test class below. For each statement in method main ( .. ) let us describe the 

explicit responsibilities of the compiler and the run-time system. Whenever applicable write 

down the exact output in double quotes. Additionally, we will indicate any other event such 

as hiding, overloading, overriding, or shadowing. 

public class Test { 

public static void face(Noble noble) { 

((Free)noble).declare(); 

} 

public static void main(String [J args) { 

1 Human Tyrion = new Noble (10 Tyrion 10, 10 Lannister 10) ; 

2 Noble Arya = new Free (10 Arya 10) ; 

3 Faceless Jaqen = new Free (10 Jaqen H' ghar 10) ; 
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4 Noble Jon = new NightsWatch(IIJon Snow"); 

5 Faceless Syrio = new Noble(); 

6 Tyrion.speak(); 

7 Tyrion.whatAmI(); 

8 ((Free)Arya).declare(); 

9 System. out. println (Jaqen. declare (" Valar dohaeris. ")) ; 

10 Jon.speak(); 

11 ((Free)Jon).declare(); 

12 face(Tyrion); 

13 System.out.println(Jaqen.toString()); 

} 

} 

1. Human Tyrion = new Noble (IITyrionll, IILannister ll ); 

The compilier must check the validity of the assignment statement. Compilation is 

successfull as the type of the expression of the right-hand-side is a subtype of that of 

the variable on the left-hand-side. We have overloading of the constructor. 

2. Noble Arya = new Free (IIArya ll ) ; Compilation successfull as above. 

3. Faceless Jaqen = new Free (II Jaqen H' ghar II ); Compilation successfull as above. 

4. Noble Jon = new NightsWatch(IIJon Snow ll ); 

Compilation successfull as above. The constructor displays "I am Jon Snow of The 

NightsWatch." We have shadowing of the attribute house. 

5. Faceless Syrio = new Noble 0; We have compilation failure as the assignment state­

ment is not valid. Type Noble is not a subtype of Faceless. 

6. Tyrion. speak 0 ; 

The compiler successfully validates the method call as there exists a method in the 

static type of Tyrion (Human) to match the call (message). The run-time system must 

chose which method to invoke starting from the run-time type of the object (Noble) 
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where the lookup is successfull. We have overriding of method speakO. The output 

is "Yes, my lord." 

7. Tyrion. whatAm1 0 ; 

The compiler binds the static method whatAm10 to the object. The statement will 

display "I am human." 

8. ((Free)Arya) .declare(); 

The compiler successfully validates the method call as there exists a method in Free 

to match the call. The run-time system successfully validates the explicit casting since 

Arya has a run-time type Free. The output is "Valar morghulis." 

9. System.out.println(Jaqen.declare("Valar dohaeris. II)); 

The compiler successfully validates the method call as there exists a method in the 

static type of Jaqen (Faceless) to match the call. We have overloading of method 

declare O. The output is "Valar dohaeris." 

10. Jon.speakO; 

The compiler successfully validates the method call as there exists a method in the 

static type of Jon (Noble) to match the call. The run-time system must chose an appro­

priate method to invoke, starting from the run-time type of the object (NightsWatch) 

where the lookup is successfull. We have overriding of method speakO. The output 

is "Winter is coming." 

11. ((Free)Jon).declare(); 

The compiler successfully validates the method call as there exists a method in Free 

to match the call. The run-time system fails to validate the explicit casting since Jon 

has a run-time type NightsWatch which cannot be downcasted to Free. 

12. face (Tyrion) ; 

We have compilation failure as the method expects an argument of static type Noble 

(or any of its subtypes). The static type of Tyrion is Human. 



308

13. System.out.println(Jaqen.toString()); 

The compiler successfully validates the method call as method toString 0 is available 

in Java's root class (Db j ect). The run-time system must chose an appropriate method 

to invoke, starting from the run-time type of the object (Free) where the lookup is 

initially not successfull. The run-time system will go up the inheritance chain where 

it will locate and subsequently invoke method toStringO in Noble. The output is "I 

am Jaqen H'ghar of no house." 
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Part V 

Aspect-Oriented Programming with 

AspectJ 
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Chapter 22 

Aspects 

22.1 Introd uction 

"To my taste the main characteristic of intelligent thinking is that one is willing 

and able to study in depth an aspect of one's subject matter in isolation, for the 

sake of its own consistency, all the time knowing that one is occupying oneself 

with only one of the aspects. The other aspects have to wait their turn, because 

our heads are so small that we cannot deal with them simultaneously without 

getting confused. I usually refer to it as Separation of Concerns, because one 

tries to deal with the difficulties, the obligations, the desires, and the constraints 

one by one." 

(E. w. Dijkstra, A Discipline of Programming, 1976, last chapter, In Retrospect) 

The principle of separation of concerns refers to the realization of system concepts into sepa­

rate software units and it is a fundamental principle of software development. The associated 

benefits include improved readability of code that results in better analysis and understand­

ing of systems, an increased level of reusability and easy adaptability that result in good 

maintainability. Despite the success of object-orientation in the effort to achieve separation 

of concerns, certain properties in object-oriented systems cannot be directly mapped in a one­

to-one fashion from the problem domain to the solution space, and thus cannot be localized in 

single modular units. Their implementation ends up cutting across the inheritance hierarchy 
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of the system. Examples of such crosscutting concerns (or aspects) include persistence, au­

thentication, synchronization and contract checking. Aspect-oriented programming (AOP) 

explicitly addresses those concerns by introducing the notion of an aspect as a modular unit 

of decomposition. Currently there exist many approaches and technologies to support AOP. 

One such notable technology is AspectJI, a general-purpose aspect-oriented language, which 

has influenced the design dimensions of several other general-purpose aspect-oriented lan­

guages, and has provided the community with a common vocabulary based on its linguistic 

constructs. AspectJ is a superset of Java and as such every valid Java program is also a 

valid AspectJ program. 

22.2 The building blocks: Join points, pointcuts and 

advices 

In this section we will introduce an aspect definition and we will dissect it into its individual 

elements, by following a bottom-up approach on an example. 

Consider the implementation of an unbounded stack as shown below. The stack implements 

a last-in-first-out (LIFO) protocol. Variable stack is an ArrayList that contains a collec­

tion of elements. Variable top holds the current size of the stack, initialized to -1 implying 

that the collection is empty. The interface of class Stack contains a number of methods. 

We can distinguish between those methods that modify the state of an object, referred to 

as mutators, and those that access the state but do not modify it, referred to as accessors. 

Methods push () and pop () are mutators, whereas methods top (), isEmpty () and size () 

are accessors. 

import java.util.*; 

public class Stack { 

private ArrayList <String> stack = new ArrayList<String> (); 

1 AspectJ Documentation and Resources, on-line repository from eclipse. org. 
URL: http://www.eclipse.org/aspectj/doc/released/ 
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} 

protected int top = -1; 

public void push (String str) { 

stack.add(++top, str); 

} 

public String pop () { 

if (! this. isEmpty ()) { 

} 

} 

String result = stack.get(top--); 

return result; 

else 

return null; 

public String top () { 

if (! this. isEmpty ()) { 

} 

String result = stack.get(top); 

return result; 

else 

return null; 

} 

protected boolean isEmpty () { 

return top == -1; 

} 

public int size () { 

return top; 

} 
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22.2.1 Join points 

A join point is a point in the execution of the program. We can regard join points as events 

of interest that can be captured by the underlying language. AspectJ supports a rich set of 

join points that includes message sends and execution of methods. 

In this example, we want to capture all push and pop messages2 sent to an object of type 

Stack. The following join point 

call(void Stack.push(String)) 

captures a push message that includes one argument of type String, sent to an object of 

type Stack, where the invoked method is not expected to return any value. Note that in 

the literature the expression is interpreted in terms of a call to a method as follows: The 

join point captures a call to method push () in class Stack, taking a String argument and 

returning no value (void). The modifier of the method is not specified, implying that it can 

be of any type. 

Similarly the following join point 

call(String Stack.pop()) 

captures a pop message that includes no argument, sent to an object of type Stack, where 

the receiver object is expected to return a value of type String. 

22.2.2 Pointcuts 

Since we want to log both push and pop messages, we can combine the two join points into 

a single disjunctive expression. A pointcut (or pointcut designator) is a logical expression 

composed by individual join points. Additionally, a point cut may be given and it can sub­

sequently be referred to by an identifier. Consider pointcut mutators () that combines the 

two individual join points into a logical disjunction as follows: 

pointcut mutators (): call (void Stack. push (String)) II 

2 A more elaborate explanation is given in § 22.6.1. 
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call(String Stack.pop()); 

Since a join point refers to an event, we say that a join point is captured whenever the asso­

ciated event occurs. Consequently, we say that a pointcut is captured whenever the logical 

expression made up of individual join points becomes true. 

Pointcuts can adopt unary and binary logical operators in their definition as follows: 

• The conjunction operator (&&) returns true only if both operands (join points) are 

captured by the expression. Otherwise it returns false. 

• The disjunction operator (II) returns true if either or both operands are captured by 

the expression. Otherwise it returns false. 

• The negation operator (!) returns true if the expression is not captured by the specified 

join point. Otherwise it returns false. 

22.2.3 Advice 

In this example once a push or pop message is sent, and before any corresponding method 

executes, we want to first display some message. An advice is a method-like block, that 

associates to a pointcut, defining behavior to be executed. However, unlike a method, an 

advice block is never explicitly called. Instead, it is only implicitly invoked once its associated 

pointcut is captured. The following advice 

before (): mutators () { 

System. out. println (" >Message sent to update stack."); 

} 

is attached to pointcut mutators O. Once a push 0 or pop 0 message is sent to an object 

of type Stack, the pointcut mutators 0 is captured. Before the message can proceed, the 

bef ore advice will execute. 



316

AspectJ provides a level of granularity which specifies exactly when an advice block should 

be executed, such as executing before, after, or instead of the code that is associated with 

the pointcut. More specifically, an advice block can be: 

• before: An advice that runs before the code associated with the pointcut expression. 

• after: An advice that runs after the code associated with the pointcut expression (It 

may be after normal return, after throwing an exception or after returning either way 

from a join point). 

• around: An advice that runs instead of the code associated with the pointcut ex­

pression, with the provision for the pointcut to resume normal execution through a 

proceed call (see later). 

22.2.4 Named and unnamed pointcuts 

In the example above, mutators () is a named pointcut. As the term suggests, it is an 

expression bound to an identifier. On the other hand, an unnamed (or anonymous) pointcut 

is an expression not bound to an identifier but instead it is directly attached to an advice as 

shown below: 

before(): call(void Stack.push(String)) I I 

call (String Stack. pop () ); { 

System. out. println (" >Message sent to update stack."); 

} 

The two pointcuts are semantically equivalent. A preference which one to adopt will be based 

on coding convention and reusability. We would normally prefer unnamed pointcuts for short 

and trivial pointcuts, such as those that contain an individual join point, particularly when 

it is highly unlikely that such a point cut will be reused. However, for long and non-trivial 

pointcuts, or for pointcuts which we plan to reuse, we would prefer named pointcuts. 
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22.2.5 Putting everything together: An aspect definition 

Much like a class, an aspect is a unit of modularity. We can now provide a complete aspect 

definition as follows: 

public aspect Logger { 

} 

pointcut mutators (): call (void Stack. push (String)) II 

call(String Stack.pop()); 

before (): mutators () { 

System.out.println(">Message sent to update stack."); 

} 

Consider the following test program: 

public class Test { 

} 

public static void main(String [J args) { 

Stack myStack = new Stack(); 

myStack.push("base"); 

myStack.push("your"); 

myStack.push("all"); 

System.out.println(myStack.pop()); 

System.out.println(myStack.pop()); 

System.out.println(myStack.pop()); 

System.out.println(myStack.top()); 

} 

The output of the program is as follows: 

>Message sent to update stack. 

>Message sent to update stack. 

>Message sent to update stack. 
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>Message sent to update stack. 

all 

>Message sent to update stack. 

your 

>Message sent to update stack. 

base 

null 

22.3 A closer view of crosscutting 

In the previous example, logging is a crosscutting concern which is explicitly captured and 

implemented as an aspect. Crosscutting imposes two symptoms on software development 

which are illustrated in Figure 22.1, where the R's represent individual requirements and 

the C's represent classes as an example of a unit of modularity even though, by principle, 

crosscutting can manifest in different paradigms. 

1. Code scattering: The implementation of a concern is not being well modularized but 

instead it cuts across the decomposition hierarchy of the system. 

2. Code tangling: A module containing implementation elements (code) for more than 

one concerns. 

Code scattering and code tangling describe two different facets of the same problem. 

22.3.1 Implications of crosscutting 

As a result of crosscutting, the benefits of object-oriented programming cannot be fully 

utilized, and developers are faced with a number of implications: 

1. Poor traceability of requirements: The mapping from an n-dimensional space to a 

single dimensional implementation space implies that any changes in the semantics of 

one crosscutting concern are difficult to trace among various modules that it spans 

over. 
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scatte ring 

Requirements Implementation 

Figure 22.1: Crosscutting: Scattering and tangling. 
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2. Strong coupling between modular units in classes that are difficult to understand and 

change. 

3. Low degree of code reusability. Core functionality impossible to be reused without 

related semantics, already embedded in component. 

4. Lower productivity: Simultaneous implementation of multiple concerns in one module 

breaks the focus of developers. 

5. Programs are more error prone. 

In general, we can say that crosscutting affects the quality of software. In object-oriented 

programming, the tendency is to find commonality among classes and push them up (verti­

cally) in the inheritance hierarchy. In AOP, we identify scattered concerns and eject them 

horizontally from the object structure into aspect definitions. It is also important to note 

that just as object-oriented programming did not discard the idea of block structure and 

structured programming, AOP does not reject existing technology. 

22.4 Quantification and obliviousness 

In an article3 that has received a great popularity, authors Filman and Friedman argue that 

quantification and obliviousness are two principles that characterize AOP: 

Quantification "In a program P, when condition C occurs, execute action A." 

Obliviousness No visibility exists from the components of the core functionality to the 

aspect definitions. 

In Figure 22.2 the points in components C2 and C3 constitute join points. Note that even 

though both components are enhanced by the aspectual behavior defined by A, neither of 

them is aware of this fact (nor have they been implemented to accept such enhancements). 

3 Aspect-Oriented Programming is Quantification and Obliviousness. Robert E. Filman. Daniel P. Fried­
man. RIACS Technical Report 01.12. May 2001. 
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C1 

CORE 
FUNCTIONALITY 

whenever execution reaches 
this point.. . 

.-------f-~---'--~--....., 

C2 C3 

ASPECTUAL 
BEHAVIOR 

Gxecute this code! 

1\.......-

-~1~ 
A 

Figure 22.2: Quantification and obliviousness. 

22.5 Dissection of a pointcut 

In the previous example, we had defined a named pointcut as follows: 

pointcut mutators (): call (void Stack. push (String)) II 

call(String Stack.pop()); 

The format of a named pointcut is 

pointcut <name> ([<object(s) to be picked up>]) : <join point expression> 

where a join point expression is any predicate over join points. A join point has the following 

format: 

<join point type> «signature» 

In the above example, pointcut mutators () was defined as the logical disjunction of two 

join points, both of type call, and picked up no object (see later on context passing). We 

discuss different join point types in § 22.6. 

The dissection of a (named) pointcut is illustrated in Figure 22.3 and a dissection of a call 

join point is illustrated in Figure 22.4. 
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--------------------------------------------------~ , , 

pointcut mutators () : !call(void Stack. push(String» II j 

:call(String Stack.pop(»j : 
I I 

\_-------------------------------------------- _____ ;1 

Figure 22.3: A dissection of a pointcut. 

f' - - - - - - - - - - - - - - - - - - - - - - ... , (' - - - - - - - - - - - - - - - - - - - - - - - --, 

: <join point type> i ( i<join point signature> : ) 
I I l I 
,-----------------------, ,-------------------------, 

~ 
(~---------------------------------------------------------------------------, 

: [<modifier>] <return type> <class>.<method>«parameter list» : 
I I 

,,---------------------------------------------------------------------------, 

,---------------------------------------, 
( I 

ca11i(void Stack.push(String» i~--
~ _______________________________________ ;J 

Figure 22.4: A dissection of a call join point. 
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22.6 The join point model 

AspectJ provides a rich expression set through which we can build join points. It is referred 

to as the language's join point model. Even though the specification and level of granularity 

of the join point model differ from one language to another, join points that capture mes­

sage passing and those that capture the execution of methods are common in most current 

languages. The most common join points in AspectJ are the following: 

1. Call join points (§ 22.6.1): Capture messages (or "calls to methods"). 

2. Constructor call join points (§ 22.6.2): Capture calls to constructors. 

3. Execution join points (§ 22.6.6): Capture execution of methods. 

4. Constructor execution join points (§ 22.6.7): Capture execution of constructors. 

5. Exception handling join points (§ 22.6.9). 

6. Lexical structure join points (§ 22.6.10). 

7. Object initialization join points (§ 22.6.11). 

8. Class initialization join points (§ 22.6.12). 

9. Control flow join points (§ 22.6.13). 

10. Field access join points (§ 22.6.14). Capture read/write access to class attributes. 

11. Conditional test join points (§ 22.6.15). 

12. Self and target join points (§ 22.10.1). Capture caller and callee objects, executing 

objects. 

13. Argument join points (§ 22.10.3). Capture method arguments. 

14. Advice execution join points (§ 22.10.5). 



324

JOIN POINT SIGNATURE DESCRIPTION 
Captures a protected void method 

protected void Vector.removeRange(int, int) removeRange in class Vector, taking 
two arguments of type into 

protected void Vector+.removeRange(int, int) 
As above but it also includes sub-
classes of Vector. 

Table 22.1: Join point signatures - 1 of 3. 

22.6.1 Call join points 

A call join point captures a message that matches a given signature that is sent to an object 

with a given static type. For example, the join point call (void Server. attach( .. )) 

captures message attach with any (including zero) arguments sent to an object whose static 

type is Server and where the invoked method is not expected to return any value. 

The format of a call join point is 

call (signature) 

where the format of signature is 

[<modifier>] <return type> <class>.<method>«parameter list» 

Join point signatures 

In AspectJ, the join point model can adopt wildcards for the definition of expressions. The 

most common are the asterisk * that has the meaning of any, and in the case of the parameter 

list the double-dot .. means any and of any type. The + next to a class name is interpreted 

as this type and all its subtypes. Tables 22.1, 22.2 and 22.3 illustrate examples of expressions 

of join point signatures. 

Table 22.4 shows examples of expressions of call join points. There is a trade-off in the 

expressiveness of the join point model language. On one hand, wildcards and other special 

characters can provide shorter expressions but on the other hand they can make expressions 

difficult to read. They may also unintentionally capture join points in the program execution. 

For example, the following join point 
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JOIN POINT SIGNATURE 

* void Vector.removeRange(int, int) 

void Vector.removeRange(int, int) 

* * Vector.removeElement(Object) 

* Vector.removeElement(Object) 

* * *.removeElement(Object) 

* * *.*(Object) 

DESCRIPTION 
Captures a void method removeRange of any 
modifier in class Vector, taking two argu­
ments of type into 

As above (modifier IS optional and it was 
omitted). 

Captures method removeElement of any re­
turn type and any modifier in class Vector, 
taking one argument of type Object. 

As above (modifier is optional and it was 
omitted). 

Captures method removeElement of any re­
turn type and any modifier in any class, tak­
ing one argument of type Object. 

Captures any method of any return type and 
any modifier in any class, taking one argu­
ment of type Object. 

Table 22.2: Join point signatures - 2 of 3. 
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JOIN POINT SIGNATURE 

* * *.*(int, .. ) 

* * *.*(.., int) 

* * *.*(..) 

* * *.*() 

* * Vector.remove*( .. ) 

DESCRIPTION 

Captures any method in any class, returning 
any type, of any modifier, taking two argu­
ments, where the first is of any type and the 
second is of type into 

Captures any method in any class, return­
ing any type, of any modifier, taking an ar­
gument of type int, followed by a sequence 
of additional arguments (that can also be 
empty) of any type. 

As above but an argument of type int is pre­
ceded by a sequence of arguments (that can 
also be empty) of any type. 

Captures any method in any class, return­
ing any type, of any modifier, taking any (or 
zero) arguments. 

As above but taking no arguments. 

Captures any method whose name starts 
with the string remove followed by zero or 
more characters, of any return type and any 
modifier, in class Vector, taking any (or 
zero) arguments. 

Table 22.3: Join point signatures - 3 of 3. 
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call (* Stack.*( .. )) 

captures any messages with any (including zero) arguments sent to any object of type Stack, 

where the invoked method is expected to return a value of any type (including void). If we 

used this join point (as an anonymous pointcut) in the Logger aspect in the Stack example, 

i.e. 

before (): call (* Stack. * ( .. )) { 

System. out. println (" >Message sent to update stack."); 

} 

then the pointcut would also capture messages isFullO and isEmptyO as well as any 

other messages sent to a Stack object whether existing or introduced in the future, such as 

toString 0, clone 0, etc. 

22.6.2 Call to constructor join points 

AspectJ distinguishes between regular messages (sent to objects and classes) and messages 

that are sent to class constructors. A call to constructor join point captures a call made 

to the constructor of a given class. The keyword new is used to identify such join point 

signatures. For example, call (Stack. new 0) captures a call to the default constructor of 

class Stack. Note that signatures of constructor call join points contain no return type. The 

format of a call to constructor join point is 

call (signature) 

where the format of signature is 

[<modifier>] <class>.new«parameter list» 

Table 22.5 shows expressions for call to constructor join points. 

22.6.3 Call join points in the presence of inheritance 

A call join point captures a message that is sent to an object of a given static type. This 

implies that it can capture such message sent to an object of a subtype. We will demonstrate 

this with an example. 
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JOIN POINT PATTERN DESCRIPTION 
Matches messages put taking one argument 

call(void Buffer.put(String)) 
of type String, sent to an object of type 
Buffer, where the invoked method is not ex-
pected to return any value. 

Matches messages put taking any (or zero) 

call(void Buffer.put( . . )) 
arguments, sent to an object oftype Buffer, 
where the invoked method is not expected to 
return any value. 

Matches messages put taking any (or zero) 

call(* Buffer.put( . . )) 
arguments, sent to an object oftype Buffer, 
where the invoked method is expected to re-
turn a value of any type (or no value). 

Matches any message whose name starts with 
put and followed by zero or more charac-

call(* Buffer.put*( . . )) 
ters, taking any (or zero) arguments, sent to 
an object of type Buffer, where the invoked 
method is expected to return a value of any 
type (or no value). 

Matches any message whose name starts with 
put and followed by zero or more characters, 
taking an argument of type String followed 

call(* Buffer.put*(String, .. ) ) by a sequence of additional arguments (that 
can also be empty) of any type, sent to an 
object of type Buffer, where the invoked 
method is expected to return a value of any 
type (or no value). 

Table 22.4: Examples of call join points. 

JOIN POINT PATTERN DESCRIPTION 

call(Buffer.new()) 
Captures calls to the constructor method of class 
Buffer taking no arguments. 

call(Buffer.new( . . )) 
Captures calls to the constructor method of class 
Buffer taking any (or zero) arguments. 

Captures all calls made to the constructor of class 
call(Buffer+.new( . . )) Buffer, or any of its subclasses, taking any (or zero) 

arguments. 

Table 22.5: Examples of constructor call join points. 
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Example: A bounded stack 

We now subclassify Stack to define class BStack that implements a stack of bounded capac­

ity. 

import java.util.*; 

public class BStack extends Stack { 

private int capacity; 

} 

public BStack (int capacity) { 

this. capacity = capacity; 

} 

@Override 

public void push (String str) { 

if (!this.isFull()) 

super. push (str) ; 

} 

private boolean isFull() { 

return top == capacity; 

} 

We need to modify main to accommodate for the construction of a bounded stack object 

with a given capacity: 

public class Test { 

public static void main(String [J args) { 

BStack myStack = new BStack(2); 

myStack.push("base"); 

myStack.push("your"); 

myStack.push("all"); 

System.out.println(myStack.pop()); 

System.out.println(myStack.pop()); 
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System.out.println(myStack.pop()); 

System.out.println(myStack.top()); 

} 

} 

Let us run the program: 

>Message sent to update stack. 

>Message sent to update stack. 

>Message sent to update stack. 

>Message sent to update stack. 

your 

>Message sent to update stack. 

base 

>Message sent to update stack. 

null 

null 

We see that pointcut mutators () is captured. The reason is that the call join point 

call(void Stack.push(String)) 

captures calls to push (String) declared in class Stack or any of its subclasses. 

22.6.4 Reflective information on join points with thisJoinPoint 

AspectJ provides the special variable thisJoinPoint that contains reflective information 

about the current join point. Let us modify aspect Logger, in the bounded stack example, 

to access reflective information on all join points captured by mutators (): 

public aspect Logger { 

pointcut mutators (): call (void Stack. push (String)) II 

call(String Stack.pop()); 

before (): mutators () { 
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System. out. println (" >Message sent to update stack: " + thisJoinPoint); 

} 

} 

We run the test program on the bounded stack and we see that it has the same behavior as 

before, but with additional information on each captured join point: 

>Message sent to update stack: call (void BStack.push(String)) 

>Message sent to update stack: call (void BStack.push(String)) 

>Message sent to update stack: call (void BStack.push(String)) 

>Message sent to update stack: call (String BStack.pop()) 

your 

>Message sent to update stack: call (String BStack.pop()) 

base 

>Message sent to update stack: call (String BStack.pop()) 

null 

null 

22.6.5 Multiple pointcuts 

A pointcut may capture a set of join points. This implies that two (or more) pointcuts may 

share join points. We will demonstrate this through an example. 

Example: Blade Runner 

In this example, we define classes Human and Bladerunner that are related by inheritance 

(See Figure 22.5). 

public class Human { 

public String reason() { 

return "I am a human and I can reason."; 

} 

} 
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Human 

+reasonO: String 

Bladerunner 

Figure 22.5: Classes Human and Bladerunner. 

public class Bladerunner extends Human { } 

Aspect Logger defines two unnamed pointcuts: call (String Human. reason 0) captures 

messages reason 0 sent to objects oftype Human and call (String Bladerunner. reason 0 ) 

captures messages reasonO sent to objects of type Bladerunner. 

public aspect Logger { 

} 

before() : call(String Human.reason()) { 

} 

System. out. println (" >Captured call to Human. reason (): " + 

thisJoinPoint); 

before() : call(String Bladerunner.reason()) { 

System.out.println(">Captured call to Bladerunner.reason(): " + 

thisJoinPoint); 

} 

Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Human sebastian = new Human(); 
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} 

} 

Bladerunner deckard = new Bladerunner(); 

System.out.println(sebastian.reason()); 

System.out.println(deckard.reason()); 

The output of the program is as follows: 

>Captured call to Human.reason(): call (String Human.reason()) 

I am a human and I can reason. 

>Captured call to Human.reason(): call (String Bladerunner.reason()) 

>Captured call to Bladerunner.reason(): call (String Bladerunner.reason()) 

I am a human and I can reason. 

The statement sebastian. reason() is captured by pointcut call (String Human. reason()). 

As a result, the body of the associated advice will execute, displaying 

>Captured call to Human.reason(): call (String Human.reason()) 

On the other hand, the statement deckard. reason () will be captured by both pointcuts. 

As a result, both advices will execute, displaying 

>Captured call to Human.reason(): call (String Bladerunner.reason()) 

>Captured call to Bladerunner.reason(): call (String Bladerunner.reason()) 

22.6.6 Execution join points 

As its name suggests, an execution join point captures the execution of a method defined in a 

given class. The join point signatures in Tables 22.1 and 22.2 are also applicable to execution 

join points. For example, the join point execution (void Server. attach ( .. )) captures 

the execution of a void method attach with any (including zero) parameters defined in class 

Server, regardless of its visibility. 
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The format of an execution join point is 

execution (signature) 

where the format of signature is 

[<modifier>] <return type> <class>.<method>«parameter list» 

Example: Blade Runner revisited 

We have slightly modified aspect Logger, in the blade runner example, by replacing the call 

join points by execution join points and adjusting the messages displayed: 

public aspect Logger { 

} 

before() : execution(String Human.reason()) { 

} 

System. out. println (" >Captured execution of Human. reason (): " + 

thisJoinPoint); 

before() : execution(String Bladerunner.reason()) { 

} 

System. out. println (" >Captured execution of Bladerunner. reason (): " + 

thisJoinPoint); 

It is important to see that the pointcut execution(String Bladerunner. reason()) will 

never be captured as there exists no method reason() defined in class Bladerunner. For 

the test program shown again below 

public class Test { 

public static void main(String [J args) { 

Human sebastian = new Human(); 

Bladerunner deckard = new Bladerunner(); 

System.out.println(sebastian.reason()); 

System.out.println(deckard.reason()); 

}} 
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the run-time system will invoke method reason 0 defined in class Human twice. The output 

of the program is as follows: 

>Captured execution of Human.reason(): execution(String Human.reason()) 

I am a human and I can reason. 

>Captured execution of Human.reason(): execution(String Human.reason()) 

I am a human and I can reason. 

22.6.7 Constructor execution join points 

AspectJ distinguishes between executions of regular methods and executions of constructor 

methods. The latter are identified in join point signatures by the keyword new. Note also 

that join point signatures of constructor executions contain no return type. The format of a 

constructor execution join point is 

execution (signature) 

where the format of signature is 

[<modifier>] <class>.new«parameter list» 

22.6.8 Call vs. execution join points 

With the aid of examples we will demonstrate the difference between call and execution join 

points. 

Example: A client and server 

Consider the definitions of classes Server and Client below: 

public class Server { 

public String ping() { 

System.out.println("Inside Server.ping()."); 

return "pong."; }} 
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public class Client { 

Server server; 

} 

public Client(Server server) { 

this. server = server; 

} 

public String testConnection() { 

System.out.println("About to call server.ping()"); 

String str = server.ping(); 

} 

System. out. println (" Just called server. ping () ") ; 

return str; 

When we view such a model we can see (statically) when two classes are related through 

attribute visibility. This implies that an instance of one can send messages to an instance of 

the other (or to self if this is a reflexive association). Much like classes are instantiated at run­

time, a call creates an association (at run-time) between two instances. On the other hand, 

an execution is an event that takes place within an instance. A summary of these differences 

is illustrated in Figure 22.6. Aspect Logger captures calls to String Server. ping () and 

executions of String Server. ping () . 

public aspect Logger { 

before() : call(String Server.ping(» { 

System. out. println (" >Before: " + thisJoinPoint); 

} 

after() : call(String Server.ping(» { 

System.out.println(">After: " + thisJoinPoint); 

} 

before() : execution(String Server.ping(» { 

System. out. println (" >Before: " + thisJoinPoint); 

} 
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} 

:Client :Server 

before call : 
Hance the call is 
initiated and before 
it can proceed" 

after call : 
Hance the call 
returns" 

Figure 22.6: Calls and executions. 

before execution : 
Hance the method 
is invoked and 
before its body 
starts executing" 

after execution : 
Hafter the 
body of the method 
completes executing 
and returns" 

after() : execution(String Server.ping()) { 

System.out.println(">After: " + thisJoinPoint); 

} 

Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Server server new Server () ; 

Client client new Client(server); 

System.out.println(client.testConnection()); }} 
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Dog 

+describe{}: void 
+whatldoO: void 

f 
Collie 

+describe{}: void 

Figure 22.7: Classes Dog and Collie. 

The output of the program is as follows: 

About to call server.ping() 

>Before: call (String Server.ping()) 

>Before: execution(String Server.ping()) 

Inside Server.ping() . 

>After: execution(String Server.ping()) 

>After: call (String Server.ping()) 

Just called server.ping() 

pong. 

Example: A dog's life 

Consider the following class definitions, the UML class diagram of which is shown in Fig­

ure 22.7. Initially we define classes Dog and Collie. 

public class Dog { 

public static void describe() { 

System.out.println("Dog."); 

} 
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public void whatldo() { 

System.out.println("I save people from danger.");}} 

public class Collie extends Dog { 

public static void describe() { 

System.out.println("Collie."); 

} 

} 

Aspect Tracer provides pointcuts that capture all messages sent to objects of either type, 

as well as any method executions that occur in either class. 

public aspect Tracer { 

} 

before 0: call (* Dog. * 0) { 

} 

System.out.println(">Captured message to object of type Dog: " + 

thisJoinPoint); 

beforeO: call(* Collie.*O) { 

} 

System. out. println (" >Captured message to obj ect of type Collie: " + 

thisJoinPoint); 

after() : execution(* Dog.*()) { 

} 

System. out. println (" >Captured execution in class Dog: " + 

thisJoinPoint); 

after() : execution(* Collie.*()) { 

System.out.println(">Captured execution in class Collie: " + 

thisJoinPoint); 

} 
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Consider the test program below: 

public class Test { 

} 

public static void main(String [J args) { 

Dog lassie = new Collie(); 

} 

Collie bella = new Collie(); 

lassie.describe(); 

bella.describe(); 

lassie.whatldo(); 

bella. whatldo () ; 

Recall that static features are chosen based not on the dynamic (run-time) type of the object 

but based on its static (declared) type. The statement lassie. describe () is captured by 

the anonymous pointcut call (* Dog. * () ). The bef ore advice will display 

>Captured message to object of type Dog: call (void Dog.describe()) 

The static method in class Dog then executes displaying Dog. The execution of the method is 

captured by the anonymous pointcut execut ion (* Dog. * () ). Upon successful termination 

of the method, the after advice will display 

>Captured execution in class Dog: execution(void Dog.describe()) 

The statement bella. describe () is captured by the anonymous pointcut call (* Collie. * ()). 

The before advice will display 

>Captured message to object of type Collie: call (void Collie.describe()) 

The static method in class Collie then executes displaying Collie. The execution of the 

method is captured by the anonymous pointcut execution(* Collie. * ()). Upon successful 

termination of the method, the after advice will display 

>Captured execution in class Collie: execution(void Collie.describe()) 
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The statement lassie. whatIdo () is captured by the anonymous pointcut call (* Dog. * () ). 

The before advice will display 

>Captured message to object of type Dog: call (void Dog.whatldo()) 

The instance method in class Dog then executes displaying I save people from danger. 

The execution of this method is also captured by the anonymous pointcut execution (* 

Dog. * 0). Upon successful termination of the method, the after advice executes displaying 

>Captured execution in class Dog: execution(void Dog.whatldo()) 

The statement bella. what Ido () is captured by two anonymous pointcuts call (* Dog. * () ) 

and call( * Collie. * 0) since being of type Collie implies that bella is also of type Dog. 

The two corresponding advices will execute according to their lexical ordering (we discuss 

advice precedence later) and they will display 

>Captured message to object of type Dog: call (void Collie.whatldo()) 

>Captured message to object of type Collie: call (void Collie.whatldo()) 

The Java run-time system will attempt to locate a method to match the message starting 

from the dynamic type of the object, namely class Collie. Such a method does not exist, 

so the run-time system will go up the inheritance chain, locating and invoking such method 

in class Dog. The method will display I save people from danger. The execution of this 

method is captured by the anonymous pointcut execution (* Dog. * 0). Upon successful 

termination of the method, the after advice executes displaying 

>Captured execution in class Dog: execution(void Dog.whatldo()) 

Putting everything together, the output of the program is as follows: 

>Captured message to object of type Dog: call (void Dog.describe()) 

Dog. 

>Captured execution in class Dog: execution(void Dog.describe()) 

>Captured message to object of type Collie: call (void Collie.describe()) 

Collie. 
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>Captured execution in class Collie: execution(void Collie.describe()) 

>Captured message to object of type Dog: call (void Dog.whatldo()) 

I save people from danger. 

>Captured execution in class Dog: execution(void Dog.whatldo()) 

>Captured message to object of type Dog: call (void Collie.whatldo()) 

>Captured message to object of type Collie: call (void Collie.whatldo()) 

I save people from danger. 

>Captured execution in class Dog: execution(void Dog.whatldo()) 

22.6.9 Exception handling join points 

The after advice provides the option to execute only when the method throws an exception. 

The format of such an expression is 

after() throwing, or 

after () throwing (exception type identifier) 

22.6.10 Lexical structure join points 

Lexical structure join points capture well-defined points inside the lexical structure of classes 

or methods. The forms are 

wi thin (type pattern), and 

wi thine ode (method signature) 

where type pattern may include wildcard characters and must resolve to a class, or a range 

of different classes, and method signature may include wildcard characters and must resolve 

to a method in a class or to a range of methods. Example patterns of lexical strucure are 

shown in Table 22.6. 

22.6.11 Object initialization join points 

Object initialization join points capture the call to a constructor that matches a specified 

signature. The format is 
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JOIN POINT PATTERN DESCRIPTION 

wi thin( classN arne) 
Matches any join point inside the lexical scope of 
elassName. 

wi thin( classN ame*) 
Matches any join point inside the lexical scope of 
classes with a name that starts with elassName. 

wi thine ode (* classN ame.methodN ame( .. )) 
Matches any join point inside the lexical scope of 
methodName in elassName. 

Table 22.6: Examples of lexical structure join points. 

ini tialization (signature) 

where signature is defined as 

[<modifier>] <elass>.new«parameter list» 

The signature must resolve to a constructor of an object or of a range of objects. 

Example: A point hierarchy 

In the following example (Figure 22.8), we capture the initialization of two objects of class 

ColoredPoint. 

public class Point { 

public float x; 

public float y; 

public Point () { 

thi s (0, 0); 

} 

public Point (float x, float y) { 

this.x x· , 

this.y y; 

} 

} 
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Point 

x: float 
y: float 

1 
ColoredPoint 

color: String 

+toStringO 

Figure 22.8: Classes Point and ColoredPoint. 

public class ColoredPoint extends Point { 

public String color; 

} 

public ColoredPoint () { 

super () ; 

System. out. println (" >Entry : Default constructor."); 

this. color = "Black"; 

System.out.println(">Exit: Default constructor.");} 

public ColoredPoint (float x, float y, String color) { 

super (x, y); 

System.out.println(">Entry: Non-default constructor."); 

this. color = color; 

System. out. println (" > Exi t: Non - def aul t constructor."); 

} 

public String toString() { 

return "(" + this.x +" "+ this.y + ") " + this. color; 

} 
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Aspect lni tializationMoni tor captures the initialization of ColoredPoint instances. 

public aspect InitializationMonitor { 

} 

before() : initialization(ColoredPoint.new( .. )) { 

System.out.println(thisJoinPoint); 

} 

Consider the following test program: 

public class Test { 

} 

public static void main(String [J args) { 

ColoredPoint p new ColoredPoint(); 

ColoredPoint q new ColoredPoint (1, 1, "Red"); 

System.out.println(p.toString()); 

System.out.println(q.toString()); 

} 

The output ofthe program is shown below. Notice that the before advice executes after the 

super constructor initializes both inherited attributes and before the body of the constructor 

of the current class executes. 

initialization(ColoredPoint()) 

>Entry: Default constructor. 

>Exit: Default constructor. 

initialization (ColoredPoint (float, float, String)) 

>Entry: Non-default constructor. 

>Exit: Non-default constructor. 

(0.0, 0.0) 

(1.0, 1.0) 

Black 

Red 
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If we now changed the type of advice from before to after, the output of the program is 

as follows: 

>Entry: Default constructor. 

>Exit: Default constructor. 

initialization(ColoredPoint()) 

>Entry: Non-default constructor. 

>Exit: Non-default constructor. 

initialization (ColoredPoint (float, float, String)) 

( 0 . 0, o. 0) Black 

( 1. 0, 1. 0) Red 

22.6.12 Class initialization join points 

Class initialization join points capture the execution of static initialization blocks of specified 

types. The format is 

staticini tialization (type pattern) 

where type pattern may include wildcard characters and must resolve to a class, or a range 

of different classes. 

22.6.13 Control flow join points 

The term control flow refers to the order in which events, such as messages or method 

executions, occur. For example, if during event1 the event causes event2 which in turn 

causes event3, then we say that the sequence (event2' event3) lies within the control flow of 

event1 , as well as (event3) lies within the control flow of event2. Recall that in AspectJ, 

events are captured by join points and pointcuts. The format of a control flow join point is 

cflow (pointcut designator) 

where pointcut designator can be any pointcut. Note that cflow (pointcut) captures pointcut 

itself as well as all subsequent pointcuts in its control flow. If we want to exclude pointcut and 
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JOIN POINT PATTERN DESCRIPTION 
Matches any join point in the control flow of 

cflow(call (* Server.attach( .. ))) 
a message attach that includes any (includ-
ing zero) arguments sent to an object oftype 
Server, including the message itself. 

Matches any join point in the control flow of 

cflowbelow(call (* Server.attach( .. ))) 
a message attach that includes any (includ-
ing zero) arguments sent to an object oftype 
Server, but excluding the message itself. 

Table 22.7: Examples of control flow join points. 

capture only those pointcuts that occur subsequently, we must use the following alternative 

notation: 

cflowbelow (pointcut designator) 

Example patterns of control flow are shown in Table 22.7. 

Example: Blade Runner revisited 

Let us now consider the hierarchy in the Bladerunner example, where aspect Logger contains 

two before advices on the executions of Human. reason () and Bladerunner . reason (). The 

aspect is shown here again. 

public aspect Logger { 

} 

before() : execution(String Human.reason()) { 

} 

System. out. println (" >Captured execution of Human. reason (): " + 

thisJoinPoint); 

before() : execution(String Bladerunner.reason()) { 

} 

System. out. println (" >Captured execution of Bladerunner. reason (): " + 

thisJoinPoint); 
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We will proceed to add a new aspect to the project. In ReflectiveLogger the unnamed 

pointcut of the after advice captures all method executions made in the program, but not 

those made from within itself and not those within the control flow of the Java system, i.e. 

execution of library methods. 

public aspect ReflectiveLogger { 

after(): execution(* *( .. )) 

&& !within(ReflectiveLogger) 

&& !cflow(execution (* java.*.*.*( .. ))) { 

System. out. println (" >Executed: " + thisJoinPoint); 

} 

} 

The output of the program is as follows: 

>Captured execution of Human.reason(): execution(String Human.reason()) 

>Executed: execution(String Human.reason()) 

I am a human and I can reason. 

>Captured execution of Human.reason(): execution(String Human.reason()) 

>Executed: execution(String Human.reason()) 

I am a human and I can reason. 

>Executed: execution(void Test.main(String[])) 

22.6.14 Field access join points 

Field access join points capture read and write access to the fields declared in a given class. 

The formats are 

get (field signature), and 

set (field signature) 

for read and write access respectively, where a field signature is defined as 

[<modifier>] <return type> <class>.<field> 
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A field signature may contain wildcard characters and it must resolve to an attribute of a 

given class. 

Example: Global Positioning System 

In the following example, we define class GPSCoordinate that holds a coordinate in the 

Global Positioning System (GPS). 

public class GPSCoordinate { 

private Double latitude = 0.; 

private Double longitude = 0.; 

public GPSCoordinate(Double latitude, Double longitude) { 

this. latitude = latitude; 

this. longitude = longitude; 

} 

public void setLatitude(Double latitude) { 

this. latitude = latitude; 

} 

public Double getLatitude(){ 

return this.latitude; 

} 

public void setLongitude(Double longitude) { 

this. longitude = longitude; 

} 

public Double getLongitude() { 

return this.longitude; 

} 

public void moveTo(Double latitude, Double longitude) { 

this. latitude = latitude; 

this. longitude = longitude; } 
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public String toString() { 

return" (" + latitude +" "+ longitude + ")"; 

} 

} 

Aspect FieldAccess defines two unnamed pointcuts to capture read and write access, re­

spectively, to any field of class GPSCoordinate. Note that the join points are able to capture 

access to the fields despite the fact that the fields are declared private. It is also important 

to note that these join points do not capture inherited fields. 

public aspect FieldAccess { 

} 

before 0 : get (* GPSCoordinate. *) { 

System.out.println(">Read access: " + thisJoinPoint); 

} 

before 0 : set (* GPSCoordinate. *) { 

System.out.println(">Write access: " + thisJoinPoint); 

} 

A test program creates and initializes an instance of GPSCoordinate. It then proceeds to 

move the instance to a new location and finally it displays its latitute and longitute values. 

public class Test { 

} 

public static void main(String [J args) { 

} 

GPSCoordinate point = new GPSCoordinate(45.220227, -73.564453); 

point. move To (46.763321, -71.224365); 

System.out.println(point.getLatitude()); 

System.out.println(point.getLongitude()); 

System.out.println(point.toString()); 
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The output of the program is as follows: 

>Write access: set (Double GPSCoordinate.latitude) 

>Write access: set (Double GPSCoordinate.longitude) 

>Write access: set (Double GPSCoordinate.latitude) 

>Write access: set (Double GPSCoordinate.longitude) 

>Write access: set (Double GPSCoordinate.latitude) 

>Write access: set (Double GPSCoordinate.longitude) 

>Read access: get (Double GPSCoordinate.latitude) 

46.763321 

>Read access: get (Double GPSCoordinate.longitude) 

-71.224365 

>Read access: get (Double GPSCoordinate.latitude) 

>Read access: get (Double GPSCoordinate.longitude) 

(46.763321 f -71.224365) 

Example: Points 

Consider the implementation of class Point: 

public class Point { 

protected double x, y; 

public Point(double x, double y) { 

this.x x· , 

this.y y; 

} 

public Point () { 

thi s (0, 0); 

} 

public void move(double x, double y) { 

this.x x· , 

this.y y; 

} 
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public String toString() { 

return "x: " + x + ", y: 

} 

} 

" + y + It It. . , 

We subclassify Point by introducing ColoredPoint that adds attribute color. 

public class ColoredPoint extends Point { 

String color; 

public ColoredPoint(double x, double y, String color) { 

} 

super (x, y); 

this. color = color; 

} 

public ColoredPoint() { 

super (0., 0.); 

this. color = "black"; 

} 

public String toString() { 

return "x: " + x + ", y: 

} 

" + y + " color: " + color + " ". . , 

In aspect FieldAccess, the two poincuts that are set to capture field access on class 

ColoredPoint: 

public aspect FieldAccess { 

before 0 : get (* ColoredPoint. *) { 

System.out.println(">Read access: " + thisJoinPoint); 

} 

before 0 : set (* ColoredPoint. *) { 

System. out. println (" >Wri te access: " + thisJoinPoint); }} 
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A test program creates and initializes an instance of ColoredPoint. It proceeds to move 

the object to a new location and finally it displays the object's coordinate and color values. 

public class Test { 

} 

public static void main(String [J args) { 

} 

ColoredPoint point = new ColoredPoint (3, 5, " white") ; 

point. move (7, 9) ; 

System.out.println(point.toString()); 

The output of the program is as follows: 

>Write access: set (String ColoredPoint.color) 

>Read access: get (String ColoredPoint.color) 

x: 7.0, y: 9.0, color: white. 

We observe that the pointcuts only capture access to atttribute color, but do not capture 

access to the x and y attributes. Let us modify the two pointcuts, to capture access to fields 

declared in Point and all its subclasses: 

public aspect FieldAccess { 

beforeO : get(* Point+.*) { 

System.out.println(">Read access: " + thisJoinPoint); 

} 

beforeO : set(* Point+.*) { 

System.out.println(">Write access: " + thisJoinPoint); 

} 

} 

The output of the same test program is now as follows: 

>Write access: set (double Point.x) 

>Write access: set (double Point.y) 
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>Write access: set (String ColoredPoint.color) 

>Write access: set (double Point.x) 

>Write access: set (double Point.y) 

>Read access: get (double Point.x) 

>Read access: get (double Point.y) 

>Read access: get (String ColoredPoint.color) 

x: 7.0 , y: 9.0 , color: white. 

22.6.15 Conditional test join points 

A conditional test join point captures join points based on some conditional check at the 

join point. The format is 

if (Boolean expression) 

22.7 Around advice 

The third type of advice allows us to say "Whenever a pointcut is captured, instead of run­

ning the code associated with the pointcut, execute the body of the advice." An optional 

mechanism allows us to resume execution of the code associated with the pointcut. Visually, 

the mechanism of an around advice is shown in the UML sequence diagram of Figure 22.9. 
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Example: History protocol 

Consider the implementation of a circular bounded buffer: 

public class Buffer { 

String[] BUFFER; 

int putPtr; 

int getPtr; 

int counter; 

int capacity; 

String name; 

Buffer (int capacity) { 

BUFFER = new String[capacity]; 

this. capacity = capacity; } 

Buffer (int capacity, String name) { 

this(capacity) ; 

this.name = name; } 

public String getName() {return name;} 

private boolean isEmpty() {return (counter == a);} 

private boolean isFull() {return (counter == capacity);} 

public void put (String s) { 

if (isFullO) 

System. out. println (" ERROR: Buffer full"); 

else { 

BUFFER[putPtr++ % (capacity)] 

counter++; }} 

public String get() { 

if (isEmpty 0) 

return "ERROR: Buffer empty"; 

else { 

counter - -; 

s· , 

return BUFFER[getPtr++ % (capacity)]; }}} 
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Consider now the definition of class Buffer2 which introduces method gget O. This method 

behaves exactly like get 0, but it can only execute after a get O. To implement this require­

ment in Java would imply that Buffer2 would have to re-define methods put 0 and get 0 

to implement a history protocol. Instead, we will implement the history protocol in an aspect. 

public class Buffer2 extends Buffer { 

Buffer2 (int capacity) { 

} 

super ( capacity) ; 

} 

public String gget() { 

return super.get(); 

} 

In defining the aspect, we first need to introduce a variable to serve as a flag that would 

indicate which operation has been lastly executed: 

private boolean afterGet; 

We must update the history flag afterGet appropriately after the execution of both put () 

and get O. Note that both methods have been inherited to Buffer2. Thus, if we say 

execution(void Buffer2.put(String)) 

then this join point would never be caught, since the method is defined (and therefore 

executes) from within Buffer. We can capture proper behavior as follows: 

after(): execution(void Buffer.put(String)){ 

afterGet = false; 

} 

after (): execution (String Buffer. get ()) { 

afterGet = true; 

} 

We now need to write code to say: "Once there is a message gget 0 sent to an object of 

type Buffer2, instead of running the code that should run, check the history of method 
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execution and if the previous executed method was a get 0, then allow execution to go 

ahead; Otherwise, issue an error." We use the around advice for this as shown below: 

String around () call (String Buffer2.gget()) { 

} 

if (afterGet == false) 

return "ERROR: Cannot execute gget () " ; 

else { 

return proceed(); 

} 

The call to proceed allows execution to resume at the code associated with the pointcut. 

One thing to remember is that unlike the two other types of advices, before and after, the 

around advice must contain a return type which should be the same as the return type of 

the method of the associated pointcut. In this example, as the pointcut is on gget 0 with a 

return type String, then the same return type must be associated with the advice. If there 

is more than one method invoved with different return types, then the type of the around 

advice should be Object. 

We can now put everything together in aspect HistoryProtocol as follows: 

public aspect HistoryProtocol { 

private boolean afterGet; 

after(): execution(void Buffer.put(String)) { 

afterGet = false; } 

after (): execut ion (String Buff er . get ()) { 

afterGet = true;} 

String around() call (String Buffer2.gget()) { 

if (afterGet == false) 

return "Error: Cannot execute gget () " ; 

else 

return proceed (); }} 
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Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Buffer2 buffer = new Buffer2(5); 

buffer.put(" a ll"); 

buffer.put(" your "); 

buffer.put("base"); 

buffer.put(" are "); 

buffer.put("belong"); 

System.out.println(buffer.gget()); 

System.out.println(buffer.get()); 

System.out.println(buffer.gget()); 

buffer.put("to"); 

buffer.put(" us "); 

System.out.println(buffer.gget()); 

System.out.println(buffer.get()); 

System.out.println(buffer.get()); 

System.out.println(buffer.gget()); 

System.out.println(buffer.get()); 

System. out. println (buffer. get ()); }} 

The output of the program is as follows: 

Error: Cannot execute gget() 

all 

your 

Error: Cannot execute gget() 

base 

are 

belong 

to 

us 
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Example: A Stack protocol enforcement 

What happens when a subclass uses only part of a superclass' interface or does not need 

to inherit data? What do we do when it is very practical to use inheritance, but an is-a 

relationship does not hold? Can we just adopt this scheme? Consider class Stack in the 

java. utillibrary ofthe Java Application Programming Interface (API) which inherits class 

Vector (which in turn implements interface List) by extending its functionality with oper­

ations that would allow a vector to be treated as a stack. 

Consider the following test program where we create a stack instance and place some items 

in the collection. We do, however, manage to violate the Stack Abstract Data Type (ADT) 

protocol by calling method elementAt 0 inherited from Vector. 

import java.util.*; 

public class StackAPITest { 

} 

public static void main(String [J args) { 

Stack<String> s = new Stack<String>(); 

s.push("first"); 

} 

s.push("second"); 

s . push (" third ") ; 

System.out.println(s.elementAt(O)); 

The output of the program is as follows: 

first 

In aspect StackProtocolEnforcer we intercept and disallow all calls sent to a stack instance 

except those that are legitimate under the appropriate protocol. 

public aspect StackProtocolEnforcer { 

pointcut allowedcalls () : 
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} 

} 

call(* java.util.Stack.push( .. )) I I 

call(* java.util.Stack.pop()) I I 

call(* java.util.Stack.empty()) I I 

call(* java.util.Stack.peek()); 

Obj ect around (): (call (* java. util. Stack. * ( .. )) I I 

call(* java.util.Stack.*())) && 

! allowedcalls () { 

System.out.println(thisJoinPoint + 

" is not allowed for a Stack ADT."); 

return thisJoinPoint + ": Illegal operation."; 

In the following test program we attempt to call methods inherited from Vector which would 

essentially violate the Stack ADT protocol. 

import java.util.*; 

public class Test { 

public static void main(String [J args) { 

Stack<String> s = new Stack<String>(); 

s . push ( "us" ) ; 

s . push (" to" ) ; 

s . push (" belong") ; 

System.out.println(s.elementAt(O)); 

s . push ( " are" ) ; 

s . push (" base" ) ; 

s . push ( " your" ) ; 

s . push (" all") ; 

II illegal for a stack 

System. out. println (s . f irstElement ()); Iii LL ega l for a stack 

System.out.println(s.pop()); 

System.out.println(s.pop()); 

System.out.println(s.pop()); 



362

} 

} 

s.removeElementAt(3); 

System.out.println(s.pop()); 

System.out.println(s.pop()); 

System.out.println(s.pop()); 

s. clear () ; 

System.out.println(s.pop()); 

II illegal fOT a stack 

II illegal fOT a stack 

The output of the program is shown below. We see that all illegal calls are successfully 

captured by the aspect. We also make the following observation: The around advice will 

not return anything if the captured method is of type void. 

call(Object java.util.Stack.elementAt(int)) is not allowed for a Stack ADT. 

call(Object java.util.Stack.elementAt(int)): Illegal operation. 

call(Object java.util.Stack.firstElement()) is not allowed for a Stack ADT. 

call(Object java.util.Stack.firstElement()): Illegal operation. 

all 

your 

base 

call (void java.util.Stack.removeElementAt(int)) is not allowed for a Stack ADT. 

are 

belong 

to 

call (void java.util.Stack.clear()) is not allowed for a Stack ADT. 

us 

22.8 Advice precedence 

Several advice blocks may apply to the same join point. In this case the order of execution 

is determined by a set of rules of advice precedence specified by the underlying language. 
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There are two cases to consider: 

1. Precedence rules among advices within the same aspect. 

2. Precedence rules among advices from different aspects. 

22.8.1 Precedence rules among advices within the same aspect 

There are two ways to describe precedence among advices within the same aspect. One way 

is to answer "[In the case of two like advices] which one executes first?" in which case the 

answer is "The one defined first executes first." 

Another way to describe this is asking a slightly different question: "Which advice has 

precedence?" To answer the question we first must define "precedence." 

• In the case of two or more before advices, "precedence" has the meaning of executing 

first. 

• In the case of after advice, "precedence" has the meaning of executing last. 

Thus, to answer the question in terms of precedence, in the case of two or more before 

advices, the one that appears earlier in the aspect definition has precedence over the one 

that appears later. Otherwise, in the case of two or more after advices, the one that appears 

later in the aspect definition has precedence over the one that appears earlier. 

Precedence among before and after advices 

We will demonstrate precedence among before and after advices with the test program 

below: 

public class Test { 

} 

public static void main(String [J args) { 

System. out. println (" Inside main () . ") ; 

} 
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public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.main( .. )); 

bef ore (): progmoni tor () { 

System. out. println (" >bef ore; def ined first; should have precedence. ") ; 

} 

bef ore (): progmoni tor () { 

System.out.println(">before; defined last. II); 

} 

after (): progmoni tor () { 

System. out. println (" >after; defined first. ") ; 

} 

after (): progmoni tor () { 

System. out. println (" >after; defined last; should have precedence. ") ; 

} 

The output of the program is as follows: 

>before; defined first; should have precedence. 

>before; defined last. 

Inside main() . 

>after; defined first. 

>after; defined last; should have precedence. 

Precedence among around advices 

In the presence of multiple around advices from within the same aspect, the one defined first 

has priority. In the example below, our test program is defined as follows: 

public class Test { 

public static void greet() { 

System.out.println("Greetings."); 

} 
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} 

public static void main(String [J args) { 

greet () ; 

} 

We have two around advices without a proceed: 

public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.greet()); 

void around (): progmoni tor () { 

System. out. println (" >around; def ined first; should have precedence."); 

} 

void around (): progmoni tor () { 

System.out.println(">around."); 

} 

The output of the program is as follows: 

>around; defined first; should have precedence. 

In the next example, we have two around advices with a proceed inside the high-priority one: 

public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.greet()); 

void around (): progmoni tor () { 

} 

System. out. println (" >around; def ined first; should have precedence."); 

proceed () ; 

void around (): progmoni tor () { 

System.out.println(">around."); 

} 
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The output of the program is as follows: 

>around; defined first; should have precedence. 

>around. 

In the last example, we have two around advices, both with a proceed: 

public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.greet()); 

void around (): progmoni tor () { 

} 

System. out. println (" >around; def ined first; should have precedence."); 

proceed () ; 

void around (): progmoni tor () { 

System.out.println(">around."); 

proceed () ; 

} 

The output of the program is as follows: 

>around; defined first; should have precedence. 

>around. 

Greetings. 

Precedence among before, after and around advice 

To see how around advice fits into precedence among advices within the same aspect, we 

need to run the following cases: 

1. around with before 

(a) around without a proceed above before. 

(b) around with a proceed above before. 
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(c) around without a proceed below before. 

(d) around with a proceed below before. 

2. around with after 

(a) around without proceed above after. 

(b) around with proceed above after. 

(c) around without proceed below after. 

(d) around with proceed below after. 

We will demonstrate all cases with the program below: 

public class Test { 

} 

public static void main(String [J args) { 

System. out. println (" Inside main () . ") ; 

} 

Case 1. around with before 

We place the around without a proceed above before: 

public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.main( . . )); 

void around (): progmoni tor () { 

System.out.println(">around."); 

} 

bef ore (): progmoni tor () { 

System.out.println(">before."); 

} 
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The output of the program is as follows: 

>around. 

indicating that the around advice shadows the before advice (making it inaccessible) as 

well as the code that corresponds to the pointcut (i.e. the body of the main method). 

Consider now the around with a proceed above before: 

public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.main( .. )); 

void around (): progmoni tor () { 

System.out.println(">around."); 

proceed () ; 

} 

bef ore (): progmoni tor () { 

System.out.println(">before."); 

} 

The output of the program is as follows: 

>around. 

>before. 

Inside main() . 

indicating that before terminating, the around advice relinquished control back to the point­

cut at which point the before advice executed, followed by the body of the main method. 

We now place the around without a proceed below before: 

public aspect Monitor { 

pointcut progmonitor(): execution (public static void *.main( .. )); 
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} 

bef ore (): progmoni tor () { 

System.out.println(">before."); 

} 

void around (): progmoni tor () { 

System.out.println(">around."); 

} 

The output of the program is as follows: 

>before. 

>around. 

indicating that the before advice executed first, followed by the around advice which shad­

ows the execution of the code associated with the pointcut. 

We now place the around with a proceed below before: 

public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.main( .. )); 

bef ore (): progmoni tor () { 

System.out.println(">before."); 

} 

void around (): progmoni tor () { 

System.out.println(">around."); 

proceed () ; 

} 

The output of the program is as follows: 

>before. 

>around. 

Inside main() . 
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indicating that the before advice executed first, followed by the around advice which relin­

quishes control to the code associated with the pointcut. 

Case 2. around with after 

We place around without proceed above after: 

public aspect Monitor { 

pointcut progmonitor(): execution (public static void *.main( .. )); 

void around (): progmoni tor () { 

System.out.println(">around."); 

} 

after (): progmoni tor () { 

System. out. println (" >after. "); }} 

The output of the program is as follows: 

>around. 

>after. 

indicating that the around advice did in fact shadow the code that corresponds to the point­

cut (i.e. the body of the main function), even though the after advice does execute. 

Consider now the around with proceed above after: 

public aspect Monitor { 

pointcut progmonitor(): execution (public static void *.main( .. )); 

void around (): progmoni tor () { 

System.out.println(">around."); 

proceed () ; 

} 

after (): progmoni tor () { 

System. out. println (" >after. "); }} 
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The output of the program is as follows: 

>around. 

Inside main() . 

>after. 

indicating that before terminating, the around advice delegated control back to the pointcut 

at which point the body of the main method executed, followed by the after advice. 

We place around without proceed below after: 

public aspect Monitor { 

} 

pointcut progmonitor(): execution (public static void *.main( .. )); 

after (): progmoni tor () { 

System.out.println(">after."); 

} 

void around (): progmoni tor () { 

System.out.println(">around."); 

} 

The output of the program is as follows: 

>around. 

Why is that? The after advice would have precedence and would execute after the code 

associated with the pointcut. However, the code associated with the pointcut never executes 

as it is being shadowed by the around advice. 

We place around with proceed below after: 

public aspect Monitor { 

pointcut progmonitor(): execution (public static void *.main( .. )); 
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} 

after (): progmoni tor () { 

System.out.println(">after."); 

} 

void around (): progmoni tor () { 

System.out.println(">around."); 

proceed () ; 

} 

The output of the program is as follows: 

>around. 

Inside main() . 

>after. 

indicating that the around advice did in fact relinquish control to the code associated with 

the pointcut which executed, followed by the execution of the after advice. 

22.8.2 Precedence rules among advices from different aspects 

An aspect definition can include an explicit declaration of precedence over another with the 

following statement: 

declare precedence: type patternl, type pattern2, ... , type patternn 

where a type pattern must resolve to an aspect or it may include wildcard characters that 

must resolve to a set of aspects. 

In the above, all advices defined in an aspect (or a set of aspects) that match type patternl 

have precedence over all advices defined in an aspect (or a set of aspects) that match 

type pattern2, etc. Consider the following example: 

public aspect A { 

declare precedence: A, B; 
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pointcut callMain(): execution (public static void *.main( .. )); 

bef ore (): callMain () {System. out. println (" >A: bef ore. " ) ; } 

after(): callMain() {System.out.println(">A: after.");}} 

public aspect B { 

pointcut callMain(): execution(public static void *.main( .. )); 

bef ore (): callMain () {System. out. println (" >B: bef ore. " ) ; } 

after(): callMain() {System.out.println(">B: after.");}} 

The output of the program is as follows: 

>A: before. 

>B: before. 

Inside main() . 

>B: after. 

>A: after. 

Without an explicit declaration of precedence, if aspect Child is a subaspect of aspect 

Parent, then all advices defined in Child have precedence over all advices defined in Parent. 

Without an explicit declaration of precedence or a super-subaspect relationship, if two pieces 

of advice are defined in two different aspects, precedence is undefined. 

Precedence rules in the presence of around advice 

To see how the around advice fits into precedence among advices from different aspects, we 

need to run the following cases: 

Case 1. around without a proceed 

public aspect A { 

} 

declare precedence: A, B; 

pointcut callMain() : execution (public static void *.main( .. )); 

void around(): callMain() {System.out.println(">A: around.");} 
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public aspect B { 

} 

pointcut callMain() : execution(public static void *.main( .. )); 

void around (): callMain () {System. out. println (" >B: around.");} 

The output of the program is as follows: 

>A: around. 

Case 2. around with a proceed 

We now modify class A to add a proceed statement: 

public aspect A { 

} 

declare precedence: A, B; 

pointcut callMain() : execution (public static void *.main( .. )); 

void around (): callMain () { 

} 

System. out. println (" >A: around."); 

proceed () ; 

The output of the program is as follows: 

>A: around. 

>B: around. 

Let us now add a proceed statement to class B: 

public aspect B { 

pointcut callMain() : execution(public static void *.main( .. )); 

void around (): callMain () { 

System. out. println (" >B: around."); 

proceed (); }} 
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The output of the program is as follows: 

>A: around. 

>B: around. 

Inside main() . 

22.9 Introducing state and behavior 

The mechanism of introduction allows for crosscutting state and behavior to be defined as 

part of class definitions from within aspect definitions. It also allows one to define a given 

type (class or interface) as a su pertype to a given type, thus modifying the class hierarchy. 

22.9.1 Introducing static features 

In the simplest case of introductions, we can introduce static state or behavior inside a class 

definition. We will demonstrate this with an example. 

Example: Counting objects 

Consider class Point: 

public class Point { 

private double x, y; 

public Point (double x, double y) { 

this.x x· , 

this.y y; 

} 

} 

We introduce a static integer variable numberOflnstances in the class definition of Point: 

public static int Point.numberOflnstances; 

This variable will have to be increased every time an instance of Point is created. 
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We do this by the following after advice: 

after 0: execution (Point.new( .. )) { 

Point.numberOfInstances++; 

} 

We also introduce a static integer method howmanyO in the definition of class Point that 

would allow its client to query on the value of variable numberOflnstances: 

public static int Point.howMany() { 

return numberOfInstances; 

} 

The complete aspect definition is shown below: 

public aspect Tracer { 

} 

public static int Point.numberOfInstances; 

public static int Point.howMany() { 

return numberOfInstances; 

} 

after 0: execution (Point. new ( .. )) { 

Point.numberOfInstances++; 

} 

Clients of class Point may now assume that method howManyO forms part of the interface 

of the class. They remain unaware of its introduction through an aspect. For the program 

below, 

public static void main(String [J args) { 

} 

Point pi 

Point p2 

new Point (0, 0); 

new Point (1, 3); 

System. out. println (" Number of Point instances: " + Point. howMany 0) ; 
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The output of the program is as follows: 

Number of Point instances: 2 

22.9.2 Introducing instance features I 

Example: Game of thrones 

Consider classes Human and Noble below: 

public abstract class Human { 

String name; 

public Human(String name) { 

this.name = name; 

} 

public void speake) { 

System.out.println("Good morning m'lord."); 

} 

} 

public class Noble extends Human { 

} 

String house; 

public Noble(String name, String house) { 

super (name) ; 

this.house = house; 

} 

public String toString() { 

return "I am II + this.name + 

} 

II II. . , 
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Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Noble Arya = new Noble (" Arya Stark", "Stark"); 

Arya. speak (); }} 

The output of the program is as follows: 

Good morning m'lord. 

The aspect below adds an overriding method speak() to class Noble. 

public aspect Behavior { 

public void Noble.speak() { 

System. out. println (" Good morning my lord. " + this. toString ()) ; 

} 

} 

The output of the program is as follows: 

Good morning my lord. I am Arya Stark. 

Note that the keyword this refers to the instance of the executing object. Furthermore, if 

class Noble already had an overriding method speak(), the AspectJ compiler would detect 

a conflict and it would produce an error. 

22.9.3 Introducing behavior through an interface implementation 

AspectJ allows us to declare that a class implements a given interface and thus being able 

to introduce behavior, and we will extend the game of thrones example to demonstrate this. 
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Consider interface Allegiance: 

public interface Allegiance { 

public void declare(); 

} 

We can declare that class Noble implements Allegiance as follows: 

declare parents: Noble implements Allegiance; 

Once we make such a declaration, we must subsequently define method declare () : 

public void Noble.declare() { 

System. out. println (this. toString () + " Of House " + this. house + "."); 

} 

The complete aspect definition is shown below: 

public aspect Behavior { 

} 

declare parents: Noble implements Allegiance; 

public void Noble.declare() { 

System. out. println (this. toString () + " Of House " + this. house + "."); 

} 

public void Noble.speak() { 

System. out. println (" Good morning my lord. " + this. toString ()) ; 

} 

Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Noble Arya = new Noble (" Arya Stark", "Stark"); 

Arya. declare (); }} 
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The output of the program is as follows: 

I am Arya Stark. Of House Stark. 

22.10 Context passing 

The mechanism of context passing allows a pointcut to expose a binding to the underlying 

object, thus making the object available to any advice that may need to access it. What 

do we mean by "underlying object"? This would be the object where an event of interest 

occurs. For example, in the case of a call join point we may be interested in the caller, the 

callee, or both. 

22.10.1 Self and target join points 

Self and target join points can capture the caller and receiver of a call. The join point this 

captures the sender object (caller), whereas target captures the receiving object (callee). 

For method executions, both join points capture the executing object. 

22.10.2 Introducing instance features II 

In this subsection we revisit introductions by combining them with context passing. 

Example: Keeping track of moves 

Consider the implementation of class Point: 

public class Point { 

protected double x, y; 

public Point(double x, double y) { 

this.x x· , 

this.y y; 

} 
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} 

public Point () { 

thi s (0, 0); 

} 

public void move(double x, double y) { 

this.x x' , 

this.y y; 

} 

public String toString() { 

return "x: " + x + " " + "y: " + y; 

} 

We want to keep track of each move of each point object. In other words, we must be able 

to distinguish between moves per instance. The statement 

int Point.numberOfMoves; 

introduces a private integer variable numberOfMoves in the class definition of Point. This im­

plies that every instance of Point will maintain its own unique integer variable numberOfMoves. 

Additionally, we want to obtain the value of this variable. The following definition 

public int Point.howMany() { 

return this.numberOfMoves; 

} 

introduces a method into class Point that will return the value of variable numberOfMoves. 

We must capture the executing object upon reception of a move () message. Once we have 

the executing object, we can then access its own unique variable numberOfMoves. We can 

capture the receiving object through context passing, as follows: 

pointcut counts(Point p) execution(void Point.move(double, double)) && 

this(p); 
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It is important to stress that pointcut counts performs two different tasks here: 

1. It captures execution of method move O. This will cause any associate advice to exe­

cute. 

2. It captures and exposes a binding to the Point instance whose move 0 method is about 

to execute. This will allow any associated advice to obtain access to the particular 

object. 

We define an advice to increment the variable numberOfMoves as follows: 

after(Point p) : counts(p) { 

p.numberOfMoves++; 

} 

We can now put everything together in one aspect definition as follows: 

public aspect Logger { 

int Point.numberOfMoves; 

public int Point.howMany() { 

return this.numberOfMoves; 

} 

pointcut counts(Point p) execution(void Point.move(double, double)) && 

this(p); 

after(Point p) : counts(p) { 

p.numberOfMoves++; }} 

Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Point pi new Pointe); 

Point p2 new Point () ; 

pi. move (3, 7); 
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p1.move(3, 11); 

p2.move(10, 10); 

System.out.println(p1.howMany()); 

System. out. println (p2. howMany ()); }} 

The output of the program is as follows: 

2 

1 

22.10.3 Argument join points 

The join point args(type) can capture the arguments passed to a method or constructor. 

We will demonstrate this with an example. 

Example: Bounded stack with contract specifications 

Consider aspect ContractChecker that performs partial contract checking on the creation 

of BStack objects, imposing the requirement that no object can be created with capacity 

zero. Recall that capacity is required by the constructor of the class. 

public aspect Contract Checker { 

pointcut invariantChecking (int arg) execution (BStack.new(int)) && 

args (arg); 

} 

before (int arg): invariantChecking (arg) { 

} 

if (arg <= 0) { 

} 

System.out.println("Capacity: II + arg); 

System. out. println (" Error: Invalid size. ") ; 

System . exit (0) ; 
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The pointcut that captures the execution of the constructor exposes the argument passed 

to the constructor, and the before advice checks the value of the argument. Should the 

argument be a non-positive number, then the advice does not allow the execution to proceed 

but it will instead display some informative message and exit the program. 

For example, should we attempt to create an empty capacity object with 

Stack myStack = new BStack(O); 

we will get the following output: 

Capacity: 0 

Error: Invalid size. 

22.10.4 Combining advice precedence and context passing 

We will demonstrate how to combine advice precedence and context passing with an example. 

Example: Filtering 

Consider class Container that stores strings. 

import java.util.ArrayList; 

public class Container { 

private ArrayList <String> elements 

private int capacity; 

public Container(int capacity) { 

this. capacity = capacity; 

} 

public void add (String str) { 

this.elements.add(str); 

} 

new ArrayList<String> (); 

public String remove(int position) { 

return this. elements. remove (position); } 
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public void clear() { 

this. elements. clear (); }} 

Aspect Filter contains two around advices, both of which intercept the call to 

Container. add (String) and act as filters to the string argument. The first around advice 

will transform the argument into lower case and allow the call to proceed. The call will then 

be intercepted by the second around advice that will add a timestamp to the string and 

allow the call to proceed. 

import java.util.*; 

import java.text.*; 

public aspect Filter { 

DateFormat dateFormat new SimpleDateFormat("yyyy/MM/dd HH:mm:ss"); 

Date date; 

void around(Container c, String arg): call(* Container.add(String)) && 

target (c) && 

String newstr = arg.toLowerCase(); 

proceed(c, newstr); } 

args (arg) { 

void around(Container c, String arg): call(* Container.add(String)) && 

target(c) && 

args (arg) { 

date = new Date(); 

String newstr = arg + II [II + date + IIJ "; 

proceed(c, newstr); }} 

The test program instantiates a container class and adds a string to it which is a mixture of 

upper and lower-case characters. 
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public class Test { 

public static void main(String [J args) { 

Container c = new Container(3); 

c. add (" HellO WorlD"); 

System. out. println (c. remove (0)); }} 

The output of the program is as follows: 

hello world [Wed Apr 23 21:14:36 EDT 2014] 

22.10.5 Advice execution join points 

As the name suggests, advice execution join points capture the execution of advice blocks. 

We will demonstrate this with an example. 

Example: Bounded stack with monitoring of advice execution 

In the following example, we add yet another aspect to class BStack in order to trace the 

execution of all advices from Logger and ContractChecker. The pointcut should capture 

all advice execution and will expose a binding to the underlying aspect instance: 

pointcut executions (Object 0) : adviceexecution() && 

!within(AdviceTracer) && 

this(o); 

The join point ! wi thin (Advi ceTracer) is required in order to avoid circular references be­

tween this pointcut and the advice from within this aspect definition which would result in 

an infinite loop. The complete aspect definition is as follows: 

public aspect AdviceTracer { 

pointcut executions (Object 0) adviceexecution() && 

!within(AdviceTracer) && 

this(o); 
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after (Object 0): executions (0) { 

System.out.println(">Advice executed: " + 

thisJoinPoint. getSignature ()); }} 

Consider the following test program and its output below: 

public class Test { 

public static void main(String [J args) { 

Stack myStack = new BStack(5); 

myStack.push("base"); 

myStack.push("your"); 

myStack.push("all"); 

System.out.println(myStack.pop()); 

System.out.println(myStack.pop()); 

System. out. println (myStack. pop ()); }} 

>Advice executed: void ContractChecker.before(int) 

>Mutator method called: call(void Stack.push(String)) 

>Advice executed: void Logger.before(JoinPoint) 

>Mutator method called: call(void Stack.push(String)) 

>Advice executed: void Logger.before(JoinPoint) 

>Mutator method called: call(void Stack.push(String)) 

>Advice executed: void Logger.before(JoinPoint) 

>Mutator method called: call(String Stack.pop()) 

>Advice executed: void Logger.before(JoinPoint) 

all 

>Mutator method called: call(String Stack.pop()) 

>Advice executed: void Logger.before(JoinPoint) 

your 

>Mutator method called: call(String Stack.pop()) 

>Advice executed: void Logger.before(JoinPoint) 

base 
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22.11 Privileged aspects 

AspectJ allows us to get access to private features of a class. We will demonsrate this in 

relation to introductions and context passing with a few examples. 

22.11.1 Combining context passing and privileged aspect behavior 

We will demonstrate this with an example. 

Example: A binary semaphore protocol 

Consider the implementation of class Semaphore: 

public class Semaphore { 

private int value; 

} 

public void increment() { 

this.value++; 

} 

public void decrement() { 

this. value --; 

} 

public int getValue() { 

return this.value; 

} 

public void reset() { 

this.value = 0; 

} 

We want to impose a binary protocol to class Semaphore. This means that we initially must 

monitor methods increment () and decrement (). The two pointcuts capture the execution 

of each method respectively and expose a binding to the underlying semaphore object: 
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pointcut monitoringlncs (Semaphore s): 

execution(* Semaphore.increment()) && 

this(s); 

pointcut monitoringDecs (Semaphore s): 

execution(* Semaphore.decrement()) && 

this(s); 

Each pointcut will be associated with an advice. The advice for moni toringlncs executes 

instead of the code associated with the pointcut and performs a check on the value of the 

semaphore. If it is already 1, then the advice will do nothing. If it is not 1, then the 

advice will pass execution to the code associated with the pointcut, therefore allowing the 

increment. 

void around(Semaphore s): monitoringlncs(s) { 

if (s. value == 1) 

} 

else 

proceed(s); 

The advice for moni toringDecs executes instead of the code associated with the pointcut 

and performs a check on the value of the semaphore. If it is already 0, then the advice will 

do nothing. If it is not 0, then the advice will pass execution to the code associated with 

the pointcut, therefore allowing the decrement. 

void around (Semaphore s): monitoringDecs(s) { 

if (s.value == 0) 

} 

else 

proceed(s); 
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Putting everything together we have the following aspect definition: 

public privileged aspect BinaryProtocol { 

pointcut monitoringlncs (Semaphore s): 

} 

execution(* Semaphore.increment()) && 

this(s); 

pointcut monitoringDecs (Semaphore s): 

execution(* Semaphore.decrement()) && 

this(s); 

void around(Semaphore s): monitoringlncs(s) { 

if (s.value == 1) 

} 

else 

proceed(s); 

void around (Semaphore s): monitoringDecs(s) { 

if (s.value == 0) 

} 

else 

proceed(s); 

Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Semaphore semaphore = new Semaphore(); 

semaphore.increment(); 

semaphore.increment(); 

semaphore.decrement(); 

System.out.println(semaphore.getValue()); }} 
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The output of the program is as follows: 

o 

22.11.2 Combining introductions, context passing, and privileged 

aspect behavior 

We will use examples to demonstrate how to combine introductions, context passing and 

privileged aspect behavior. 

Example: A cyclic counter protocol 

In the first example, consider the definition of class Counter: 

public class Counter { 

private int value; 

void increment() { 

this.value++; 

} 

} 

public int getValue() { 

return value; 

} 

We want to add cyclic behavior to counter objects, i.e. once the value of a counter object 

reaches some predefined maximum value, the object should reset its value. The maximum 

value is held by the constant 

private final int MAX = 10; 

Initially we define an interface that all cyclic objects must implement: 

public interface Cyclic { 

public void reset(); 

} 
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We introduce the interface implementation of class Counter together with the implementa­

tion of method reset 0: 

declare parents: Counter implements Cyclic; 

public void Counter.reset() { 

this.value = 0; 

} 

Finally we need to capture all calls to method increment 0 and check if variable value 

has reached MAX, in which case we must reset the counter. Otherwise, we allow the call to 

proceed. Aspect CyclicProtocol is declared privileged as it would need to obtain access 

to private variable value in class Counter. 

public privileged aspect CyclicProtocol { 

private final int MAX = 10; 

declare parents: Counter implements Cyclic; 

public void Counter.reset() { 

this.value = 0; } 

void around(Counter c): call(* Counter.increment()) && target(c) { 

if (c. value == MAX) 

c . reset 0 ; 

proceed(c); }} 

Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Counter c = new Counter(); 

for (int i = 0; i < 15; i++) { 

c. increment 0 ; 

System.out.print(c.getValueO + II II); }}} 
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The output of the program is as follows: 

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 

Example: A locking semaphore 

We will extend the binary semaphore example by adding locking behavior to a semaphore 

object. Consider interface Lockable: 

public interface Lockable { 

void lock () ; 

void unlock () ; 

boolean isLocked(); 

} 

The statement 

declare parents: Semaphore implements Lockable; 

introduces interface Lockable as a supertype to class Semaphore. The statement 

private boolean Semaphore.lock; 

introduces a private integer variable lock as part of the state of class Semaphore. The 

following segment 

public void Semaphore.lock() { 

this.lock = true; 

} 

public void Semaphore.unlock() { 

this.lock = false; 

} 

public boolean Semaphore.isLocked() { 

return this. lock; 

} 
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introduces methods lockO, unlockO, and isLockedO as part of the behavior of class 

Semaphore. 

To implement the locking mechanism, we need to intercept calls made to increment () or 

decrement 0 and place a condition that they should only be allowed to run provided that 

the semaphore is not locked. We do this by first defining a pointcut that would capture any 

of the two calls and once it is captured it will expose a binding to the underlying semaphore 

object. 

pointcut monitoringMods (Semaphore s): 

(call (* Semaphore.increment()) I I 

call (* Semaphore.decrement())) && 

target (s); 

An around advice executes instead of the code associated with the pointcut and performs a 

check on the status of the semaphore, only allowing the code associated with the pointcut 

to run provided the semaphore is not locked. 

void around (Semaphore s): monitoringMods(s) { 

if (s.isLockedO == true) 

} 

System. out. println (" Error: Cannot set semaphore value."); 

else 

proceed(s); 

Putting everything together, we have the aspect definition shown below. As the aspect def­

inition must access private state of the class Semaphore (despite the fact that this is state 

introduced by the aspect itself), it must be declared privileged. 

public privileged aspect Lock { 

declare parents: Semaphore implements Lockable; 

private boolean Semaphore.lock; 

public void Semaphore.lock() { 

this. lock = true; } 
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} 

public void Semaphore.unlock() { 

this. lock = true; 

} 

public boolean Semaphore.isLocked() { 

return this.lock; 

} 

pointcut monitoringMods (Semaphore s): 

(call (* Semaphore. increment 0) I I 

call (* Semaphore.decrement())) && 

target(s); 

void around (Semaphore s): monitoringMods(s) { 

} 

if (s.isLockedO == false) 

System. out. println (" Error: Cannot set semaphore value."); 

else 

proceed(s); 

Consider the following test program: 

public class Test { 

public static void main(String [J args) { 

Semaphore semaphore = new Semaphore(); 

semaphore.increment(); 

semaphore.lock(); 

semaphore.increment(); 

System.out.println(semaphore.getValue()); 

semaphore.unlock(); 

semaphore.increment(); 

semaphore.lock(); 

semaphore.decrement(); 

semaphore.unlock(); 
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} 

} 

semaphore.decrement(); 

System.out.println(semaphore.getValue()); 

The output of the program is as follows: 

Error: Cannot set semaphore value. 

1 

Error: Cannot set semaphore value. 

D 

22.12 Multiple aspects 

Example: A cruise control system 

Consider the following class definition: 

public class Vehicle { 

private double speed; 

} 

public void accelerate(double speedlncrement) { 

this. speed = this.speed + speedlncrement; 

} 

public void decelerate(double speedDecrement){ 

this. speed = this.speed - speedDecrement; 

} 

We introduce a privileged aspect, Logger, that defines pointcut monitor to capture execu­

tions of method accelerate defined in class Vehicle and uses context passing to expose a 

binding to the executing object. An after advice displays the value of variable speed once 

the code associated with the point cut has successfully terminated. 
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public privileged aspect Logger { 

} 

pointcut monitor (Vehicle v): execution (* Vehicle.accelerate( .. )) && 

this(v); 

after (Vehicle v) : monitor (v) { 

System. out. println (" Current speed: " + v. speed + " km/h."); 

} 

A privileged aspect CruiseController implements cruise control by imposing a maximum 

limit on the speed of the vehicle. Pointcut accelMoni tor captures execution of method 

accelerate 0 declared in class Vehicle, and proceeds to use context passing to expose two 

bindings: One to the executing object through this, and another to the actual argument 

passed to the method through args. An around advice initially checks whether the requested 

increase is within the allowable limit only in that case it will allow the execution to go ahead 

through proceed. Otherwise, the advice will issue an informative error message. 

public privileged aspect CruiseController { 

private double speedLimit = 100.0; 

pointcut accelMonitor (Vehicle v, double speedInc): 

execution (* Vehicle. accelerate ( .. )) && 

this(v) && 

args(speedInc); 

void around (Vehicle v, double speedIncrement): 

accelMonitor (v, speedIncrement) { 

System. out. println (" About to increase by: " + 

speedIncrement + " km/h."); 

if ((v. speed + speedIncrement) <= speedLimit) 

proceed(v, speedIncrement); 

else 

System. out. println (" Error: Cannot exceed 100 km/h."); 

}} 



398

The test program below instantiates Vehicle and attempts to increase its speed in four 

consecutive intervals of 30. Once an attempt would make the speed exceeding its maximum 

allowable value, the around advice will not allow it, thus leaving the speed at 90. The pro­

gram subsequently attempts to increase the speed by 10, which is allowed, thus reaching the 

maximum allowable limit. Any subsequent attempt for an increase will not be allowed. 

public class Test { 

} 

public static void main(String [J args) { 

Vehicle car = new Vehicle(); 

car.accelerate(30); 

car.accelerate(30); 

car.accelerate(30); 

car.accelerate(30); 

car.accelerate(10); 

car.accelerate(10); 

} 

The output of the program is as follows: 

About to increase by: 30.0 km/h. 

Current speed: 30.0 km/h. 

About to increase by: 30.0 km/h. 

Current speed: 60.0 km/h. 

About to increase by: 30.0 km/h. 

Current speed: 90.0 km/h. 

About to increase by: 30.0 km/h. 

Error: Cannot exceed 100 km/h. 

Current speed: 90.0 km/h. 

About to increase by: 10.0 km/h. 

Current speed: 100.0 km/h. 

About to increase by: 10.0 km/h. 
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Error: Cannot exceed 100 km/h. 

Current speed: 100.0 km/h. 

22.12.1 Combining context passing, privileged aspect behavior 

and multiple aspects 

Example: Access control 

Consider the following application: 

import java.util.ArrayList; 

public class Server { 

private String name; 

private ArrayList<Client> clients 

public Server(String name) { 

this.name = name; 

} 

new ArrayList <Client> () ; 

public void establishConnection (Client client) { 

clients.add(client); 

} 

} 

public void breakConnection (Client client) { 

clients.remove(client); 

} 

public String toString() { 

return name; 

} 

public class Client { 

private String name; 

private Server server; 

private Boolean authenticated; 

public Client(String name, Server server) { 
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} 

this.name = name; 

this. server = server; 

this. authenticated = false; } 

public void authenticate() { 

authenticated = true; 

} 

public void connect() { 

server.establishConnection(this); 

} 

public String toString() { 

return name; 

} 

Aspect AccessController captures messages sent by clients to a server attempting to es­

tablish a connection. The aspect only allows a connection if a client is authenticated. If a 

connection cannot be established, then the aspect should display an informative message. 

Additionally, aspect Logger displays an informative message once a connection is about to 

be established between client and server. 

public privileged aspect AccessController { 

declare precedence: AccessController, Logger; 

pointcut accessMonitor (Server server, Client client): 

call(* Server.establishConnection(Client)) && 

this(client) && 

target (server) ; 

void around (Server server, Client client): 

if (client. authenticated) 

proceed(server, client); 

else 

accessMonitor (server, client) { 

System. out. println (" Authentication error: " + client. toString () + 
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II cannot establish a connection II + lito II + 

server. toString () + ". II); }} 

public aspect Logger { 

} 

pointcut accessLog (Server server, Client client): 

call(* Server.establishConnection(Client)) && 

this (client) && 

target (server) ; 

before (Server server, Client client): accessLog (server, client) { 

System.out.println("Connection established between II + 

client.toString() + 

II and II + 

server.toString() + "."); 

} 

Consider the following test program: 

public class Test { 

} 

public static void main(String [J args) { 

} 

Server server = new Server("Concordia University"); 

Client cl new Client(IJack", server); 

Client c2 new Client(IJill", server); 

cl.authenticate(); 

cl. connect () ; 

c2. connect () ; 

The output of the program is as follows: 

Connection established between Jack and Concordia University. 

Authentication error: Jill cannot establish a connection to Concordia University. 
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22.13 Reusing pointcuts: Abstract aspects 

Even though the adoption of AOP results in a good separation of concerns, restricting aspect 

definitions to match class and method names of system core concerns leads to strong binding 

between aspects and system core concerns. In such cases aspect definitions are not reusable, 

but they are restricted to be only applicable in one specific application context. 

To deploy an aspect definition in different contexts, we first need to answer the following 

questions: "What needs to be reused?" and "What part of an aspect definition can be 

bound to the core functionality?" An obvious construct which binds an aspect to the core 

functionality is the (named or anonymous) pointcut. 

In order to support reuse, a level of genericity is supported by AspectJ through the provision 

of abstract aspects. We can distinguish between two cases, discussed in the subsequent 

subsections. 

22.13.1 Reusing concrete pointcuts 

A concrete pointcut expression can be reused not only by advices within the aspect where it is 

being defined, but by advices in all subaspects. Much like class features, pointcut declarations 

can be associated with the access modifiers public (the declaration can be visible to all aspects 

anywhere in the application), no modifier (default; this implies that the declaration is visible 

to all aspects within the same package), protected (declaration is visible to host aspect and 

all its subaspects) and private (declaration is visible only to the host aspect). One restriction 

imposed by AspectJ is that in order to define a subaspect, the superaspect must itself be 

declared abstract (even in the case where the superaspect contains no abstract feature). 

22.13.2 Reusing abstract pointcuts 

A pointcut can be declared abstract when we do not want to commit to a particular ap­

plication in the current aspect definition but we prefer to leave the concrete definition in 

subaspects. This idea allows the development of aspect libraries, as collections of generic 
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aspect definitions. Much like a concrete subclass which inherits from an abstract super­

class must implement all inherited abstract methods or must itself be declared abstract, 

a subaspect must provide a definition of all abstract pointcuts inherited from an abstract 

superaspect, otherwise it must itself be declared abstract. 

In the following example, we will build an aspect that will implement a generic tracing fa­

cility. The abstract aspect AbstractLogger does not implement a pointcut, but it does 

provide a reflection-based tracing facility upon entering and exiting the code to be defined 

by some concrete pointcut in a subaspect. 

public abstract aspect AbstractLogger { 

abstract pointcut monitored(); 

} 

bef ore (): monitored () { 

System. out. println (" >Entering: " + thisJoinPoint); 

} 

after (): monitored () { 

System.out.println(">Exiting: " + thisJoinPoint); 

} 

Aspect ConcreteLogger inherits from AbstractLogger and implements the abstract point­

cut monitored () . 

public aspect ConcreteLogger extends AbstractLogger { 

pointcut monitored(): execution(void Stack.push(String)) I I 

execution(String Stack.pop()); 

} 
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We include the two aspects in the Stack project, whose test program is shown below: 

public class Test { 

} 

public static void main(String [J args) { 

Stack myStack = new Stack(); 

myStack.push("base"); 

myStack.push(" your "); 

myStack.push(" a ll"); 

System.out.println(myStack.pop()); 

System.out.println(myStack.pop()); 

System.out.println(myStack.pop()); 

} 

The output of the program is as follows: 

>Entering: execution(void Stack.push(String)) 

>Exiting: execution(void Stack.push(String)) 

>Entering: execution(void Stack.push(String)) 

>Exiting: execution(void Stack.push(String)) 

>Entering: execution(void Stack.push(String)) 

>Exiting: execution(void Stack.push(String)) 

>Entering: execution(String Stack.pop()) 

>Exiting: execution(String Stack.pop()) 

all 

>Entering: execution(String Stack.pop()) 

>Exiting: execution(String Stack.pop()) 

your 

>Entering: execution(String Stack.pop()) 

>Exiting: execution(String Stack.pop()) 

base 
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22.14 In retrospect: Final words by E. W. Dijkstra 

"The purpose of thinking is to reduce the detailed reasoning needed to a doable 

amount, and a separation of concerns is the way we hope to achieve this reduc­

tion. The crucial choice is, of course, what aspects to study in isolation, how to 

disentangle the original amorphous knot of obligations, constraints and goals into 

a set of concerns that admit a reasonably effective separation. The knowledge of 

the goal of separation of concerns is a useful one: we are at least beginning to 

understand what we are aiming at." 

(E. w. Dijkstra, A Discipline of Programming, 1976, last chapter, In Retrospect) 

22.15 The thisJoinPoint API 

A partial method summary of the thisJoinPoint interface is shown in this section for both 

the call to Server. connect ( .. ) and its execution, for the program shown below. A com­

plete summary is provided by the language specification4 . 

public class Client { 

String name; 

} 

Server server; 

public Client(String name, Server server) { 

this.name = name; 

this. server = server; 

} 

public void openConnection() { 

server.connect(this); 

} 

4See http://eclipse.org/aspectj/doc/next/runtime-api/org/aspectj/lang/JoinPoint.html 
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import java.util.ArrayList; 

public class Server { 

private String name; 

private ArrayList<Client> clients 

public Server(String name) { 

new ArrayList<Client>(); 

this.name = name; 

} 

public void connect(Client client) { 

clients.add(client); 

} 

} 

public class Test { 

public static void main(String[] args) { 

Server host new Server("host"); 

Client client = new Client("client", host); 

client.openConnection(); 

} 

} 

22.15.1 thisJoinPoint on call(* Server.connect( .. )) 

thisJoinPoint 

thisJoinPoint.getKind() 

thisJoinPoint.toString() 

thisJoinPoint.toShortString() 

thisJoinPoint.toLongString() 

thisJoinPoint.getArgs() 

thisJoinPoint.hashCode() 

thisJoinPoint.getSourceLocation() 

thisJoinPoint.getStaticPart() 

thisJoinPoint.getSignature() 

call(void Server.connect(Client)) 

method-call 

call(void Server.connect(Client)) 

call(Server.connect( .. )) 

call(public void Server.connect(Client)) 

[Ljava.lang.Object;@lf38fc6 

23342038 

Client.java:l0 

call(void Server.connect(Client)) 

void Server.connect(Client) 
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thisJoinPoint.getSignature().getName() connect 

thisJoinPoint.getSignature().getDeclaringTypeName() Server 

thisJoinPoint.getSignature().getClass() 

class org.aspectj.runtime.reflect.MethodSignaturelmpl 

thisJoinPoint.getSignature().toLongString() 

public void Server.connect(Client) 

thisJoinPoint.getSignature().toShortString() 

Server.connect( .. ) 

thisJoinPoint.getSignature().hashCode() 24769387 

thisJoinPoint.getThis() Client@15bfdbd 

thisJoinPoint.getThis().hashCode() 22805949 

thisJoinPoint.getThis().toString() Client@15bfdbd 

thisJoinPoint.getThis().getClass() class Client 

thisJoinPoint.getThis().getClass().getName() Client 

thisJoinPoint.getTarget() Server@6f8b2b 

thisJoinPoint.getTarget().hashCode() 7310123 

thisJoinPoint.getTarget().toString() Server@6f8b2b 

thisJoinPoint.getTarget().getClass() class Server 

thisJoinPoint.getTarget().getClass().getName() Server 

22.15.2 thisJoinPoint on execution(* Server.connect( .. )) 

thisJoinPoint 

thisJoinPoint.getKind() 

thisJoinPoint.toString() 

thisJoinPoint.toShortString() 

thisJoinPoint.toLongString() 

execution(void Server.connect(Client)) 

method-execution 

execution(void Server.connect(Client)) 

execution(Server.connect( .. )) 

execution(public void Server.connect(Client)) 

thisJoinPoint.getArgs() [Ljava.lang.Object;@lf38fc6 

thisJoinPoint.hashCode() 23342038 

thisJoinPoint.getSourceLocation() Server.java:8 

thisJoinPoint.getStaticPart() execution(void Server.connect(Client)) 
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thisJoinPoint.getSignature() 

thisJoinPoint.getSignature().getName() 

void Server.connect(Client) 

connect 

thisJoinPoint.getSignature().getDeclaringTypeName() Server 

thisJoinPoint.getSignature().getClass() 

class org.aspectj.runtime.reflect.MethodSignatureImpl 

thisJoinPoint.getSignature().toLongString() public void Server.connect(Client) 

thisJoinPoint.getSignature().toShortString() Server.connect( .. ) 

thisJoinPoint.getSignature().hashCode() 24769387 

thisJoinPoint.getThis() 

thisJoinPoint.getThis().hashCode() 

thisJoinPoint.getThis().toString() 

Server@15bfdbd 

22805949 

Server@15bfdbd 

thisJoinPoint.getThis().getClass() class Server 

thisJoinPoint.getThis().getClass().getName() Server 

thisJoinPoint.getTarget() 

thisJoinPoint.getTarget().hashCode() 

thisJoinPoint.getTarget().toString() 

Server@15bfdbd 

22805949 

Server@15bfdbd 

thisJoinPoint.getTarget().getClass() class Server 

thisJoinPoint.getTarget().getClass().getName() Server 
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Part VI 

Multiparadigm Programming with 

Ruby 
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Chapter 23 

Object-oriented programming with 

message passing II 

In Computer Science, imperative programming is a programming paradigm that describes 

computation in terms of statements that change a program state. The term pure object­

oriented programming implies that all of the data types in the language are objects and all 

operations on those objects can be invoked by message passing. Sending a message to an 

object invokes a method by the receiver object. A message contains the method's name 

along with any parameters. In this chapter we will adopt the Ruby language. 

puts "The Ruby language". length #=> 17 

puts "Ruby". index("y") #=> 3 

puts -7.abs #=> 7 

puts 10.49.round #=> 10 

puts 10.51.round #=> 11 

puts 2.next #=> 3 

puts 97.chr #=> "a" 

23.1 Variables and aliasing 

Multiple variables referencing the same object is called aliasing. Consider the following 

example: 
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personl 

person2 

"Tony" 

personl 

The assignment of person1 to person2 does not create an object. It assigns the object 

reference of person1 to person2, so that both variables now would refer to the same object. 

We can avoid aliasing with dup, which creates a new object with identical contents. 

person3 = personl.dup 

personl [0] = "R" 

puts personl #=> Rony 

puts person2 #=> Rony 

puts person3 #=> Tony 

23.2 Chain and parallel assignment statements 

An assignment statement sets the value of a variable on its left hand side (lvalue) to the 

value of the expression on its right hand side (rvalue). 

Ruby supports chaining of assignments. It also allows one to perform assignments in some 

unexpected places. Consider the example below: 

a = b = 1 + 2 + 3 

puts a #=> 6 

puts b #=> 6 

a = (b = 1 + 2) + 3 

puts a #=> 6 

puts b #=> 3 

Ruby supports parallel assignment: 

a = 1 

b 2 

a, b b, a 

puts a #=> 2 
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puts b #=> 1 

x = 0 

a, b, c = x, (x += 1), (x += 1) 

puts a #=> 0 

puts b #=> 1 

puts c #=> 2 

puts x #=> 2 

23.3 Arrays 

An array is an ordered collection of elements, where each element is identified by an integer 

index. 

We can create arrays using literals. A literal array is simply a list of objects between square 

brackets. As everything is an object, this implies that an array can hold objects of different 

types, as in the example below: 

a = [ "number", 1, 2, 3.14 J # Array with four elements. 

puts a[OJ # Access and display the first element. #=> number 

a[3J nil # Set the last element to nil. 

puts a # Access and display entire array. #=> number 1 2 nil 

We can also create an array by explicitly creating an Array object. Ruby allows us to specify 

array ranges, as in the example below: 

myarray = [ 1, 2, 3, 4, 5, 6 J 

puts myarray[OJ #=> 1 

puts myarray[l ... 3J 

puts myarray[l .. 3J 

puts myarray[1,3J 

# Exclusive range. => 2 3. 

# Inclusive range. => 2 3 4. 

# Range between 1st up to 3rd consecutive, inclusive. 

#=> 2 3 4. 

Ruby allows a negative index, forcing the array to count from the end. 

a = [ "pi", 3.14, "prime", 17 J 
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puts a.class #=> Array 

puts a.length #=> 4 

puts a [0] #=> pi 

puts a [-1] #=> 17 

puts a [1] #=> 3.14 

puts a [2] #=> prime 

puts a [3] #=> 17 

puts a [4] #=> nil 

b = Array.new 

puts b.class #=> Array 

puts b.length #=> 0 

b [0] "a" 

b [1] "new" 

b [2] "array" 

puts b #=> a new array 

23.4 Associative arrays 

An associative array (or hash) is an unordered collection of elements. 

An element is a pair of two objects: a value and a key through which the value can be 

retrieved. The value can be an object of any type. 

To store an element in an associative array, we must supply both objects: 

hashN arne = {" key" => "value" , 

} 
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We can subsequently retrieve the value by supplying the appropriate key: 

hashN ame[" key"] => value 

Example 23.1. Consider the example below which builds and manipulates an associative 

array. 

biblio { "nabokov89a" => "Pnin" , 

"bulgakov96" => "The master and margarita" , 

"nabokov89b" => "Invitation to a Beheading" , 

"nabokov90" => "The defense", 

"kafka95" => "The trial" } 

We can inquire the collection for its size: 

puts biblio.length #=> 5 

We can access the collection to obtain the value associated with a given key: 

puts biblio ["bulgakov96"] #=> The master and margarita 

We can also access the collection in order to modify the value associated with a given key: 

biblio ["nabokov89a"] = "Lolita" 

puts biblio ["nabokov89a"] #=> Lolita 

We can also add to the collection: 

biblio["nietzsche97"] = "Beyond good and evil" 

puts biblio ["nietzsche97"] #=> Beyond good and evil 

puts biblio.length #=> 6 

We can delete an element from the collection by supplying the appropriate key: 

biblio. delete_if {I key, value I key == "kafka95"} 

puts biblio.length #=> 5 

Iterating over an associative array 

One of the strengths (and perhaps weaknesses) of Ruby is that it allows us to do the same 

thing using different ways. We can iterate over the entire collection in a couple of different 
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ways. In the next example we display all key-value pairs: 

biblio.each_pair do Ikey, value I 

puts "#{key} : #{value}" 

end 

The above will display: 

nabokov90 : The defense 

nietzsche97 : Beyond good and evil 

nabokov89a Lolita 

nabokov89b 

bulgakov96 

Invitation to a Beheading 

The master and margarita 

We can perform the above iteration as follows: 

biblio.each do Ikey, value I 

puts "#{key} : #{value}" 

end 

There is yet another way to do that: 

biblio. each {I key, value I puts key + " : " + value} 

We can iterate over the collection and access and display each key individually: 

biblio.each_key {Ikeyl puts key} 

The above will display: 

nabokov90 

nietzsche97 

nabokov89a 

nabokov89b 

bulgakov96 

23.5 Classes 

We already have seen that a class specifies state and behavior. 
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What's in a name? 

Ruby uses a convention to help it distinguish the usage of a name: the first characters of a 

name indicate how the name is used. Class names, module names, and constants should start 

with an uppercase letter. Class variables start with two "at" signs (©©). Local variables, 

method parameters, and method names should all start with a lowercase letter or with an 

underscore (_). Global variables are prefixed with a dollar sign ($), while instance variables 

begin with a single "at" sign. Consider the following examples: 

local_variable 

CONSTANT_NAME / ConstantName / Constant_Name 

: symbol_name 

@instance_variable 

@@class_variable 

$global_variable 

ClassName 

method_name 

ModuleName 

23.6 Objects 

Instances of classes (objects) contain state and behavior. Each object contains its own 

unique state. Behavior on the other hand is shared among objects. The state of the object 

is composed of a set of attributes (or fields), and their current values. 

Example 23.2. Consider class Coordinate which defines a two-dimensional coordinate. 

class Coordinate 

@@total = 0 

def initialize ex, y) 

@@total += 1 

@x = x 

@y y 

end 
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def setx (x) 

©x = x 

end 

def sety (y) 

©y = Y 

end 

def getx 

©x 

end 

def gety 

©y 

end 

def to_s 

return " (#©x , #©y)" 

end 

def Coordinate.total 

return 

end 

end 

"Number of coordinates: 

• The class keyword defines a class. 

#©©total" 

• By defining a method inside this class, we are associating it with this class. 

• The initialize method is what actually constructs the data structure. Every class 

must contain an initialize method. 

• ©x and ©y are instance (object) variables. 

• puts and print write each of their arguments. puts adds a new line, whereas print 

does not add a new line. 

A class can be instantiated with new as in 

pi = Coordinate.new(O, 0) 
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which defines an instance p1 whose coordinates are (0,0). We can now interact with object 

p1: 

puts p1.to_s 

p1.setx(2) 

puts p1.getx 

p1.sety(3) 

puts p1.gety 

puts p1.to_s 

#=> (0, 0) 

#=> 2 

#=> 3 

#=> (2, 3) 

p2 = Coordinate.new(1, 1) 

puts Coordinate. total #=> Number of coordinates: 2 

The following is a refined version of class Coordinate: 

class Coordinate 

attr_accessor :x, :y 

@@total = 0 

def initialize (x, y) 

@@total += 1 

@x = x 

@y y 

end 

def to_s 

return "(#@x, #@y)" 

end 

def Coordinate.total 

return "Number of coordinates: #@@total" 

end 

end 
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Let us instantiate class Coordinate and interact with an object: 

pl = Coordinate.new(O,O) 

puts pl.to_s #=> (0, 0) 

pl.x = 2 

puts pl.x #=> 2 

p1. Y = 3 

puts p1. Y #=> 3 

puts pl.to_s #=> (2, 3) 

23.7 Inheritance 

Example 23.3. Consider class XYZCoordinate which defines a three-dimensional coordi­

nate. 

require "CoordinateV2.rb" 

class XYZCoordinate < Coordinate 

attr _accessor : z 

@@newtotal = 0 

def initialize (x, y, z) 

super (x, y) 

@z = z 

@@newtotal += 1 

end 

def to_s 

return "(#{@x}, #{@y}, #{@z})" 

end 

def XYZCoordinate.total 

return "Number of 3D-coordinates: #@@newtotal" 

end 

end 
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Let us instantiate class XYZCoordinate and interact with its objects: 

pi = XYZCoordinate.new(O,O,O) 

puts pl. to_s #=> (0, 0, 0) 

p2 = XYZCoordinate.new(1,5,5) 

puts p2.to_s #=> (1, 5, 5) 

puts XYZCoordinate.total #=> Number of 3D-coordinates: 2 

Why have we provided a new class variable, newtotal, in the subclass? Ruby does not 

support hiding and it would not have considered variable total in class XYZCoordinate as 

a new variable. As a result, the output on the last statement above would have been 4, not 

2. 

23.8 Object extensions 

Ruby allows us to extend specific instances with new behavior. Consider the example below: 

def pi.whatlam 

return "The origin on the 3D system." 

end 

puts p1.whatlam #=> The origin on the 3D system. 

puts p2.whatlam #=> Will cause an error. 

23.9 Control flow 

Ruby provides a rich set of control flow constructs to support selection and repetition. 

23.9.1 Single selection 

Consider the sentence "If you are a Computer Science student, then you must take this 

course." In other words, an action must be taken provided a certain condition holds. To 

support selection, the if statement is perhaps the simplest and it comes in three variations. 



422

Initially to support single selection with the optional alternative to execute a statement if 

the condition evaluates to false. 

if boolean-expression [then] 

body 

[else 

body] 

end 

The if statement also works as a statement modifier which evaluates expression if boolean­

expression is true. 

expression if boolean-expression 

Finally, the if statement can be used as a ternary operator: 

boolean-expression ? expression1 : expression2 

which returns expressionl if booleanExpression is true and expression2 otherwise. 

Consider the sentence: "You must take this course, unless you have already taken an equiv­

alent one." In other words, you have to take an action only if a certain condition does not 

hold. The term unless works as a negated if In Ruby, a negated form of the if statement 

is also available: 

unless boolean-expression [then] 

body 

[else 

body] 

end 

The unless statement can also work as a statement modifier: 

expression unless boolean-expression 

which evaluates expression only if boolean-expression is false. 
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23.9.2 Multiple selection 

To support multiple selection, we can use an extended version of the if statement: 

if boolean-expression [then] 

body 

elsif boolean-expression [then] 

body 

[else 

body] 

end 

We can also use the case statement. When a comparison returns true, the search stops and 

the body associated with the comparison is executed. The statement then returns the value 

of the last expression executed. If no comparison matches and an else clause is present, its 

body will be executed; otherwise, the statement returns nil. 

case target 

when comparison [, comparison] ... [then] 

body 

when comparison [, comparison] ... [then] 

body 

[else 

body] 

end 

Example 23.4. Consider the following code segment that deploys multiple selection with 

the case statement: 

number = 11 

case number 

when 1, 3, 5, 7, 9 

puts "Odd." 

when 0, 2, 4, 6, 8, 10 
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puts "Even." 

else 

puts "Number is out of range." 

end 

23.9.3 Repetition 

The while loop executes its body zero or more times as long as its condition is true. 

while boolean-expression [do] 

body 

end 

The while loop can also operate as a statement modifier: 

expression while boolean-expression 

There is also a negated form that executes the body as long as boolean-expression is false 

(or until the boolean-expression becomes true): 

until boolean-expression [do] 

body 

end 

The while can also work as a statement modifier: 

expression until boolean-expression 

Ruby also provides the do statement: 

loop do 

body 

next if boolean-expression # skip iteration 

break if boolean-expression # exit loop 

redo if boolean-expression # do it again 

end 



425

Iterators 

The keyword each returns successive elements of its collection 

a = [ "3. 14", " numb e r", " pi" ] 

a. each { I ell print el + " " } #=> 3.14 number pi 

The keyword collect takes each element from a collection and passes it to a block. The 

code below takes each element from the collection and displays its successor. 

print ["H" , "A", "L"].collect { Ixl x.succ } #=> IBM 

The keyword find returns the first element from a collection which meets a condition. 

Otherwise it returns nil. The code below displays the first even number from a collection. 

print [1, 3, 7, 8, 9, 10] .find { Ixl x % 2 == 0 } #=> 8 

Iterator-based loops 

3.times { I count I puts count} #=> 0 1 2 

1. upto CiO) { I count I puts count } #=> 1 2 3 4 5 6 7 8 9 10 

10. downto (1) { I count I puts count } #=> 10 9 8 7 6 5 4 3 2 1 

O. step CiO, 2) { I count I puts count } #=> 0 2 4 6 8 10 

for element in ['a', 'b', 'c'] 

puts element #=> abc 

end 

23.10 Regular expressions 

A regular expression is a way of specifying a pattern of characters to be matched in a string. 

In Ruby this is done with /pattern/. In Ruby, regular expressions are objects and can thus 

be manipulated as such. Some common pattern descriptions are shown below: 
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PATTERN DESCRIPTION 

/LispILava/ Matches a string containing Lisp, or Lava. 

/L(isplava)/ As above. 

/ab+c/ Matches a string containing an a, followed by one or more 

bs, followed by a c. 

/ab*c/ matches a string containing an a, followed by zero or more 

bs, followed by a c. 

Matches any character. 

/[Colloqui[umla]/ Matches Colloquium, or Colloquia. 

Example 23.5. Consider the lyrics of the song "Welcome to the machine", by Pink Floyd 

(Lyrics by Roger Waters, 1975). 

Welcome my son, welcome to the machine. 

Where have you been? 

It's alright we know where you've been. 

You've been in the pipeline, filling in time, 

Provided with toys and 'Scouting for Boys'. 

You bought a guitar to punish your rna, 

And you didn't like school, and you 

know you're nobody's fool, 

So welcome to the machine. 

Welcome my son, welcome to the machine. 

What did you dream? 

It's alright we told you what to dream. 

You dreamed of a big star, 

He played a mean guitar, 

He always ate in the Steak Bar. 

He loved to drive in his Jaguar. 

So welcome to the Machine. 
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In this example we are looking to extract and display lines which contain the word "punish." 

File.open("welcome-to-the-machine.txt").each { Ilinel 

puts line if line =- /punish/ 

} 

This will display: You bought a guitar to punish your rna, 

23.11 Access control 

We can define access rights for features as follows: 

Public methods can be called by anyone. Methods are public by default (except for 

initialize, which is always private, see below). 

Protected methods can be invoked only by objects of the defining class and its subclasses. 

Private methods can be called only in the defining class. 

We can specify access control as follows: 

class MyClass 

def method1 

end 

protected 

def method2 

end 

private 

def method3 

end 

# default is Jpublic J 

# subsequent methods will be protected J 

# subsequent methods will be Jprivate J 
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public 

def method4 

end 

end 

# subsequent methods will be 'public' 

Alternatively we can specify access control as follows: 

class MyClass 

def method1 

end 

public : method1, : method4 

protected :method2 

private : method3 

end 

Example 23.6. Consider the following computation: 

m1 = Movie.new("Taxi driver", "1976") 

m2= Movie. new (" The Deer Hunter", "1978") 

m3= Movie.new("Once upon a time in America", "1984") 

a = [m1, m2, m3] 

puts a.class 

puts a.length 

puts a [0] . to_s 

ObjectSpace.each_object(Movie) {Ixl puts x.to_s} 

puts Movie.total 

The computation produces the following output: 

Array 

3 

Movie: Taxi driver (1976) 
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Movie: Once upon a time in America (1984) 

Movie: The Deer Hunter (1978) 

Movie: Taxi driver (1976) 

Number of movies: 3 

Let us provide a definition of class Movie: 

class Movie 

©©howMany = 0 

def initia1ize(tit1e, year) 

©tit1e title 

©year year 

©©howMany += 1 

end 

def Movie.tota1 

return "Number of movies: #©©howMany" 

end 

def to_s 

return "Movie: " + ©tit1e + " (" + ©year + ")" 

end 

end 

23.12 The interactive Ruby shell 

You can invoke the interactive Ruby shell (irb) , shown in Figure 23.1, from the command 

prompt of the underlying operating system (here: Windows 7). Among other things, irb 

allows you to enter arithmetic-, relational- or logical expressions. 

You can also use the irb to tryout snippets of code (see Figure 23.2). 
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Figure 23.1: The interactive Ruby shell (1). 

Figure 23.2: The interactive Ruby shell (2). 
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Chapter 24 

Modules 

In OOP, the class provides the predominant unit of modularization. Some languages, in­

cluding Ruby, further support modules. A module in Ruby can encapsulate constants and 

methods. A module cannot be instantiated and cannot form part of any inheritance hierarchy 

(i.e. cannot inherit and cannot be subclassified.) 

24.1 Modules as namespaces 

Example 24.1. Consider module MathLibrary which encapsulates mathematical operations 

for all clients. 

module MathLibrary 

PI = 3.14159265 

def MathLibrary.factorial(n) 

if n == 0 

1 

else 

n * factorial(n-1) 

end 

end 

end 
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We can use the module as follows: 

puts MathLibrary::PI 

puts MathLibrary.factorial(5) 

#=> 3.14159265 

#=> 120 

The Math module in Ruby's standard library provides a rich set of methods. As one example: 

puts Math.sqrt(9) #=> 3.0 

If a class would make heavy usage of a module, then a class can include this module in its 

definition. This would simplify the calls to the modules functionality as it would not require 

the module's name as a prefix: 

include Math 

puts sqrt (9) #=> 3.0 

24.2 Modules as mixins 

Though Ruby does not support multiple inheritance, classes can import modules as mixins. 

In object-oriented programming languages, a mixin is a class that provides a certain func­

tionality to be inherited by a subclass, but is not meant to be instantiated1 . Unlike with 

inheritance, a class cannot claim an is-a relationship with a mixin module. Ruby resolves 

name collision based on the lexical ordering of the inclusion of a module. The last module 

to be included hides all previous possible name collisions. 

In general, mixins are useful for encapsulating behavior that is common to many objects in 

the class hierarchy, but cannot be factored into a common superclass. 

1 In 1973 Steve Herrell, owner of Steve's ice-cream parlor in Somerville, Massachusetts, began blending 
his customers' choice of cookie and/or candy morsels into his ice cream and called the item a "mix-in", a 
copyrighted trademark he sold with the store in 1977. 
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Example 24.2. Consider class Coordinate which includes module Debugger which provides 

a reflective operation. 

module Debugger 

def reflect 

" # { s elf . c las s . n am e } ( \ # # { s elf . 0 b j e c t _ i d } ): # { s elf . to _ s } " 

end 

end 

class Coordinate 

include Debugger 

attr_accessor :x, :y 

def initialize (x, y) 

@x = x 

@y y 

end 

def to_s 

return "(#@x, #@y)" 

end 

end 

pi Coordinate.new(O,O) 

p2 Coordinate.newel,l) 

puts pl.reflect 

puts p2.reflect 

#=> Coordinate (#21114270): (0, 0) 

#=> Coordinate (#21114120): (1, 1) 

Example 24.3. Consider class DBase which includes module Authenticator which provides 

an authentication facility. 

module Authenticator 

def authenticate(passwd) 

if (passwd == "pass") then 

return "true" 

else 
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return "false" 

end 

end 

end 

require "Authenticator.rb" 

class DBase 

include Authenticator 

# 

end 

db = DBase.new 

puts db.authenticate("go") #=> false 

24.3 Additional examples 

Example 24.4. Describe the axes of decomposition provided by Ruby, and compare and 

contrast with those of Java. 

1. Java provides the notion of class as the primary decomposition axis. Additionally it 

provides an interface. Ruby's primary decomposition axis is the class and additionally 

it provides a module. 

2. Java's classes can be abstract. Ruby's classes cannot be abstract. 

3. Interfaces are a mechanism to reuse specification only; Modules are a way to reuse 

implementation only. 

Example 24.5. In the context of Ruby, compare delegation to module inclusion in terms 

of the notion of class interfaces. 

With module inclusion, methods defined in modules become part of the interface of classes 

(and all their subclasses). This is not the case with delegation. 
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Example 24.6. Briefly provide some rationale for the support of mixins in a language such 

as Ruby. Is such a construct superfluous? 

Mixins are useful for encapsulating behavior that is common to many objects in the class 

hierarchy, but cannot be factored into a common superclass. 
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Chapter 25 

Introspection 

Introspection is the process by which of a program can observe (but not modify) its own 

properties, including its structure and behavior. A related term, reflection, is the process by 

which a program can observe as well as modify its own properties, including its structure 

and behavior. In Ruby, we can obtain the following type of knowledge about a program: 

• What objects it contains. 

• The contents and behaviors of objects. 

• The current class hierarchy. 

Consider the instantiations below: 

require "CoordinateV2.rb" 

require "XYZCoordinate.rb" 

pi Coordinate.new(O, 0) 

p2 XYZCoordinate.new(O,O,O) 

def p2.whatIam 

return "The origin on the 3D system." 

end 

We can execute a number of different types of reflective queries, discussed in the subsequent 

sections, to obtain knowledge about the system. 
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25.1 What objects does the system contain? 

We can iterate over all instances of Coordinate in the system, posing a reflective query 

about each one. Let us inspect the system for objects of type Coordinate: 

ObjectSpace.each_object(Coordinate) { Ipl 

puts p.inspect 

} 

We obtain the following: 

#<XYZCoordinate:Ox28455d8 @y=O, @z=O, @x=O> 

#<Coordinate:Ox2846028 @y=O, @x=O> 

Note that an instance of XYZCoordinate is_a Coordinate, hence the listing of p2 in the 

output. 

25.2 Contents and behaviors of objects 

We can check whether or not a particular object may respond to a message: 

puts p1.respond_to?(" se tX") 

puts p2.respond_to?(" whatlam") 

#=> false 

#=> true 

We can also determine the class and unique id of objects, and test their relationship to 

classes: 

puts p1.id #=> 21113660 

puts p1.class #=> Coordinate 

puts p2.class #=> XYZCoordinate 

puts p2.instance_variables #=> @y @z @x 

puts p2.kind_of? Coordinate #=> true 

puts p2.kind_of? XYZCoordinate #=> true 

puts p1.kind_of? XYZCoordinate #=> false 

puts p2.instance_of? Coordinate #=> false 

puts p2.instance_of? XYZCoordinate #=> true 
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25.3 The current class hierarchy 

We can inquire about the superclass of a given class: 

puts XYZCoordinate.superclass 

We can also inquire about class features: 

#=> Coordinate 

puts XYZCoordinate.private_instance_methods #=> 

puts XYZCoordinate.public_instance_methods #=> 

puts XYZCoordinate.class_variables #=> @@totaL 
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Part VII 

Functional Object-Oriented 

Programming with Common Lisp 

Object System (CLOS) 
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Chapter 26 

Object-oriented programming with 

generic functions 

26.1 Classes and objects 

We will model classes with CLOS (Common LISP Object System), an object-oriented ex­

tension to the LISP language. Consider the CLOS definition of class semaphore. 

(defclass semaphore () 

((count :accessor semaphore-count 

: ini tform 0) 

(name :reader semaphore-name 

:initarg :name))) 

All instances of a class have the same structure. This structure is in the form of slots. A slot 

has a name and a value. A value describes the slot's state at a given time. This state infor­

mation can be read and written by accessor methods. CLOS offers two kinds of slots: local 

slots and shared slots. Even though all instances of the same class have the same structure, 

each instance, maintains its own unique state. 

We can create an instance of semaphore by 

> (setf s (make-instance 'semaphore)) 
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#<SEMAPHORE 200DOE93> 

The: ini tform slot option makes it possible to specify a default value for a slot. 

The : ini targ : name slot option makes it possible to initialize the value of this slot when 

creating instances. We can, therefore, specify an alternative instantiation for class semaphore 

by providing an argument for the value of slot name as 

> (setf s (make-instance 'semaphore :name 'my-resource)) 

#<SEMAPHORE 200FEAEF> 

We can encapsulate the call to make-instance in a constructor function to instantiate the 

class semaphore as follows: 

(defun make-semaphore(name) 

(make-instance 'semaphore :name name)) 

N ow we can instantiate the class as 

> (setf s (make-semaphore 'my-resource)) 

#<SEMAPHORE 20093193> 

The: accessor slot option generates two methods: one for a reader and one for a writer. The 

term accessor generic function is an umbrella term that includes both readers and writers. 

We can set a new value for the slot count as 

> (setf (semaphore-count s) 1) 

1 

We can read the value of count as 

> (semaphore-count s) 

1 

The : reader slot option generates a method for a reader generic function only. 
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> (semaphore-name s) 

MY-RESOURCE 

We can provide methods to increment and decrement the value of slot count as follows: 

(defmethod increment ((sem semaphore)) 

(setf (semaphore-count sem) (+ 1 (semaphore-count sem)))) 

(defmethod decrement ((sem semaphore)) 

(setf (semaphore-count sem) (- (semaphore-count sem) 1))) 

> (increment s) 

1 

> (increment s) 

2 

> (decrement s) 

1 

The complete class definition now looks as follows 

(defclass semaphore () 

((count :accessor semaphore-count 

: ini tform 0) 

(name :reader semaphore-name 

:initarg :name))) 

(defun make-semaphore(name) 

(make-instance 'semaphore :name name)) 

(defmethod increment ((sem semaphore)) 

(setf (semaphore-count sem) (+ 1 (semaphore-count sem)))) 

(defmethod decrement ((sem semaphore)) 

(setf (semaphore-count sem) (- (semaphore-count sem) 1))) 

We observe that methods are not encapsulated inside classes, but they are instead defined 

separately from classes. 
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26.1.1 Generic functions and methods 

A few things are important to note in CLOS: Initially, we see that unlike in message passing 

systems (like e.g. Java), methods are defined outside of classes. Additionally, all methods 

that have the same name constitute a generic function. In CLOS, a generic function is com­

posed by a number of methods using defmethod. Each method provides an implementation 

of the generic function for a particular class of argument. For example, in 

(defmethod increment ((sem semaphore)) ... ) 

the required parameter to method increment is specialized by being replaced by a two­

element list, the first element being the name of the parameter (sem) and the second element 

(class semaphore) being the specializer. If a method does not belong to a class definition, 

where does it belong to? A method belongs to the generic function that is responsible for 

determining which method to run in response to an invocation. 

26.1.2 Auxiliary methods 

Regular methods (or primary methods) can be augmented by auxiliary methods of three 

kinds: 

1. : before methods allow us to say "When a primary method is called, before running 

the code that should run, execute the code of this auxiliary method." 

2. : after methods allow us to say "When a primary method is called, after running the 

code that should run, execute the code of this auxiliary method." 

3. : around methods are called instead of the primary methods. They allow us to say 

"When a primary method is called, instead of running the code that should run, 

execute the code of this auxiliary method." An around-method may also choose to 

invoke its primary method via call-next-method. 

Example 26.1. In this example we will subclassify semaphore to define class binary-semaphore. 

(defclass binary-semaphore (semaphore)() ) 

(defun make-binary-semaphore(name) 
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(make-instance 'binary-semaphore :name name)) 

(defmethod increment :around ((binsem binary-semaphore)) 

(if (= (semaphore-count binsem) 1) 

nil 

(call-next-method))) 

(defmethod decrement :around ((binsem binary-semaphore)) 

(if (= (semaphore-count binsem) 0) 

nil 

(call-next-method))) 

We can instantiate and interact with a binary semaphore object as follows: 

> (setf bsem (make-binary-semaphore 'my-binary-resource)) 

#<BINARY-SEMAPHORE 200B8847> 

> (increment bsem) 

1 

> (increment bsem) 

NIL 

> (semaphore-count bsem) 

1 

> (decrement bsem) 

o 

> (decrement bsem) 

NIL 

> (semaphore-count bsem) 

o 

Example 26.2. Consider the following interaction with an object which acts as an un­

bounded collection of elements: 

> (setq c (make-instance 'collection)) 

#<COLLECTION 200A4347> 
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> (insert ' (a b) c) 

> (insert ' (a b) c) 

"error: duplicate element. II 

> (insert '(c d) c) 

> (erase 'Cd e) c) 

"error: element does not exist." 

> (erase '(c d) c) 

> (display c) 

((A B)) 

> (erase ' (a b) c) 

> (erase ' (a b) c) 

"error: list empty." 

The structure of class collection is shown below with incomplete definitions of the func­

tions. 

(defclass collection 0 

((els :accessor elements 

:initarg :els 

: initform '0))) 

II returns contents of the entire collection c. 

(defmethod display ((c collection)) ... ) 

II inserts an element el into a collection c. 

I I imposes a restriction that el does not already exist; 

I I 0 therwi s e it re turns an error mess age. 

I I calls uti lity function memberp. 

(defmethod insert (el (c collection)) ... ) 

;; predicate function; tests element for membership in list lst 

(defun memberp (element 1st) ... ) 

" erases el from collection c. 

I I returns an error message if collection is empty. 

I I returns an error message if el is not found. 

I I calls uti lity function memberp. 
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;; calls utility function remove-element. 

(defmethod erase (el (c collection)) ... ) 

;; returns a new list with element el removed from list lst. 

(defun remove-e lemen t (el 1st) ... ) 
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Let us complete the definition of the class, by providing the implementation of all functions: 

(defclass collection 0 

((els :accessor elements 

:initarg :els 

: initform '0))) 

(defmethod display ((c collection)) 

(elements c)) 

(defmethod insert (el (c collection)) 

(if (memberp el (elements c)) 

"error: duplicate element." 

(setf (elements c) (cons el (elements c))))) 

(defun memberp (element 1st) 

(cond 

((null 1st) nil) 

((equal element (car 1st)) t) 

(t (memberp element (cdr 1st))))) 

(defmethod erase (el (c collection)) 

(if (null (elements c)) 

"error: list empty." 

(if (memberp el (elements c)) 

(setf (elements c) (remove-element el (elements c))) 

"error: element does not exist." ))) 

(defun remove-element (el 1st) 

(if (equal el (car 1st)) 

(cdr 1st) 

(cons (car 1st) (remove-element el (cdr 1st))))) 

26.2 Inheritance and method combination 

As a subclass is a specialization of any component class, it is considered more specific (as 

opposed to the reverse which makes superclasses less specific than their subclasses). When 
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there are methods defined for more than one component class of a given class, we need to 

have a rule to state how we decide which one to use. CLOS provides a rule that specifies how 

state and behavior are combined. This rule refers to a total ordering of all the superclasses 

of a class, from the most specific to the least specific, called the class precedence list of a 

given class. 

1. Start from the bottom of the inheritance graph. 

2. Walk upward, always taking the left-most unexplored branch. 

3. If you are about to enter a node and you notice another path entering the same node 

from the right, retrace your steps until you get to a node with an unexplored path 

leading upward. Go to step [2]. 

The order in which you first enter each node, determines its place in the precedence list. 

Example 26.3. Consider the following inheritance hierarchy of Figure 26.1 codified in the 

segment below: 

(defclass shape 0 ( ... )) 

(defclass circle (shape) ( ... )) 

(defclass colored-object 0 ( ... )) 

(def class colored-circle (circle colored-obj ect) ( ... )) 

The precedence list determined by this graph is colored-circle, circle, shape, colored-obj ect, 

standard-object. 

Example 26.4. Consider the definitions of the following two classes: 

(defclass person 0 0) 

(defmethod speak ((s person) string) 

(format t "-A" string)) 

(defmethod speak :before ((s person) string) 

(print "Hello!")) 

(defmethod speak :after ((s person) string) 

(print "Have a nice day!")) 
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shape 

circle 

colored-circle 

Figure 26.1: Multiple inheritance. 

(defclass speaker (person) ()) 

(defmethod speak :before ((i speaker) string) 

(print "Bonjour!")) 

(defmethod speak :after ((i speaker) string) 

(print "Bonne journee!")) 

colored-object 

The code describes two classes person and speaker, related through inheritance. The latter 

is a subclass of the former. The superclass defines one regular function, speak and two 

auxiliary functions attached to it which execute before and after the code of the regular 

function. The subclass only defines auxiliary methods attached to the speak function in the 

superclass. Auxiliary functions in the subclass have priority over the auxiliary functions in 

the superclass. In the case of before auxiliary functions, priority means executing first. In 

the case of after auxiliary functions, priority means executing last. 

Consider the following statement: 

(speak (make-instance 'speaker) "Can I help you?") 
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The output is as follows: 

"Bonjour!" 

"Hello!" Can I help you? 

"Have a nice day!" 

"Bonne journee!" 

The statement creates an instance of speaker and sends message speak with argument Can 

I help you? The before auxiliary method of the subclass will run first which will display 

"Bonj our! ", following by the before auxiliary method of the superclass which will display 

"Hello! ". Next comes the body of the regular method speak which will display the value 

of its parameter, Can I help you? The after auxiliary method of the superclass will 

execute first displaying "Have a nice day!", followed by the after auxiliary method of 

the subclass which will display "Bonne j ournee ! " . 
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Chapter 27 

Data structures and abstract data 

types II 

27.1 The Stack ADT 

The Stack ADT is a collection that stores arbitrary objects. Insertions and deletions follow 

a last-in first-out (LIFO) scheme. There are two major stack operations: 

push (stack element): inserts element onto stack. 

pop 0: removes and returns the last inserted element. 

Furthermore, there are some auxiliary operations: 

top 0: returns the last inserted element without removing it from the collection. 

size 0: returns the number of elements stored. 

isempty (): returns a Boolean value indicating whether no elements are stored. 

isfull 0: returns a Boolean value indicating whether the collection has reached its capac­

ity. 

In implementing a stack, we need to keep in mind that both major operations access the 

stack from the same end. The push ( .. ) operation would simply create a new list with the 



456

element to be placed on the stack and the current list and set it as the new value of the 

current list. The cons operation is well suited for this as it takes, as its arguments, an atom 

and a list. We also need to increment the size of the stack by one. 

(defmethod push ((s stack) element) 

(setf (stack-elements s) (cons element (stack-elements s))) 

(setf (stack-size s) (+ 1 (stack-size s)))) 

The pop operation would return the head of the list, as well as create a new list comprised 

by the tail of the current list, setting it as the new value for the stack. We also need to 

decrement the size of the stack by one. 

(defmethod pop ((s stack)) 

(let (( top-element (car (stack-elements s)))) 

(setf (stack-elements s) (cdr (stack-elements s))) 

(setf (stack-size s) (- (stack-size s) 1)) 

top-element)) 

We can now put everything together as follows: 

(defclass stack 0 

((elements :accessor stack-elements 

:initarg :elements 

:initform '0) 

(size :accessor stack-size 

:initarg :size 

:initform 0) 

(capacity :accessor stack-capacity 

:initform 3 

: allocation: class))) 

(defmethod isempty ((s stack)) 

(equal (stack-size s) 0)) 

(defmethod isfull ((s stack)) 

(equal (stack-size s) (stack-capacity s))) 
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(defmethod push ((s stack) element) 

(setf (stack-elements s) (cons element (stack-elements s))) 

(setf (stack-size s) (+ 1 (stack-size s)))) 

(defmethod pop ((s stack)) 

(let ((top-element (car (stack-elements s)))) 

(setf (stack-elements s) (cdr (stack-elements s))) 

(setf (stack-size s) (- (stack-size s) 1)) 

top-element)) 

(defmethod top ((s stack)) 

(car (stack-elements s))) 

(defmethod push :around ((s stack) element) 

(if Cisfull s) 

"The stack is already full." 

(call-next-method s element))) 

(defmethod pop :around ((s stack)) 

(if Cisempty s) 

"The stack is empty." 

(call-next-method s))) 

(defmethod top :around ((s stack)) 

(if Cisempty s) 

"The stack is empty." 

(call-next-method s))) 

We can now instantiate stack and use it as follows: 

> (setq s (make-instance 'stack)) 

#<STACK 200934B3> 

> (push s 3) 

> (push s 4) 

> (push s 5) 

> (top s) 

5 
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Stack 
elements: List 
size: Integer 
capacity: Integer 

push (stack, ElementType) 
push :around 
pop (stack): ElementType 
pop :around 
top(stack): ElementType 
top :around 
isempty(stack): Boolean 
isfull(stack): Boolean 

Figure 27.1: UML class diagram representation of class stack. 

> (push s 6) 

liThe stack is already full. II 

> (pop s) 

5 

> (pop s) 

4 

> (pop s) 

3 

> (pop s) 

liThe stack is empty. II 

> (stack-size s) 

0 

Example 27.1. Consider the definition of class stack illustrated in UML in Figure 27.1. 

Define class stack2 which extends stack. Class stack2 introduces method pop2 that be­

haves exactly like pop but can only execute immediately after a pop. In the case where 

pop2 cannot execute, your program should display an error. You may not redefine stack or 

override behavior from stack. 
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The definition of stack2 is shown below: 

(defclass stack2 (stack) 

((popsemaphore :accessor popsem 

: initform 0))) 

(defmethod pop2 ((s stack2)) 

(pop s)) 

(defmethod push :after ((s stack2) element) 

(setf (popsem s) 0)) 

(defmethod pop :after ((s stack2)) 

(setf (popsem s) 1)) 

(defmethod pop2 : after ((s stack2)) 

(setf (popsem s) 0)) 

(defmethod pop2 :around ((s stack2)) 

(if (= (popsem s) 1) 

(call-next-method s) 

"Cannot operate: pop2")) 

A sample run is shown below: 

> (setq s (make-instance 'stack2)) 

#<STACK2 2009353B> 

> (pop2 s) 

"Cannot operate: pop2" 

> (pop s) 

"The stack is empty." 

> (push s 1) 

1 

> (push s 3) 

2 

> (push s 5) 

3 

> (push s 7) 
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liThe stack is already full. II 

> (pop2 s) 

"Cannot operate: pOp2" 

> (pop s) 

5 

> (pop2 s) 

3 

> (pop2 s) 

"Cannot operate: pOp2" 

> (pop s) 

1 

> (pop s) 

liThe stack is empty. II 

> (pop2 s) 

liThe stack is empty. II 

> (top s) 

liThe stack is empty. II 

> (push s 9) 

1 

> (pop2 s) 

"Cannot operate: pOp2" 

> (top s) 

9 

> (pop s) 

9 

27.2 The Queue ADT 

The Queue ADT is a collection that stores arbitrary objects. Insertions and deletions follow 

a first-in first-out (FIFO) scheme. 
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There are two major queue operations: 

enqueue (queue element): inserts element at the rear of queue. 

dequeue (): removes and returns the element at the front of the queue. 

Furthermore, there are some auxiliary operations: 

front (): returns the front element without removing it from the collection. 

size (): returns the number of elements stored. 

isempty (): returns a Boolean value indicating whether no elements are stored. 

isfull (): returns a Boolean value indicating whether the collection has reached its capac­

ity. 

In implementing a queue, we need to keep in mind that the two major operations access 

the queue from two different ends: the front and the rear. Recall that an ADT is an 

implementation-independent concept. This implies that it is up to us, the implementors of 

the ADT, to decide which end of the list we will consider as the front or the rear (as long as 

they are not the same end of the list). 

The enqueue operation adds an element to the rear and the dequeue operation removes an 

element from the front. We have two choices for this implementation: 

1. To consider the head of the list as the front of the queue. This implies that during 

enqueue, an element is added to the end of the list and during dequeue the head of the 

list is removed. 

2. To consider the head of the list as the rear of the queue. This implies that during 

enqueue an element is added to the head of the list and during dequeue the last 

element of the list is removed. 
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The first choice is more convenient and we shall follow it here. To enqueue an element, we 

need to create a new list which is comprised with the current list and the element. How do 

we attach an element at the end of a current list? Function cons takes an element and a list, 

so that would not work. Function append can work, but it takes as arguments two lists. We 

can transform the element at hand into a list through the list function and then provide it 

as the second argument to append. We also need to increment the size of the queue by one. 

(defmethod enqueue ((s queue) element) 

(setf (queue-elements s) (append (queue-elements s) (list element))) 

(setf (queue-size s) (+ 1 (queue-size s)))) 

To dequeue an element we simply have to return the head of the current list as well as to 

create a new list without the head element of the current list and set it as the new value to 

the queue. We also need to decrement the size of the queue by one. 

(defmethod dequeue ((s queue)) 

(let (( top-element (car (queue-elements s)))) 

(setf (queue-elements s) (cdr (queue-elements s))) 

(setf (queue-size s) (- (queue-size s) 1)) 

top-element)) 

We can now put everything together as follows: 

(defclass queue 0 

((elements :accessor queue-elements 

:initarg :elements 

:initform '0) 

(size :accessor queue-size 

:initarg :size 

:initform 0) 

(capacity :accessor queue-capacity 

:initform 3 

: allocation: class))) 

(defmethod isempty ((s queue)) 

(equal (queue-size s) 0)) 
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(defmethod isfull ((s queue)) 

(equal (queue-size s) (queue-capacity s))) 

(defmethod enqueue ((s queue) element) 

(setf (queue-elements s) (append (queue-elements s) (list element))) 

(setf (queue-size s) (+ 1 (queue-size s)))) 

(defmethod dequeue ((s queue)) 

(let ((top-element (car (queue-elements s)))) 

(setf (queue-elements s) (cdr (queue-elements s))) 

(setf (queue-size s) (- (queue-size s) 1)) 

top-element)) 

(defmethod enqueue :around ((s queue) element) 

(if Cisfull s) 

"The queue is already full." 

(call-next-method s element))) 

(defmethod dequeue :around ((s queue)) 

(if Cisempty s) 

"The queue is empty." 

(call-next-method s))) 

We can now instantiate queue and use it as follows: 

> (setq q (make-instance 'queue)) 

#<QUEUE 200BFCD7> 

> (enqueue q 3) 

> (enqueue q , (a b)) 

> (enqueue q 7) 

> (enqueue q 11) 

liThe queue is already full. II 

> (dequeue q) 

3 

> (dequeue q) 

(A B) 
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> (dequeue q) 

7 

> (dequeue q) 

liThe queue is empty." 
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