More on NasMm and Assembly Language

W. H. K. Bester

Computer Science 252, University of Stellenbosch, 2008

Assembly language You try to shoot yourself in the foot, only to discover you
first have to invent the gun, the bullet, and your foot. If you know what
you are doing, in only 7 bytes, you blow off your entire leg using a mere 2
CPU cycles. Else, when you pull the trigger, the gun beeps and crashes the
system. Then the system administrator arrives and shoots you in the foot.
After a moment of contemplation, he shoots himself in the foot and then
hops rabidly around the lab, shooting everyone else in the head.

C You shoot yourself in the foot.

C++ You accidentally create a dozen instances of yourself and shoot them all in
the foot. Providing emergency medical assistance is impossible since you
can’t tell which are bitwise copies and which are just pointing at others and
saying, “That’s me, over there.”

C# You stab yourself in the foot with something sharp.

Java You locate the Gun class, but discover that the Bullet class is abstract,
so you extend it and write the missing part of the implementation. Then
you implement the Shootdble interface for your foot, and recompile the
Foot class. The interface lets the bullet call the doDamage () method on
the Foot, so the Foot can damage itself in the most effective way. Now
you run the program, and call the doShoot () method on the instance of
the Gun class. First the Gun creates an instance of Bullet, which calls the
doFire () method on the Gun. The Gun calls the hit (Bullet) method on
the Foot, and the instance of Bullet is passed to the Foot. But this causes
an I1legalHitByBullet exception to be thrown, and you die.

Pascal The compiler won’t let you shoot yourself in the foot.

Python You try to shoot yourself in the foot, only to realise that there’s no need,
since Guido thoughtfully shot you in the foot years ago.

Ruby If you can find enough documentation, your foot is ready to be shot in
roughly five minutes, but you just can’t find anywhere to shoot it.

SQL You type: SELECT @ammo:=bullet FROM gun WHERE trigger = ‘PULLED’;
INSERT INTO leg (foot) VALUES (@ammo);—and then you realise something
didn’t match a field type, and your foot was converted into a watermelon.

VisualBasic Shoot yourself in the foot with a water pistol. On Vista, continue
until your entire lower body is waterlogged.

Contents
1 “Hello World!” in Linux Assembly Language

2 NASM in more detail
2.1 Command-Line Options
2.2 The LayoutofaSourceLine
2.3 Pseudo-Instructionso Lo
2.4 EXPressions o vv vttt i e e e e e e e e
2.5 Macros ..o e
2.6 SECHIONS . v v v v v e e i e e e e e e e e e e e e e e e e e e

3 Linking with GCC

4 Logic and Boolean Algebra
4.1 The Basic Logic Operations
4.2 BItVECtOrS v v vt

%define SYS_exit 1
%define SYS_write 4
%define STDOUT 1

; %% Read-only data ZAXAARIARRERARARIRR TR RIREEETRRRIRERELERLTIRTETT D

section .rodata

hello: db "Hello, g World!", 10
hello_len: equ $-hello

; X% Code section LAXXXINEEIIIAEEIIILEEIIILETRIILETIIIEEEERIRLEZTRILL T
section .text
global _start

_start:
; gdb doesn’t like to stop at the entry point address, so uwe
; put a mop here for convenience
nop

main:
mov eax, SYS_write
mov ebx, STDOUT
mov ecx, hello
mov edx, hello_len
int 80h

xor ebx, ebx

mov eax, SYS_exit
int 80h

Figure 1: Assembly source to display “Hello, World!” on screen.

1 “Hello World!” in Linux Assembly Language

Consider the assembly code in figure 1. As a matter of fact, don’t only consider
it, but copy the code into your favourite editor vim, and save it as hello.asm.
Then do the following;:

1. Assemble the program with NASM.

[whkbester@knuth rw252]$ nasm -f elf hello.asm

This creates the unlinked object file hello.o.

2. Next, using 1d, link the object file produced by NAsM into an executable.

[whkbester@knuth rw252]$ 1d -o hello hello.o

This produces the executable file hello.

3. Run the executable thus:

[whkbester@knuth rw252]$./hello
Hello, World!

Now, let us examine the assembly source in figure 1 line by line. A more
detailed discussion follows in the next section.

Lines 1 to 3 defines three single-line macros. The NAsM preprocessor directive
%define functions similarly to the C preprocessor directive #define. For
example, %define SYS_write 4 will expand SYS_write in line 21 to 4.

Line 6 announces that the section for initialised read-only data follows.

Line 8 defines a string constant that is labelled hello and that ends with the
LINEFEED character, which is given as decimal 10. Since we don’t involve
C, we don’t need to follow the C string convention, and ending the string
with null character is unnecessary.!

Line 9 defines the numeric constant labelled hello_len to be the length of the
string constant defined on the previous line.

Line 12 announces that the section for code follows.

Line 13 declares the global symbol _start, which labels the program entry point
where execution will begin when the assembled and linked code is run. If
_start is not specified, the linker 1d gives a warning.

Lines 21 to 24 set up the required registers for the write system call.

Lines 25 invokes the system call interrupt so that the write is executed. For
now, we ignore the return value in register EAX.

Lines 27 to 29 set up the registers for and execute the exit system call.

2 NASM in more detail

2.1 Command-Line Options

For all the NaAsM command-line options, refer to chapter 2 of the NASM manual.
The options of particular interest to us are:

-f specifies the output file format.? In our setup, we invariably follow this switch
with elf to specify the Executable and Linking Format (ELF). Nasm is
capable of generating output in other formats, including Microsoft OMF
and Win32 object files, as well as the older Linux a.out format. For more
information on ELF type the following at the console:

[whkbester@knuth rw252]$ man 5 elf

INull, derived from the Latin word nullus, means “nothing”. For example, a null pointer inten-
tionally does not point to an object, the null string is the empty string, and the null character has
neither value nor control meaning, but may be used to delimit strings. In C, both the null pointer
symbol NULL and the null character \O may be written as a literal zero 0; doing so, however, is
considered bad style.

2A file containing code that has already been assembled or compiled is called an object file (as
opposed to source file). We tend to use “output file format” and “object file format” interchangeably.

1 %define SYS_exit 1

2 %define SYS_write 4

3 %define STDOUT 1

4

6 section .rodata

8 00000000 48656C6C6F2C20576F - hello: db "Hello, World!", 10
9 00000009 726C64210A

10 hello_len: equ $-hello
11

13 section .text

15 global _start

16

17 _start:

20 00000000 90 nop

21

22 main:

23 00000001 B9[00000000] mov ecx, hello

24 00000006 BAOE000000 mov edx, hello_len
25 0000000B BB01000000 mov ebx, STDOUT

26 00000010 B804000000 mov eax, SYS_write
27 00000015 CD8O int 80h

28

29 00000017 31DB xor ebx, ebx

30 00000019 B801000000 mov eax, SYS_exit
31 0000001E CD8O int 80h

Figure 2: The listing file produced by NasMm for hello.asm.

-1 (followed by a file name) lets NAsM generate a listing file, which contains ad-
dress offsets and the generated code on the left, and the actual source code,
with multi-line macros expanded, on the right. The following, for exam-
ple, produces a listing file for hello.asm, called hello.1lst and given in
figure 2:

[whkbester@knuth rw252]$ nasm -f elf -1 hello.lst hello.asm

Note that, for the sake of brevity, some empty and all comment lines have
been removed in figure 2 although they appear in the actual file.

-v displays version information.

2.2 The Layout of a Source Line
Each NasM source line contains some combination of the following four fields:
label: instruction operands ; comment

Most of these fields are optional; refer to chapter 2 of the NaAsM manual. The
presence or absence of any combination of a label, an instruction and comment
is allowed. The operand field is either required or forbidden by the presence and
nature of the instruction field. The applicable instructions may be prefaced by
REP, REPE, etc. in the usual way.

Valid labels start with a letter, “.”, “_” or “?”, followed by any of these
characters, numbers, “$”, “#”, “@”, or “~”. Labels beginning with a single
period have special meaning. They are treated as local labels, which means that

are associated with the previous non-local label. This implies that they can be
reused. For example, we can use the local label .1loop (once) in each of the
scopes of non-local labels.

Labels should not be confused with the stronger concept of a variable. A
variable may take on values, but a label only marks a position. In high-level
languages such as C and Java, variables are supported in the compiler by a sym-
bol table that associates type, scope, size, visibility, and other information with a
variable identifier. Labels, on the other hand, are simply devices of convenience,
allowing the assembly programmer to use identifiers to refer to positions in the
code, thereby leaving the calculation of jump offsets and subroutine entry points
to the assembler.

Also, there are no primitive data types per se in assembly language. The type
of the data follows implicitly from its context, i.e., which instruction is used to
operate on it, whether it is used as a memory address that points to other data,
etc. For example, the use of div or idiv specifies whether the operands are to
be treated as unsigned or signed integers, respectively.

2.3 Pseudo-Instructions

Pseudo-instructions, although they are not real Intel instructions, may used in
the instruction field of a source line. The pseudo-instructions supported by NaAsm
are db, dw, dd, dq, resb, resw, resd, resq, rest, the incbin and equ commands,
and the times prefix.

The dx instructions are used to declare initialised data in the output file (x is b
for byte, w for word, etc.), while the resx instructions are used in the BSS section
to declare uninitialised storage space. incbin includes a file verbatim into the
output file, and equ defines a symbol to be a given constant value. times causes
an instruction to be assembled multiple times. Refer to chapter 3 of the NAsM
manual for examples and a more detailed discussion.

2.4 Expressions

Expressions in NASM have a similar syntax to those of C. Regarding integers,
NAsM guarantees the same as C: There will always be at least 32 bits per integer.
In increasing order of precedence, the arithmetic operators provided by Nasm
are:

1. “|”, the bitwise OR operator;

W~

2 , the bitwise XOR operator;
3. “&”, the bitwise AND operator;
4

. “<<” and “>>”, the left and right bit shifts—in NAsM right bit shifts are
always unsigned, i.e., the bit positions that are shifted in on the left are

zero-filled;
5. “4+” and “-”, the ordinary addition and subtraction operators;

6. “x” </ «//” «%”, and “%%”, the mutiplication, division, and modulo
operators, where a single division or modulo operator is unsigned, and a
double one is signed; and

%define SYS_read
%define SYS_write
%define SYS_open
%define SYS_close
%define SYS_creat

W oUW

Figure 3: Using macros to name magic numbers for Linux system calls.

«

7. the unary operators “-” (which negates its operand), “+” (which does
nothing and is only for symmetry with the unary minus), “~” (which com-
putes the one’s complement of its operand), and “SEG” (which gives the
segment address of its operand).

Additionally, NasM provides two special tokens for use in expression: $ eval-
uates to the assembly position at the beginning of the line containing the expres-
sion, and $$ evaluates to the beginning of the current section. For example, the
expression $-$$ calculates how far a line is into its section.

Another example of a NAsM expression is line 9 of hello.asm in figure 1:
The label hello_len is defined to have the value of the operand after the pseudo-
instruction equ. The operand $-hello evaluates to the difference of the assembly
positions at the current line (i.e., the line beginning with the label hello_len)
and the line beginning with the label hello, which is the length of the string
labelled hello. Therefore, during NASM preprocessing, the symbol hello_len
in line 24 is replaced with the number 14. So, the generated code for line 24 of
figure 2 makes sense, because EB is the opcode for an immediate mov to EDX, and
OE000000 is the little-endian hexadecimal representation of 14.

2.5 Macros

Within the context of preprocessing, for assembly as well as C, a macro is a rule
that specifies how a sequence of input tokens is mapped to output characters.
Such a mapping process is known as macro expansion. In the preprocessors for
assembly and C, macro expansion works by simple textual search-and-replace.

You should, by now, be familiar with using macros to define so-called magic
numbers in C. Magic numbers are the constants, array sizes, character positions,
conversion factors, and other literal values in programs. As a rule of thumb, any
number other than 0 or 1 is likely to be a magic number. Using a descriptive
string rather than a number leads to code that is more readable, and that is also
easier to modify and debug.

In a program that uses some system calls frequently, it makes sense to name
the system call function numbers as was done in figure 3. Then, instead of
writing “mov eax, 3”, we write “mov eax, SYS_read”, which is not only more
readable, but as far as mistakes with function numbers go, has a single point of
failure, namely where the magic number itself was defined.

In both assembly language and C, we may also use function macros, i.e.,
macros that expand not only to a number, but to a piece of code. For example,
make the following C macro definition:

#define BOOLEAN_VALUE(x) ((x) ? "TRUE" : "FALSE")

Then it is legal to write:

int b = 0;
printf ("buis,%s\n", BOOLEAN_VALUE (b)) ;
Remember that a macro works by a textual search-and-replace. So, the macro
defined above is not a true function, and after the preprocessor has run, the
previous code will be:
int b = 0;
printf ("byis,%s\n", ((x) ? "TRUE" : "FALSE"));
In C, function macros should be used sparingly. When C was first defined—in
a time of slow machines with expensive function calls—function macros were a
handy way of avoiding the cost of a function call for short computations that
are executed frequently. Today we do not suffer from such limited resources, so
function macros provide little benefit.
An example of warranted use is conditional compilation of debug informa-
tion reporting routines. Consider the following definition:

#ifdef DEBUG_OUTPUT

void DebugInfo(const char *fmt, ...);

#define DINFO(x, ...) DebugInfo(x, ## __VA_ARGS__)
#else

#define DINFO(x, ...)
#endif

If the DEBUG_OUTPUT macro switch is flipped on for GCC invocation, the function
prototype is included in the preprocessed file, and the DINFO(x, ...) macro
definition is made; if the switch was not given, DINFO(x, ...) will be replaced
with the empty string in the source file. To flip the switch, use the following GCC
invocation for the file app.c:

[whkbester@knuth rw252]$ gcc -DDEBUG_OUTPUT -o app app.c

Similarly, NASM macros may expand to operands and instruction snippets.
The NasM manual gives the following example:

%define ctrl 0x1F &
%define param(a,b) ((a)+(a)*(b))

mov byte [param(2,ebx)], ctrl °’D’

The last line will expand to:
mov byte [(2)+(2)*(ebx)], O0xl1F & °’D°’
Naswm also allows multi-line macros. Consider the following code snippet,

which expands to a function prologue that follows the C calling convention and
gets the stack space to be reserved for local variables as a macro argument.

%macro prologue 1
push ebp

mov ebp, esp
sub esp, %1

%endmacro

Macros can be overloaded, so the following code snippet defines a macro
(with no arguments) that allocates no local stack space, and that can be included
in the same source file as the previous code snippet:

%macro prologue O

push ebp
mov ebp, esp

%endmacro

2.6 Sections

A section directive changes which section of the output the code will be assem-
bled into. The Unix object formats, including ELF all support the standard
section names .text, .data, and .bss, for code, and initialised data, respec-
tively. Additionally, ELF supports .rodata for read-only initialised data. In
more detail:

.text contains the instructions that is executed. It is the only section that may be
executed, and is treated as read-only data once the program is run.

.data contains initialised data. It cannot be executed, but may be read from
and written to when the program is run. The dx pseudo-instructions, for
example, are used to declare initialised data:

section .data
num: dd 0x12345678 ; 0xz78 0xz56 0xz34 Oxz12

str: db ’Hello!’, 10, O ; the string "Hello" with linefeed
; and terminator

.bss contains uninitialised data. It cannot be executed, but may be read from
and written to when the program is run. The resx pseudo-instructions,
for example, are used to reserve uninitialised storage space:

section .bss

buffer: resb 64 ; reserve 64 bytes
wordvar: resw 1 ; reserve a word

.rodata contains initialised read-only data. It may not be written to. This section
is illustrated in hello.asm in figure 1.

3 Linking with GCC

Thus far, we have only looked at linking with 1d. However, from previous ex-
perience with C source code divided into separate modules, we know that GCC
is quite willing to link object code files into an executable. It stands to reason
that we would try to “compile” the object code file hello.o, assembled from
hello.asm by NAsM, as follows:

[whkbester@knuth rw252]$ gcc -o hello hello.o

However, when we run GCC like this, the following error message is displayed:

hello.o: In function ‘_start’:
hello.asm: (.text+0x0): multiple definition of ‘_start’
/usr/1ib/gcc/i386-redhat-linux/4.1.2/../../../crtl.o: (.text+0x0) :

[4

%define SYS_write 4
%define STDOUT 1

section .rodata
hello: db "Hello,_ World!'!", 10
hello_len: equ $-hello

section .text

global main
main:

push ebp

mov ebp, esp

push ebx

mov eax, SYS_write
mov ebx, STDOUT
mov ecXx, hello

mov edx, hello_len

int 80h

pop ebx

mov esp, ebp
pop ebp

ret

Figure 4: hello.asm rewritten for use with GCC.

first defined here
/usr/lib/gcc/i386-redhat-linux/4.1.2/../../../crtl.o: In
function ‘_start’:

(.text+0x18): undefined reference to ‘main’

collect2: 1d returned 1 exit status

This error is the result of C mandating a function called main (), which is the
program entry point for a program compiled from C source. As our source file
in figure 1 currently stands, there is no global symbol main, hence the complaint
by 1d.

We already have a label main, so if we add a global declaration for this la-
bel, GCC should be happy. (Remember to reassemble hello.asm with NASM.)
Unfortunately, GCC complains again:

hello.o: In function ¢

hello.asm: (.text+0x0): multiple definition of ‘_start’
/usr/1ib/gcc/i386-redhat-linux/4.1.2/../../../crtl.o: (.text+0x0) :
first defined here

collect2: 1d returned 1 exit status

_start’:
<

To get things working, we need to remove the global declaration of the symbol
_start. Also, since GCC treats main as a function, we should follow the C
function calling convention. This yields the code in figure 4. Note that, just as
if we were writing any other function in assembler for use with C source code,
as the callee we must preserve the registers EBX, EDI, and ESI if we plan to use
them. We used EBX for the system call write, so it is preserved on the stack.

If we use 1d instead of GCC to link, we must point 1d to all the relevant
libraries to link against. Therefore, if we want to use functions such as printf ()

10

#include <stdio.h>

int main(int argc, char *argv[])

{
printf ("Hello, world!\n");
}
Figure 5: C source code to display “Hello, world!”.
.file "hello.c"
.section .rodata
.LCO:
.string "Hello,_ world!"
.text
.globl main
.type main, @function
main:
leal 4(%esp), hecx
andl $-16, Yesp
pushl -4 (%ecx)
pushl %ebp
movl %esp, %ebp
pushl hecx
subl $4, Jesp
movl $.LCO, (%esp)
call puts
addl $4, %esp
popl %hecx
popl %ebp
leal -4 (%ecx), %hesp
ret
.size main, .-main
.ident "GCC:,(GNU)_,4.1.2,20070925,(Red ;Hat,4.1.2-33)"
.section .note.GNU-stack,"",@progbits

Figure 6: The assembler listing for figure 5 produced by GCC.

from the standard C libraries, it is easier to use GCC itself for linking.

GCC will produce assembler output that may be assembled with the GNU
assembler Gas. If we compile the program hello.c in figure 5 with the S switch,
GCC will produce hello.s, given in figure 6:

[whkbester@knuth rw252]$ gcc -S hello.c

By default, Gas uses the AT& T-style syntax, where the source operand ap-
pears before the destination operand. So, “movl %esp, %ebp” is interpreted the
same as the NAsM code “mov ebp, esp”. (NasM uses the Intel syntax where the
destination operand is before the source operand.) Note, also, that the operand
size is specified as a suffix to the instruction name. So, the suffix b specifies
byte-sized operands, and w and 1 specifies word-sized (16-bit) and long (32-bit)
operands, respectively.

Until recently, gas only supported the AT&T syntax. This implies that inline
assembly—where assembly is included directly into a C source file—is written
in the AT&T syntax. Gas now also supports the Intel syntax through marking

11

X NOTYy X y XANDY X y XORY X Yy XXORYy
1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

Figure 7: Truth tables for NOT, AND, OR, and XOR.

X y —x -~y XAy XAy (XA-y)V(oxAy)
0 0 1 1 0 0 0
0 1 1 0 0 1 1
1 0 0 1 1 0 1
1 1 0 0 0 0 1

Figure 8: The derivation of xORr from AND, OR, and NOT.

the assembly source with a special directive. It is, however, a new and poorly
documented feature, so we stick with the AT&T syntax for inline assembly.

4 Logic and Boolean Algebra

We now digress briefly into the areas of logic and boolean algebra. It is tempting
here to delve into digital logic, a subject right on the edge between computer
science and electronic engineering. Suffice it, however, merely to note some of
the basics.

The word digital refers to information being represented as discrete values.
So a decimal digital computer, for example, would need a way of representing
10 values, the numbers 0 to 9. In practice, because of physical restrictions on
components, it is easier to deal with binary digital logic. In these systems, the
numbers 0 and 1 are represented by a low and a high voltage interval.

In binary logic computers, the binary values are manipulated by logic circuits
called gates. These gates correspond to the operators of boolean algebra, which
is a binary symbolic logic, and is named after its inventor George Boole.?

4.1 The Basic Logic Operations

Only three boolean functions are necessary to run the whole gamut of boolean al-
gebra involving several variables. These are the familiar operators AND, OR, and
NOT, which are defined by the first three truth tables in figure 7. The derivation
of XoR (“exclusive or”, the last table in figure 7) is given in figure 8 to illustrate
how the basic operations are used in constructing another boolean operator.

If we interpret the 1 and 0 in figure 7 as TRUE and FALSE, respectively, then
AND, OR, and NOT correspond to the logical connectives conjunction (“A”),
disjunction (“V”), and negation (“—”), respectively, from formal mathematical

31t seems that the biggest honour mathematicians can bestow on a fellow practitioner of the dark
arts, is to create an eponymous adjective sans capital letter. Hence, “abelian” in stead of “Abelian”,
“boolean” in stead of “Boolean”, and so on.

12

1A =A 0+A=A (Identity law)
0A=0 1+A=1 (Null law)

AA = A A+A=A (Idempotent law)
AA=0 A+rA=1 (Inverse law)

AB = BA A+B=B+A (Commutative law)
(AB)C = A(BC) (A+B)+C=A+ (B+C) (Associative law)
AfBC=(A+B)A+C) AB+C)=AB:AC (Distributive law)
A(A+B)=A A+AB=A (Absorption law)
AB=A+B A+B=AB (De Morgan’s law)

Figure 9: Some identities in boolean algebra.

& bitwise AND | bitwise inclusive OrR
~ bitwise exclusive OR ~ one’s complement (unary)

Figure 10: C operators for logical bitwise operations.

logic. By convention, in boolean algebra we use implied multiplication or a dot
to mean AND, a plus to mean OR, and an over-bar to mean NOT.

Some important identities of boolean algebra are given in figure 9. Be careful
where the notation seems to contradict “normal” mathematical interpretation,
for example, in the distributive law where OR is said to distribute over AND.
When in doubt, draw up a truth table!

At this point, you may think that this all is a lot of academic hogwash. How-
ever, De Morgan’s laws, for example, may be especially helpful when reasoning
about the guard statements in loops, particularly if you are converting the struc-
tured loops of a high-level programming language to the goto paradigm of as-
sembler, and at the same time, trying to use as few logic instructions as possible.

4.2 Bit vectors

Note: In this subsection, we use the C notation for bitwise operations, given in
figure 10.

It sometimes necessary to represent binary states—i.e., on—off, busy—availa-
ble, true—false, and yes—no—succinctly in code. To this end, bit vectors may
be used. In assembly language, a bit vector is the just the value of a register
or memory area, except that we interpret this value as a string of 1s and Os,
each string position storing the on—off or busy-available state of some device,
the yes—no or true—false result of boolean computation, etc. In other words,
we don’t interpret the register or memory value as an integer, a floating-point
number, a character, etc.

We cannot, however, address bits directly. So, how do we use such a bit
vector? An example will best illustrate what we do. Say we have 8 I/O devices,
numbered 0 to 7, attached to a computer. We may now use a byte value as a bit
vector to represent the busy or available states of the devices, where 1 indicates

13

that a device is busy, and 0 that it is not. Then the bit vector 00101100 means
that devices 0, 1, 4, 6, and 7 are available, and that devices 2, 3, and 5 are busy.

To work with a single bit, we use the concept of a mask. The mask for bit b
is simply (the binary representation of) 2. The mask for bit 0 is therefore 20 =
00000001, for bit 1 it is 2! = 00000010, for bit 2 it is 22 = 00000100, and so on.

To see whether a device b is busy, we compute the bitwise AND of the device
vector with the mask for the bit b, and then zero-fill shift the result b bits to the
right. For example, to check the state of device 2, and given the device vector
00101100, we compute

00101100
& 00000100
00000100
>> 2 00000001

to see that device 2 is busy. Note that, since the mask is a power of 2, we may
create the mask itself by bitshifts to the left.
Similarly, we may check the state of device 7 by

00101100
& 10000000
00000000
>> 7 00000000

to see that it is available. Intuitively, since k & 1 = k and k & 0 = 0, the effect of
the AND-operation is to “mask off” the other device bits, leaving us only with
the bit of interest.

To set bit b to 1, we compute the bitwise OR of the given vector with the
mask for bit b. Since k | 1 =1 and k | 0 = k, the effect of the or-operation is to
“mask on” the bit, regardless of what its value was previously, and leaving the
other bits unchanged. If bit b were 1, it stays 1, and if it were 0, it becomes 1.
The following two computations illustrate the point:

00101100 00101100
| 00010000 | 00000100
00111100 00101100

To set bit b to 0, we compute the bitwise AND of the given vector with the
bitwise complement of the mask for bit b. This sets bit b to 0, regardless of its
previous value, but leaves the other bits unchanged. To set bits 4 and 2 to 0, we
do, respectively:

00101100 00101100
& 11101111 & 11111011
00101100 00101000

To flip bit b, we compute the XOR of the given vector with the mask for bit b.
Since k ~ 1 = ~k and k ~ 0 = k, the effect is to keep every bit in the original vector
aligned with a 0 the same, but to flip the bit aligned with the 1 in the mask. This
is illustrated in the following two bitflips, for bits 4 and 2, respectively:

00101100 00101100
=~ 00010000 =~ 00000100
00111100 00101000

14

