
Page 1
Last Updated: October 2003

Chapter 4 Instructor's Manual

__

Chapter Objectives

Chapter 4, MARIE: An Introduction to a Simple Computer, illustrates basic computer
organization and introduces many fundamental concepts, including the fetch-decode-execute
cycle, the data path, clocks and buses, register transfer notation, and of course, the CPU. A
very simple architecture, MARIE, and its ISA are presented to allow the reader to gain a full
understanding of the basic architectural organization involved in program execution. MARIE
exhibits the classical von Neumann design, and includes a program counter, an accumulator,
an instruction register, 4096 bytes of memory, and two addressing modes. Assembly language
programming is introduced to reinforce the concepts of instruction format, instruction mode,
data format, and control that are presented earlier. This is not an assembly language textbook
and was not designed to provide a practical course in assembly language programming. The
primary objective in introducing assembly is to further the understanding of computer
architecture in general. However, a simulator for MARIE is provided so assembly language
programs can be written, assembled, and run on the MARIE architecture. The two methods of
control, hardwiring and microprogramming, are introduced and compared in this chapter.
Finally, Intel and MIPS architectures are compared to reinforce the concepts in the chapter.

This chapter should be covered before Chapters 5.

Lectures should focus on the following points:

• CPU basics and organization. To understand how computers work, one must become
familiar with the components and how they are organized. The CPU is a good component to
start with as its operation is very easy to understand.

• Datapath. The datapath is a network of storage units and arithmetic and logic units
connected by buses. It is very important to understand the flow of information in a
computer system, and studying the datapath will help to understand this flow.

• Registers. Registers are used widely in computer systems as places to store a wide variety
of data, such as addresses, program counters, or data necessary for program execution.

• ALU. The ALU carries out the logic operations (for example, comparisons) and arithmetic
operations (such as add or multiply) required by the instructions being executed by the
computer system. A simple ALU was introduced in Chapter 3. In Chapter 4, the focus is
on integrating the ALU into the entire system.

The Essentials of Computer Organization and Architecture

Linda Null and Julia Lobur
Jones and Bartlett Publishers, 2003

Page 2
Last Updated: October 2003

• Control Unit. The control unit is responsible for extracting instructions from memory,
decoding these instructions, making sure data is in the right place at the right time, telling
the ALU which registers are to be used, servicing interrupts, and turning on the correct
circuitry in the ALU for the execution of the desired operation.

• Buses. Buses are the devices that allow various components in the system to
communicate. In particular, address buses and data buses are important.

• Clocks. Every computer contains an internal clock that regulates how quickly instructions
can be executed. The clock also synchronizes all of the components in the system. Clock
frequency and clock cycle time determine how quickly a computer can function.

• Input/Output Subsystem. Although I/O is covered in depth in Chapter 7, the basic
operation of I/O subsystems is introduced and tied in with the rest of the computer system.

• Memory organization and addressing. Understanding how a computer function requires
not only an understanding of how memory is built, but also how it is laid out and
addressed.

• Interrupts. Interrupts are events that alter the normal flow of execution in a computer
system. They are used for I/O, error handling, and other miscellaneous events, and the
system cannot function properly without them.

• The MARIE architecture. This is a simple architecture consisting of a very small memory
and a simplified CPU. This architecture ties together the concepts from Chapters 2 and 3,
and applies this knowledge. It allows coverage of an architecture in depth without the often
messy details of a real architecture.

• Instruction processing. The fetch-decode-execute cycle represents the steps that a
computer follows to run a program. By this point, the ideas of how a system can be built
and the necessary components to build it have been covered. Discussing instruction
processing allows a deeper understanding of how the system actually works.

• Register transfer notation. This symbolic notation can be used to describe how
instructions execute at a very low level.

• Assemblers. An assembler's job is to convert assembly language (using mnemonics) into
machine language (which consists entirely of binary values, or strings of zeros and ones).
Assemblers take a programmer's assembly language program, which is really a symbolic
representation of the binary numbers, and convert it into binary instructions, or the
machine code equivalent. MARIE's assembly language combined with the MARIE simulator
allow programs to be written and run on the MARIE architecture.

• Hardwired control versus microprogramming. Control signals assert lines on various
digital components allowing the CPU to execute a sequence of steps correctly. This control
can be hardwired and built from digital components, or can use a software program
(microprogram). Focus should be on the differences between these two methods.

• Case studies of real architectures. Case studies of the Intel and MIPS architectures,
with a discussion on those concepts relevant to Chapters 2, 3, and 4, helps reinforce why it
is important to understand these ideas. Focus is on register sets, CPU speed, and
instruction set architectures. Although MARIE is a very simple architecture, these case
studies help confirm that MARIE's design is quite similar to real-world architectures in
many aspects.

Required Lecture Time

The important concepts in Chapter 4 can typically be covered in 6 lecture hours. However, if a
teacher wants the students to have a mastery of all topics in Chapter 4, 10 lecture hours are
more reasonable. If lecture time is limited, we suggest that the focus be on MARIE and
understanding the components, as well as writing programs in MARIE's assembly language.

Page 3
Last Updated: October 2003

Lecture Tips

The material in this chapter is not intended to be a thorough coverage of assembly language
programming. Our intent is to provide a simple architecture with a simple language so
students understand the basics of how the architecture and the language are connected.

Regarding potential problem areas for students, there are several. First, the I/O subsystem
tends to be unfamiliar territory for most students, so we suggest that instructors spend enough
time on this topic to be sure students understand I/O interrupts and the process of I/O itself.
Students also seem to have problems with the concepts of byte-addressable and word-
addressable. Many mistakenly believe a word to be 32 bits. It is important to stress that the
word length is whatever the architecture specifies, and that many machines have words of
more than 8 bits, but are still byte-addressable machines.

An organization and architecture class is typically the first place students encounter assembly
language. It is often difficult for them to understand the "simplicity" of assembly language
programming and to recognize that many of the nice features (looping, IF statements, etc.) of
higher-level languages often don't exist. Instructors need to emphasis that programming in
assembly language (whether it be MARIE's or any other assembly language) requires
significantly more intimate knowledge about the architecture and the datapath. In addition,
instructors should mention that, although students probably won't be doing much assembly
language programming, understanding how to program in assembly will make them better
higher-level programmers.

A note about RTN: In the program trace in Figure 4.13, the changes to the registers are shown
during the steps of the fetch-decode-execute cycle. Note that for Load 104, the steps are:

Load 104

Step RTN PC IR MAR MBR AC
(initial values) 100 ------ ------ ------ ------
Fetch MAR ← PC 100 ------ 100 ------ ------

IR ← M[MAR] 100 1104 100 ------ ------
PC ← PC + 1 101 1104 100 ------ ------

Decode MAR ← IR[11-0] 101 1104 104 ------ ------
(decode IR[15-12] 101 1104 104 ------ ------

Get operand MBR ← M[MAR] 101 1104 104 0023 ------
Execute AC ← MBR 101 1104 104 0023 0023

However, when listing the actual RTN for Load, we provide the following:

Load X MAR ← X
MBR ← M[MAR], AC ← MBR

The RTN is a clarified version of what is going on in the registers. For example, MAR ← X is
really MAR ← IR[11-0]. However, we opted to use X instead of IR[11-0] to give an overall view of
what was happening. Instructors should point this out to students.

In addition, for the JnS instruction, we have indicated the following steps:

Page 4
Last Updated: October 2003

JnS X MBR ← PC
MAR ← X
M[MAR] ← MBR
MBR ← X
AC ← 1
AC ← AC + MBR
PC ← AC

The MAR ← X (or MAR ← IR[11-0]) is actually not necessary as the MAR should contain the
value of X from the instruction fetch. However, we have included it to remind readers of how
this instruction actually works.

A note on the SkipCond instruction. Originally we had intended to use only the two bits that
indicated the branching condition in the instruction. For example, Skipcond 01 was to be the
assembly language instruction for skipping the next instruction if the AC is equal to 0.
However, to be consistent with the hexadecimal representation of the instructions, we use
Skipcond 400 (which, in hex, is 8400, or 1000 0100 0000 0000). Please note that on Page
176, Example 4.1 and page 178, Example 4.2, the Skipcond instructions need to be changed
(please see errata) to follow this format.

Students typically have problems writing the programs, so we encourage instructors to assign
multiple programming assignments using MarieSim.

Answers to Exercises

1. What are the main functions of the CPU?
Ans.

The CPU is responsible for fetching program instructions, decoding each instruction that is
fetched and performing the indicated sequence of operations on the correct data.

__

2. Explain what the CPU should do when an interrupt occurs. Include in your answer the
method the CPU uses to detect an interrupt, how it is handled and what happens when the
interrupt has been serviced.

Ans.
The CPU checks, at the beginning of the fetch-decode-execute cycle to see if an interrupt is
pending. (This is often done via a special status or flag register.) If so, an interrupt
handling routine is dispatched, which itself follows the fetch-decode-execute cycle to
process the handler's instructions. When the routine is finished, normal execution of the of
the program continues.

__

3. How many bits would you need to address a 2M × 32 memory if

a. The memory is byte-addressable?
b. The memory is word-addressable?

Ans.

a. There are 2M × 4 bytes which equals 2 × 220 × 22 = 223 total bytes, so 23 bits are needed
for an address

b. There are 2M words which equals 2 × 220 = 221, so 21 bits are required for an address

Page 5
Last Updated: October 2003

__
4. How many bits are required to address a 4M × 16 main memory if

a. Main memory is byte-addressable?
b. Main memory is word-addressable?

Ans.

a. There are 4M × 2 bytes which equals 22 × 220 × 2 = 223 total bytes, so 23 bits are needed
for an address

b. There are 4M words which equals 22 × 220 = 222, so 22 bits are required for an address
__

5. How many bits are required to address a 1M × 8 main memory if
a. Main memory is byte-addressable?
b. Main memory is word-addressable?

Ans.

a. There are 1M ×1 bytes which equals 220 total bytes, so 20 bits are needed for an address
b. There are 1M words which equals 220, so 20 bits are required for an address

__

6. Suppose that a 2M x 16 main memory is built using 256K × 8 RAM chips and memory is
word-addressable.

a. How many RAM chips are necessary?
b. How many RAM chips are there per memory word?
c. How many address bits are needed for each RAM chip?
d. How many banks will this memory have?
e. How many address bits are needed for all of memory?
f. If high-order interleaving is used, where would address 14 (which is E in hex) be

located?
g. Repeat Exercise 6f for low-order interleaving.

Ans.

a. 16 (8 rows of 2 columns)
b. 2
c. 256K = 218, so 18 bits
d. 8
e. 2M = 221, so 21 bits
f. Bank 0 (000)
g. Bank 6 (110) if counting from 0, Bank 7 if counting from 1

__

7. Redo Exercise 6 assuming a 16M × 16 memory built using 512K × 8 RAM chips.
Ans.

a. 64 (32 rows of 2 columns)
b. 2
c. 512K = 219, so 19 bits
d. 32
e. 16M = 224, so 24 bits
f. Bank 0 (000)
g. Bank 14 if counting from 0, Bank 15 if counting from 1.

__

Page 6
Last Updated: October 2003

8. A digital computer has a memory unit with 24 bits per word. The instruction set consists of
150 different operations. All instructions have an operation code part (opcode) and an
address part (allowing for only one address). Each instruction is stored in one word of
memory.

a. How many bits are needed for the opcode?
b. How many bits are left for the address part of the instruction?
c. What is the maximum allowable size for memory?
d. What is the largest unsigned binary number that can be accommodated in one word of

memory?
Ans.

a. 8
b. 16
c. 216

d. 216 - 1
__

9. Assume a 220 byte memory:
a. What are the lowest and highest addresses if memory is byte-addressable?
b. What are the lowest and highest addresses if memory is word-addressable, assuming a

16-bit word?
c. What are the lowest and highest addresses if memory is word-addressable, assuming a

32-bit word?
Ans.

a. There are 220 bytes, which can all be addressed using addresses 0 through 220-1 with
20 bit addresses

b. There are only 219 words and addressing each requires using addresses 0 through 219 -1
c. There are only 218 words and addressing each requires using addresses 0 through 218 -1

__

10. Given a memory of 2048 bytes consisting of several 64 Byte x 8 RAM chips. Assuming
byte-addressable memory, which of the following seven diagrams indicates the correct way
to use the address bits? Explain your answer.

 10-bit address
2 bits for chip select 8 bits for address on chip

 64-bit address
16 bits for chip select 48 bits for address on chip

 11-bit address
6 bits for chip select 5 bits for address on chip

 6-bit address
1 bit for chip select 5 bits for address on chip

 11-bit address
5 bits for chip select 6 bits for address on chip

 10-bit address

a.

b.

c.

d.

e.

f.

Page 7
Last Updated: October 2003

4 bits for chip select 6 bits for address on chip

 64-bit address
8 bits for chip select 56 bits for address on chip

Ans.
The correct answer is e.

__

11. Explain the steps in the fetch-decode-execute cycle. Your explanation should include what
is happening in the various registers.

Ans.
The PC points to the next instruction to be fetched. When this instruction is fetched, it is
placed into the IR, and the PC is incremented by 1. The decode cycle looks at the
instruction in the IR to determine if data must be fetched. If so, the operand portion of the
instruction is placed in the MAR, and the data is fetched and placed in the MBR. The
instruction is then executed.

__

12. Explain why, in MARIE, the MAR is only 12 bits wide while the AC is 16 bits wide.

Only this hint was given to the students:
Hint: Consider the difference between data and addresses

Ans.
MARIE can handle 16-bit data, so the AC must be 16 bits wide. However, MARIE's
memory is limited to 4096 address locations, so the MAR only needs to be 12 bits wide to
hold the largest address.

__

13. List the hexadecimal code for the following program (hand assemble it).

Label Hex Address Instruction
100 Load A
101 Add One
102 Jump S1

S2, 103 Add One
104 Store A
105 Halt

S1, 106 Add A
107 Jump S2

A, 108 HEX 0023
One, 109 HEX 0001

Ans.
1108
3109
9106
3109
2108
7000
3108
9103
0023

g.

Page 8
Last Updated: October 2003

0001

__
14. What are the contents of the symbol table for the preceding program?
Ans.

__

15. Given the instruction set for MARIE in this chapter:

a. Decipher the following MARIE machine language instructions (write the assembly language
equivalent):

i) 0010000000000111
ii) 1001000000001011
iii) 0011000000001001

b. Write the following code segment in MARIE's assembly language:

if X > 1 then
 Y := X + X;

X := 0;
endif;
Y := Y + 1;

c. What are the potential problems (perhaps more than one) with the following assembly
language code fragment (implementing a subroutine) written to run on MARIE? The
subroutine assumes the parameter to be passed is in the AC and should double this value.
The Main part of the program includes a sample call to the subroutine. You can assume
this fragment is part of a larger program.

Main, Load X
Jump Sub1

Sret, Store X
…

Sub1, Add X
Jump Sret

Ans.

a. i) Store 007

ii) Jump 00B

iii) Add 009

b.
If, 100 Load X /Load X

101 Subt One /Subtract 1, store result in AC
102 Skipcond 800 /If AC>0 (X>1), skip the next instruction
103 Jump Endif /Jump to Endif if X is not greater than 1

Then, 104 Load X /Reload X so it can be doubled
105 Add X /Double X
106 Store Y /Y:= X + X
107 Clear /Move 0 into AC

A 108
One 109
S1 106
S2 103

Page 9
Last Updated: October 2003

108 Store X /Set X to 0
Endif, 109 Load Y /Load Y into AC

10A Add One /Add 1 to Y
10B Store Y /Y := Y + 1
10C Halt /Terminate program

X, 10D Dec ? /X has starting value, not given in problem
Y, 10E Dec ? /Y has starting value, not given in problem
One, 110 Dec 1 /Use as a constant

c. First, this subroutine works only for the parameter X (no other variable could be used
as X is explicitly added in the subroutine). Second, this subroutine cannot be called
from anywhere, as it always returns to Sret.

__

16. Write a MARIE program to evaluate the expression A x B + C x D.

Ans. Note: The line numbers as shown in the book are NOT necessary. They are included in
the book to help students see the correlation between the assembly language instructions and the
MARIE instructions.

ORG 100
Load A
Store X /Store A in first parameter
Load B
Store Y /Store B in second parameter
JnS Mul /Jump to multiplication subroutine
Load Sum /Get result
Store E /E:= A x B
Load C
Store X /Store C in first parameter
Load D
Store Y /Store D in second parameter
JnS Mul /Jump to multiplication subroutine
Load Sum /Get result
Store F /F := C x D
Load E /Get first result
Add F /AC now contains sum of A X B + C X D
Halt /Terminate program

A, Dec ? /Initial values of A,B,C,D not given in problem
B, Dec ? / (give values before assembling and running)
C, Dec ? /
D, Dec ? /
X, Dec 0 /First parameter
Y, Dec 0 /Second parameter
Ctr, Dec 0 /Counter for looping
One, Dec 1 /Constant with value 1
E, Dec 0 /Temp storage
F, Dec 0 /Temp storage
Sum, Dec 0
Mul, Hex 0 /Store return address here

Load Y /Load second parameter to be used as counter
Store Ctr /Store as counter
Clear /Clear sum
Store Sum /Zero out the sum to begin

Loop, Load Sum /Load the sum
Add X /Add first parameter
Store Sum /Store result in Sum

Page 10
Last Updated: October 2003

Load Ctr
Subt One /Decrement counter
Store Ctr /Store counter
SkipCond 400 /If counter = 0 finish subroutine
Jump Loop /Continue subroutine loop
JumpI Mul /Done with subroutine, return to main
END

__

17. Write the following code segment in MARIE assembly language:

X := 1;
while X < 10 do

 X := X + 1;
endwhile;

Ans.
Load One
Store X /Initialize X

Loop, Load X /Load loop constant
Subt Ten /Compare X to 10
SkipCond 000 /If AC<0 (X is less than 10), continue loop
Jump Endloop /If X is not less than 10, terminate loop
Load X /Begin body of loop
Add One /Add 1 to X
Store X /Store new value in X
Jump Loop /Continue loop

Endloop, Halt /Terminate program
X, Dec 0 /Storage for X
One, Dec 1 /The constant value 1
Ten, Dec 10 /The loop constant

__

18. Write the following code segment in MARIE assembly language:
(A hint, not a solution, was given to students on this problem.)

Sum := 0;
for X := 1 to 10 do

Sum := Sum + X;

Ans.
ORG 100
Load One /Load constant
Store X /Initialize loop control variable X

Loop, Load X /Load X
Subt Ten /Compare X to 10
SkipCond 000 /If AC<0 (X is less than 10), continue loop
Jump Endloop /If X is not less than 10, terminate loop
Load Sum
Add X /Add X to Sum
Store Sum /Store result in Sum
Load X
Add One /Increment X
Store X
Jump Loop

Endloop, Load Sum
Output /Print Sum

Page 11
Last Updated: October 2003

Halt /terminate program
Sum, Dec 0
X, Dec 0 /Storage for X
One, Dec 1 /The constant value 1
Ten, Dec 10 /The loop constant

 END

__

19. Write a MARIE program using a loop that multiplies two positive numbers by using
repeated addition. For example, to multiple 3 x 6, the program would add 3 six times, or
3+3+3+3+3+3.

Ans.

ORG 100
Load Y /Load second value to be used as counter
Store Ctr /Store as counter

Loop, Load Sum /Load the sum
Add X /Add X to Sum
Store Sum /Store result in Sum
Load Ctr
Subt One /Decrement counter
Store Ctr /Store counter
SkipCond 400 /If AC=0 (Ctr = 0), discontinue looping
Jump Loop /If AC not 0, continue looping

Endloop,Load Sum
Output /Print product
Halt /Sum contains the product of X and Y

Ctr, Dec 0
X, Dec ? /Initial value of X (could also be input)
Y, Dec ? /Initial value of Y (could also be input)
Sum, Dec 0 /Initial value of Sum
One, Dec 1 /The constant value 1

END

__

20. Write a MARIE subroutine to subtract two numbers.
Ans.

Assume the formal parameters are X and Y, and we are subtracting Y from X. Assume also
that the actual parameters are A and B. These values could be input or declared in the
program. This program tests the subroutine with two sets of values.

ORG 100
Load A /Load the first number
Store X /Let X be the first parameter
Load B /Load the second number
Store Y /Let Y be the second parameter
JnS Subr /Store return address, jump to procedure
Load X /Load the result
Output /Output the first difference
Load C
Store X
Load D
Store Y
JnS Subr
Load X

Page 12
Last Updated: October 2003

Output /Output the second difference
Halt /Terminate program

X, Dec 0 /These could also be input
Y, Dec 0
A, Dec 8 /A and B could be input or declared
B, Dec 4
C, Dec 10
D, Dec 2
Subr, Hex 0 /Store return address here

Load X /Load the first number
Subt Y /Subtract the second number
Store X /Store result in first parameter
JumpI Subr
END

__

21. More registers appears to be a good thing, in terms of reducing the total number of memory
accesses a program might require. Give an arithmetic example to support this statement.
First, determine the number of memory accesses necessary using MARIE and the two
registers for holding memory data values (AC and MBR). Then perform the same arithmetic
computation for a processor that has more than three registers to hold memory data
values.

Ans.
Consider the statement Sum = (A + B) - (C + D). In MARIE, this would require:
Load A
Add B
Store Temp1
Load C
Add D
Store Temp2
Load Temp1
Subt Temp2
Store Sum

for a total of 9 memory accesses. (If C+D is executed first, this can be done with 7 memory
accesses.)

If an architecture has 4 registers (call them R1, R2, R3 and R4), then we could:
Load R1,A
Load R2,B
Add R1,R2
Load R3,C
Load R4,D
Add R3,R4 /no memory accesses required for this operation
Subt R1,R4 /no memory accesses required for this operation
StoreSum

for a total of 5 memory accesses.
__

Page 13
Last Updated: October 2003

22. MARIE saves the return address for a subroutine in memory, at a location designated by
the jump-and-store instruction. In some architectures, this address is stored in a register,
and in many it is stored on a stack. Which of these methods would best handle recursion?
Explain your answer.

Ans.
A stack would handle recursion more efficiently. The stack could grow as large as
necessary to accommodate multiple calls to the subroutine. If there were only one register
or one memory location, multiple calls to the subroutine from within the subroutine (i.e.
recursion) would not be possible.

__

23. Provide a trace (similar to the one in Figure 4.13) for Example 4.2.
Ans. The trace will present the statements in execution order.

If, 100 Load X /Load the first value
101 Subt Y /Subtract the value of Y, store result in AC
102 Skipcond 400 /If AC=0 (X=Y), skip the next instruction

/Note: This is Skipcond 01 in the book
103 Jump Else /Jump to Else part if AC is not equal to 0

Then, 104 Load X /Reload X so it can be doubled
105 Add X /Double X
106 Store X /Store the new value
107 Jump Endif /Skip over the false, or else, part to end of if

Else, 108 Load Y /Start the else part by loading Y
109 Subt X /Subtract X from Y
10A Store Y /Store Y-X in Y

Endif, 10B Halt /Terminate program (it doesn't do much!)
X, 10C Dec 12 /Assume these values for X and Y
Y, 10D Dec 20

Load X

Step RTN PC IR MAR MBR AC
(initial values) 100 ------ ------ ------ ------
Fetch MAR ← PC 100 ------ 100 ------ ------

IR ← M[MAR] 100 110C 100 ------ ------
PC ← PC + 1 101 110C 100 ------ ------

Decode MAR ← IR[11-0] 101 110C 10C ------ ------
(decode IR[15-12] 101 110C 10C ------ ------

Get operand MBR ← M[MAR] 101 110C 10C 000C ------
Execute AC ← MBR 101 110C 10C 000C 000C

Subt Y

Step RTN PC IR MAR MBR AC
(initial values) 101 110C 10C 000C 000C
Fetch MAR ← PC 101 110C 101 000C 000C

IR ← M[MAR] 101 410D 101 000C 000C
PC ← PC + 1 102 410D 101 000C 000C

Decode MAR ← IR[11-0] 102 410D 10D 000C 000C
(decode IR[15-12] 102 410D 10D 000C 000C

Get operand MBR ← M[MAR] 102 410D 10D 0014 000C
Execute AC ← AC - MBR 102 410D 10D 0014 FFF8

Page 14
Last Updated: October 2003

Skipcond 400 (Skipcond 01 in book)

Step RTN PC IR MAR MBR AC
(initial values) 102 410D 10D 0014 FFF8
Fetch MAR ← PC 102 410D 102 0014 FFF8

IR ← M[MAR] 102 8400 102 0014 FFF8
PC ← PC + 1 103 8400 102 0014 FFF8

Decode MAR ← IR[11-0] 103 8400 400 0014 FFF8
(decode IR[15-12] 103 8400 400 0014 FFF8

Get operand (not necessary) 103 8400 400 0014 FFF8
Execute do nothing (AC < 0) 103 8400 400 0014 FFF8

Jump Else

Step RTN PC IR MAR MBR AC
(initial values) 103 8400 400 0014 FFF8
Fetch MAR ← PC 103 8400 103 0014 FFF8

IR ← M[MAR] 103 9108 103 0014 FFF8
PC ← PC + 1 104 9108 103 0014 FFF8

Decode MAR ← IR[11-0] 104 9108 108 0014 FFF8
(decode IR[15-12] 104 9108 108 0014 FFF8

Get operand (not necessary) 104 9108 108 0014 FFF8
Execute PC ← IR[11-0] 108 9108 108 000C FFF8

Load Y

Step RTN PC IR MAR MBR AC
(initial values) 108 9108 108 000C FFF8
Fetch MAR ← PC 108 9108 108 000C FFF8

IR ← M[MAR] 108 110D 108 000C FFF8
PC ← PC + 1 109 110D 108 000C FFF8

Decode MAR ← IR[11-0] 109 110D 10D 000C FFF8
(decode IR[15-12] 109 110D 10D 000C FFF8

Get operand MBR ← M[MAR] 109 110D 10D 0014 FFF8
Execute AC ← MBR 109 110D 10D 0014 0014

Subt X

Step RTN PC IR MAR MBR AC
(initial values) 109 110D 10D 0014 0014
Fetch MAR ← PC 109 110D 109 0014 0014

IR ← M[MAR] 109 410C 109 0014 0014
PC ← PC + 1 10A 410C 109 0014 0014

Decode MAR ← IR[11-0] 10A 410C 10C 0014 0014
(decode IR[15-12] 10A 410C 10C 0014 0014

Get operand MBR ← M[MAR] 10A 410C 10C 000C 0014
Execute AC ← AC - MBR 10A 410C 10C 000C 0008

Page 15
Last Updated: October 2003

Store Y

Step RTN PC IR MAR MBR AC
(initial values) 10A 410C 10C 000C 0008
Fetch MAR ← PC 10A 410C 10A 000C 0008

IR ← M[MAR] 10A 210D 10A 000C 0008
PC ← PC + 1 10B 210D 10A 000C 0008

Decode MAR ← IR[11-0] 10B 210D 10D 000C 0008
(decode IR[15-12] 10B 210D 10D 000C 0008

Get operand not necessary 10B 210D 10D 000C 0008
Execute MBR ← AC 10B 210D 10D 0008 0008
(changes Y) M[MAR] ← MBR 10B 210D 10D 0008 0008

Halt

Step RTN PC IR MAR MBR AC
(initial values) 10B 210D 10D 0008 0008
Fetch MAR ← PC 10B 210D 10B 0008 0008

IR ← M[MAR] 10B 7000 10B 0008 0008
PC ← PC + 1 10C 7000 10B 0008 0008

Decode MAR ← IR[11-0] 10C 7000 000 0008 0008
(decode IR[15-12] 10C 7000 000 0008 0008

Get operand not necessary 10C 7000 000 0008 0008
Execute terminate program 10C 7000 000 0008 0008

__

24. Provide a trace (similar to the one in Figure 4.13) for Example 4.3.

Ans. The trace will present the statements in execution order.

100 Load X /Load the first number to be doubled
101 Store Temp /Use Temp as a parameter to pass value to Subr
102 JnS Subr /Store return address, jump to procedure
103 Store X /Store first number, doubled
104 Load Y /Load the second number to be doubled
105 Store Temp /Use Temp as a parameter to pass value to Subr
106 JnS Subr /Store return address, jump to procedure
107 Store Y /Store second number, doubled
108 Halt /End program

X, 109 Dec 20
Y, 10A Dec 48
Temp, 10B Dec 0
Subr, 10C Hex 0 /Store return address here

10D Clear /Clear AC as it was modified by JnS
10E Load Temp /Actual subroutine to double numbers
10F Add Temp /AC now hold double the value of Temp
110 JumpI Subr /Return to calling code

END

Page 16
Last Updated: October 2003

Load X

Step RTN PC IR MAR MBR AC
(initial values) 100 ------ ------ ------ ------
Fetch MAR ← PC 100 ------ 100 ------ ------

IR ← M[MAR] 100 1109 100 ------ ------
PC ← PC + 1 101 1109 100 ------ ------

Decode MAR ← IR[11-0] 101 1109 109 ------ ------
(decode IR[15-12] 101 1109 109 ------ ------

Get operand MBR ← M[MAR] 101 1109 109 0014 ------
Execute AC ← MBR 101 1109 109 0014 0014

Store Temp

Step RTN PC IR MAR MBR AC
(initial values) 101 1109 109 0014 0014
Fetch MAR ← PC 101 1109 101 0014 0014

IR ← M[MAR] 101 210B 101 0014 0014
PC ← PC + 1 102 210B 101 0014 0014

Decode MAR ← IR[11-0] 102 210B 10B 0014 0014
(decode IR[15-12] 102 210B 10B 0014 0014

Get operand not necessary 102 210B 10B 0014 0014
Execute MBR ← AC 102 210B 10B 0014 0014
(changes Temp) M[MAR] ← MBR 102 210B 10B 0014 0014

JnS Subr

Step RTN PC IR MAR MBR AC
(initial values) 102 210B 10B 0014 0014
Fetch MAR ← PC 102 210B 102 0014 0014

IR ← M[MAR] 102 010C 102 0014 0014
PC ← PC + 1 103 010C 102 0014 0014

Decode MAR ← IR[11-0] 103 010C 10C 0014 0014
(decode IR[15-12] 103 010C 10C 0014 0014

Get operand not necessary 103 010C 10C 0014 0014
Execute MBR ← PC 103 010C 10C 0103 0014

MAR ← IR[11-0] 103 010C 10C 0103 0014
(changes Subr) M[MAR] ← MBR 103 010C 10C 0103 0014

MBR ← IR[11-0] 103 010C 10C 010C 0014
AC ← 1 103 010C 10C 010C 0001
AC ← AC + MBR 103 010C 10C 010C 010D
PC ← AC 10D 010C 10C 010C 010D

Clear

Step RTN PC IR MAR MBR AC
(initial values) 10D 010C 10C 010C 010D
Fetch MAR ← PC 10D 010C 10D 010C 010D

IR ← M[MAR] 10D A000 10D 010C 010D
PC ← PC + 1 10E A000 10D 010C 010D

Decode MAR ← IR[11-0] 10E A000 000 010C 010D
(decode IR[15-12] 10E A000 000 010C 010D

Get operand (not necessary) 10E A000 000 010C 010D
Execute AC ← 0 10E A000 000 010C 0000

Page 17
Last Updated: October 2003

Load Temp

Step RTN PC IR MAR MBR AC
(initial values) 10E A000 000 010C 0000
Fetch MAR ← PC 10E A000 10E 010C 0000

IR ← M[MAR] 10E 110B 10E 010C 0000
PC ← PC + 1 10F 110B 10E 010C 0000

Decode MAR ← IR[11-0] 10F 110B 10B 010C 0000
(decode IR[15-12] 10F 110B 10B 010C 0000

Get operand MBR ← M[MAR] 10F 110B 10B 0014 0000
Execute AC ← MBR 10F 110B 10B 0014 0014

Add Temp

Step RTN PC IR MAR MBR AC
(initial values) 10F 110B 10B 0014 0014
Fetch MAR ← PC 10F 110B 10F 0014 0014

IR ← M[MAR] 10F 310B 10F 0014 0014
PC ← PC + 1 110 310B 10F 0014 0014

Decode MAR ← IR[11-0] 110 310B 10B 0014 0014
(decode IR[15-12] 110 310B 10B 0014 0014

Get operand MBR ← M[MAR] 110 310B 10B 0014 0014
Execute AC ← AC + MBR 110 310B 10B 0014 0028

JumpI Subr

Step RTN PC IR MAR MBR AC
(initial values) 110 310B 10B 0014 0028
Fetch MAR ← PC 110 310B 110 0014 0028

IR ← M[MAR] 110 C10C 110 0014 0028
PC ← PC + 1 111 C10C 110 0014 0028

Decode MAR ← IR[11-0] 111 C10C 10C 0014 0028
(decode IR[15-12] 111 C10C 10C 0014 0028

Get operand MBR ← M[MAR] 111 C10C 10C 0103 0028
Execute PC ← MBR 103 C10C 10C 0103 0028

Store X

Step RTN PC IR MAR MBR AC
(initial values) 103 C10C 10C 0103 0028
Fetch MAR ← PC 103 C10C 103 0103 0028

IR ← M[MAR] 103 2109 103 0103 0028
PC ← PC + 1 104 2109 103 0103 0028

Decode MAR ← IR[11-0] 104 2109 109 0103 0028
(decode IR[15-12] 104 2109 109 0103 0028

Get operand not necessary 104 2109 109 0103 0028
Execute MBR ← AC 104 2109 109 0028 0028
(changes X) M[MAR] ← MBR 104 2109 109 0028 0028

Page 18
Last Updated: October 2003

Load Y

Step RTN PC IR MAR MBR AC
(initial values) 104 2109 109 0028 0028
Fetch MAR ← PC 104 2109 104 0028 0028

IR ← M[MAR] 104 110A 104 0028 0028
PC ← PC + 1 105 110A 104 0028 0028

Decode MAR ← IR[11-0] 105 110A 10A 0028 0028
(decode IR[15-12] 105 110A 10A 0028 0028

Get operand MBR ← M[MAR] 105 110A 10A 0030 0028
Execute AC ← MBR 105 110A 10A 0030 0030

Store Temp

Step RTN PC IR MAR MBR AC
(initial values) 105 110A 10A 0030 0030
Fetch MAR ← PC 105 110A 105 0030 0030

IR ← M[MAR] 105 210B 10A 0030 0030
PC ← PC + 1 106 210B 10A 0030 0030

Decode MAR ← IR[11-0] 106 210B 10B 0030 0030
(decode IR[15-12] 106 210B 10B 0030 0030

Get operand not necessary 106 210B 10B 0030 0030
Execute MBR ← AC 106 210B 10B 0030 0030
(changes Temp) M[MAR] ← MBR 106 210B 10B 0030 0030

JnS Subr

Step RTN PC IR MAR MBR AC
(initial values) 106 210B 10B 0030 0030
Fetch MAR ← PC 106 210B 106 0030 0030

IR ← M[MAR] 106 010C 106 0030 0030
PC ← PC + 1 107 010C 106 0030 0030

Decode MAR ← IR[11-0] 107 010C 10C 0014 0014
(decode IR[15-12] 107 010C 10C 0014 0014

Get operand not necessary 107 010C 10C 0014 0014
Execute MBR ← PC 107 010C 10C 0107 0014

MAR ← IR[11-0] 107 010C 10C 0107 0014
(changes Subr) M[MAR] ← MBR 107 010C 10C 0107 0014

MBR ← IR[11-0] 107 010C 10C 010C 0014
AC ← 1 107 010C 10C 010C 0001
AC ← AC + MBR 107 010C 10C 010C 010D
PC ← AC 10D 010C 10C 010C 010D

Clear

Step RTN PC IR MAR MBR AC
(initial values) 10D 010C 10C 010C 010D
Fetch MAR ← PC 10D 010C 10D 010C 010D

IR ← M[MAR] 10D A000 10D 010C 010D
PC ← PC + 1 10E A000 10D 010C 010D

Decode MAR ← IR[11-0] 10E A000 000 010C 010D
(decode IR[15-12] 10E A000 000 010C 010D

Get operand (not necessary) 10E A000 000 010C 010D
Execute AC ← 0 10E A000 000 010C 0000

Page 19
Last Updated: October 2003

Load Temp

Step RTN PC IR MAR MBR AC
(initial values) 10E A000 000 010C 0000
Fetch MAR ← PC 10E A000 10E 010C 0000

IR ← M[MAR] 10E 110B 10E 010C 0000
PC ← PC + 1 10F 110B 10E 010C 0000

Decode MAR ← IR[11-0] 10F 110B 10B 010C 0000
(decode IR[15-12] 10F 110B 10B 010C 0000

Get operand MBR ← M[MAR] 10F 110B 10B 0030 0000
Execute AC ← MBR 10F 110B 10B 0030 0030

Add Temp

Step RTN PC IR MAR MBR AC
(initial values) 10F 110B 10B 0030 0030
Fetch MAR ← PC 10F 110B 10F 0030 0030

IR ← M[MAR] 10F 310B 10F 0030 0030
PC ← PC + 1 110 310B 10F 0030 0030

Decode MAR ← IR[11-0] 110 310B 10B 0030 0030
(decode IR[15-12] 110 310B 10B 0030 0030

Get operand MBR ← M[MAR] 110 310B 10B 0030 0030
Execute AC ← AC+ MBR 110 310B 10B 0030 0060

JumpI Subr

Step RTN PC IR MAR MBR AC
(initial values) 110 310B 10B 0030 0060
Fetch MAR ← PC 110 310B 110 0030 0060

IR ← M[MAR] 110 C10C 110 0030 0060
PC ← PC + 1 111 C10C 110 0030 0060

Decode MAR ← IR[11-0] 111 C10C 10C 0030 0060
(decode IR[15-12] 111 C10C 10C 0030 0060

Get operand MBR ← M[MAR] 111 C10C 10C 0107 0060
Execute PC ← MBR 107 C10C 10C 0107 0060

Store Y

Step RTN PC IR MAR MBR AC
(initial values) 107 C10C 10C 0107 0060
Fetch MAR ← PC 107 C10C 107 0107 0060

IR ← M[MAR] 107 210A 107 0107 0060
PC ← PC + 1 108 210A 107 0107 0060

Decode MAR ← IR[11-0] 108 210A 10A 0107 0060
(decode IR[15-12] 108 210A 10A 0107 0060

Get operand not necessary 108 210A 10A 0107 0060
Execute MBR ← AC 108 210A 10A 0060 0060
(changes Y) M[MAR] ← MBR 108 210A 10A 0060 0060

Page 20
Last Updated: October 2003

Halt

Step RTN PC IR MAR MBR AC
(initial values) 108 210A 10A 0060 0060
Fetch MAR ← PC 108 210D 108 0060 0060

IR ← M[MAR] 108 7000 108 0060 0060
PC ← PC + 1 109 7000 108 0060 0060

Decode MAR ← IR[11-0] 109 7000 000 0060 0060
(decode IR[15-12] 109 7000 000 0060 0060

Get operand not necessary 109 7000 000 0060 0060
Execute terminate program 109 7000 000 0060 0060
__

25. Suppose we add the following instruction to MARIE's ISA:

IncSZ Operand

This instruction increments the value with effective address "Operand," and if this newly
incremented value is equal to 0, the program counter is incremented by 1. Basically, we are
incrementing the operand, and if this new value is equal to 0, we skip the next instruction.
Show how this instruction would be written using RTN.

Ans.

MAR ← Operand
MBR ← M[MAR]
AC ← 1
AC ← AC + MBR
M[MAR] ← AC
If AC = 0 then PC ← PC + 1

__

26. Would you recommend a synchronous bus or an asynchronous bus for use between the
CPU and the memory? Explain your answer.

Ans.
Whereas I/O buses are typically asynchronous, the CPU-memory bus is almost always
synchronous. Synchronous buses are fast and run with a fixed rate. Every device on a
synchronous bus must run at the same clock rate, but this works well with CPU-memory
buses since the buses can be matched to the memory system to maximize memory-CPU
bandwidth.

Since little or no logic is required to decide what to do next, a synchronous bus is both fast
(offers better performance) and inexpensive. Due to clock-skew, the bus cannot be long
(but this works fine for a CPU-memory bus). Asynchronous buses have overhead
associated with synchronizing the bus but work well for longer buses.

__

*27. Pick an architecture (other than those covered in this chapter). Do research to find out
how your architecture deals with the concepts introduced in this chapter, as was done for
Intel and MIPS.

Ans.

None given.
__

Page 21
Last Updated: October 2003

TRUE or FALSE

_____ 1. If a computer uses hardwired control, the microprogram determines the instruction
set for the machine. This instruction set can never be changed unless the
architecture is redesigned.

_____ 2. A branch instruction changes the flow of information by changing the PC.

_____ 3. Registers are storage locations within the CPU itself.

_____ 4. A two pass assembler generally creates a symbol table during the first pass and
finishes the complete translation from assembly language to machine instructions
on the second.

_____ 5. The MAR, MBR, PC and IR registers in MARIE can be used to hold arbitrary data
values.

_____ 6. MARIE has a common bus scheme, which means a number of entities share the
bus.

_____ 7. As assembler is a program that accepts a symbolic language program and produces
the binary machine language equivalent, resulting in a 1-to-1 correspondence
between the assembly language source program and the machine language object
program.

_____ 8. If a computer uses microprogrammed control, the microprogram determines the
instruction set for the machine.

Ans.

1. F 5. F
2. T 6. T
3. T 7. T
4. T 8. T

__

Sample Exam Questions

1. Identify the following register transfer statements as legal or not legal for the datapath used
in MARIE. If it is not legal, rewrite it as a sequence of microoperations to perform the
indicated task.

a. IR ← MAR

b. MBR ← M[PC]

c. AC ← AC + PC

d. MAR ← PC

Ans.
a. Legal

Page 22
Last Updated: October 2003

b. The PC can't be used directly for memory access, so this would need to be rewritten:

MAR ← PC
MBR ← M[MAR]

c. No, only the MBR can be added to the AC, so this would need to be rewritten:

MBR ← PC
AC ← AC + MBR

d. Legal

2. The instruction AddI 085 is stored at memory location 100 and is fetched, decoded, and
executed. Give the contents of PC, MAR, IR, MBR and AC as the instruction is processed.
Assume memory contains:

Location Contents (hex)
085 0087
086 9085
087 1086

Give all answers in hexadecimal. Assume the initial values as given in the table below.

Step RTN PC IR MAR MBR AC
(initial values) 100 --- --- --- 0004
Fetch MAR ← PC 100 --- 100 --- 0004

IR ← M[MAR] 100 B085 100 --- 0004
PC ← PC + 1 101 B085 100 --- 0004

Decode MAR ← IR[11-0] 101 B085 085 --- 0004
(decode IR[15-12] 101 B085 085 --- 0004

Get operand MBR ← M[MAR] 101 B085 085 0087 0004
Execute MAR ← MBR 101 B085 087 0087 0004

MBR ← M[MAR] 101 B085 087 1086 0004
AC ß AC + MBR 101 B085 087 1086 108A

__

3. List the hexadecimal code for the following program (hand assemble it).

ORG 000
Input
Store C

Loop, Clear
Load C
Subt B
Output
Store C
Subt A
Skipcond 400
Jump Loop
Halt

A, Dec 32
B, Dec 1
C, Dec 0

Page 23
Last Updated: October 2003

Ans.
5000
200D
A000
100D
400C
6000
200D
400B
8400
9002
7000
0020
0001
0000

__

4. Decipher the following MARIE machine language instruction (write the assembly language
equivalent):

001100000000000A

Ans.
300A or Add 00A

__

5. Write the following code segment in MARIE's assembly language:

if X > 1 do
 X := X + 1;

else
Y := Y + 1;

Ans.

If, 100 Load X /Load X
101 Subt One /Subtract 1, store result in AC
102 Skipcond 800 /If AC>0 (X>1), skip the next instruction
103 Jump Else /Branch to Else
104 Load X /Load X

Then, 105 Add One /Add 1
106 Store X /X:= X + 1
107 Jump Endif /Jump over Else part

Else 108 Load Y /Load Y
109 Add One /Add 1
10A Store Y /Y:= Y + 1

Endif, 10B Halt /Terminate program
One, 10C DEC 1 /Variable One has value 1
X, 10D DEC ?
Y, 10E DEC ?

__

Page 24
Last Updated: October 2003

6. How many address lines (bits in the address) and I/O lines (bits in the actual data) are
needed for each of the following word-addressable memories?

a. 2K × 16

b. 16K × 8

c. 4M × 12

Ans.

a. 11 address bits and 16 I/O lines
b. 14 address bits and 8 I/O lines
c. 22 address bits and 12 I/O lines

__

7. Match the following:

_____ Holds data just read from memory
_____ Holds data the CPU needs to process
_____ Holds next instruction to be executed
_____ Holds address of next instruction to be executed
_____ Holds memory address of data being referenced
_____ Holds data written from the keyboard
_____ Holds interrupt signals

A. Instruction Register E. Accumulator
B. Program Counter F. Memory Buffer Register
C. Input Register G. Flag Register
D. Memory Address Register

Ans.

F, E, A, B, D, C, G
__

Page 25
Last Updated: October 2003

8. Given the following program:

100 Load D
101 Subt C
102 Store D
103 Add A
104 Store A
105 JumpI A
106 AddI B
107 Subt C
108 Store B
109 Jump X

X, 10A Halt
A, 10B Hex 99
B, 10C Hex 10F
C, 10D Hex 1
D, 10E Hex 8
E, 10F Hex 3

When this program terminates, what values will be in:

a. Memory location 10B e. Memory location 10F
b. Memory location 10C f. The Accumulator
c. Memory location 10D g. The Program Counter
d. Memory location 10E

Ans.

a. 106 e. 3
b. 10B f. 10B
c. 1 g. 10B
d. 6

 A B C D E
Instruction 10B 10C 10D 10E 10F AC PC
LOAD D 99 10F 1 8 3 8 101
SUBT C 99 10F 1 8 3 7 102
STORE D 99 10F 1 7 3 7 103
ADD A 99 10F 1 7 3 100 104
STORE A 100 10F 1 7 3 100 105
JUMPI A 100 10F 1 7 3 100 100
LOAD D 100 10F 1 7 3 7 101
SUBT C 100 10F 1 7 3 6 102
STORE D 100 10F 1 6 3 6 103
ADD A 100 10F 1 6 3 106 104
STORE A 106 10F 1 6 3 106 105
JUMPI A 106 10F 1 6 3 106 106
ADDI B 106 10F 1 6 3 109 107
SUBT C 106 10F 1 6 3 108 108
STORE B 106 108 1 6 3 10B 109
JUMP X 106 10B 1 6 3 10B 10A
HALT 106 10B 1 6 3 10B 10B

__

Location

Page 26
Last Updated: October 2003

9. Fill in all necessary information in the diagram of the Fetch-Decode-Execute cycle below.

