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Chapter 2 Instructor's Manual

______________________________________________________________________________

Chapter Objectives

Chapter 2, Data Representation, provides thorough coverage of the various means computers
use to represent both numerical and character information.  Addition, subtraction,
multiplication, and division are covered once the reader has been exposed to number bases
and the typical numeric representation techniques, including one’s complement, two’s
complement, and BCD.  In addition, EBCDIC, ASCII, and Unicode character representations
are addressed.  Fixed and floating point representation are also introduced.  Codes for data
recording and error detection and correction are covered briefly.

This chapter should be covered after Chapter 1, but before Chapters 4 through 11.

Lectures should focus on the following points:

• Number systems.  Most students have been exposed to positional number systems and
different bases.  However, these concepts are crucial to understanding the remainder of
Chapter 2, so they should be covered in detail.

• Decimal to binary conversions.  Because the binary number system translates easily into
electronic circuitry, it is important to become familiar with how computer represent values.

• Signed versus unsigned numbers.  Representing unsigned numbers in binary form is
much less complicated than dealing with signed numbers.

• Signed integer representation.  There are basically three methods for representing signed
numbers: signed magnitude, one's complement, and two's complement.  Each of these
methods should be covered, with the focus on signed magnitude and two's complement
notations.

• Binary arithmetic.  Although people do not often add binary values, performing binary
addition and subtraction helps to reinforce the concepts necessary for understanding data
representation.  In particular, these operations illustrate the dangers of overflow conditions.

• Floating point representation.  Computers must be able to represent floating point
numbers, and there are numerous possible formats for doing so.  Potential errors that may
result from the limitations of the representation are also important to discuss.

• Character representation.  ASCII, EBCDIC, Unicode and BCD are all important character
codes.   Lectures should emphasize the similarities and differences among these codes.

• Codes for data recording and transmission.  When binary data is written to some sort of
medium or transmitted over long distances,  the binary one's and zero's can become
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blurred.  Some sort of encoding is necessary to ensure that characters are properly encoded
in these situations.

• Error detection and correction.  Regardless of the coding method used, no
communications channel or storage medium is error-free.  Although simple parity bits can
help to detect errors, more complicated codes, including cyclic redundancy checks and
Hamming codes, and are often necessary for sophisticated error detection and correction.

Required Lecture Time

Chapter 2 can typically be covered in 6 lecture hours, depending on how detailed one wishes to
go into recording and transmission codes and error detection and correction.  We suggest that
the focus be on integer, floating-point, and character representation, with emphasis given to
complement notation.  If time permits, data recording and transmission codes and error
detection and correction codes can be covered.

Lecture Tips

Teachers should spend time explaining the ranges allowed by the different representation
formats.  For example, if we are using 4 bits to represent unsigned integers, we can represent
values from 0 to 15. However, if we are using signed magnitude representation, the bits are
interpreted differently, and the possible range is from -7 to +7.  Make sure students
understand why it is not possible to represent +9 or +10, as these will be seen as -1 and -2
respectively.

Converting unsigned whole numbers tends to be relatively straight-forward, but signed
numbers and fractions tend to be more difficult.  In particular, complement systems confuse
students.  They often think that all numbers have to be negated to be represented.  For
example, if a student is asked how a computer, using two's complement representation, would
represent -6 (assuming 4-bit values), they answer: 1010 (take 0110, toggle each bit and add 1).
This is, of course, the correct answer.  However, if that student is asked how the computer
using two's complement representation would represent +6, they will often do exactly the same
thing, giving the same answer.  Teachers need to be sure that students realize representing
positive numbers does not require any "conversion".  It is only when a number is negative that
two's complement, signed magnitude, and one's complement representations are necessary.

Instructors should spend time on overflow and look at several examples so that students can
fully appreciate the consequences.  Students find it difficult to understand why one time a
carry results in overflow, but yet another carry may not result in overflow.

Floating point representation is fairly straight-forward, but students often have difficulty with
the format and the bias.

Answers to Exercises

1. Perform the following base conversions using subtraction or division-remainder:

a.  45810 = ________ 3
b.  67710 = ________ 5
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c.  151810 = _______ 7
d.  440110 = _______ 9

Ans.

a. 1212223 b. 102025 c. 42667 d.  60309
______________________________________________________________________________

2. Perform the following base conversions using subtraction or division-remainder:

a.  58810 = _________ 3
b.  225410 = ________ 5
c.   65210  =  ________ 7
d.  310410 = ________ 9

Ans.

a. 2102103 b. 330045 c. 16217 d. 42289
______________________________________________________________________________

3. Convert the following decimal fractions to binary with a maximum of six places to the right
of the binary point:

a.  26.78125 b.  194.03125 c. 298.796875 d. 16.1240234375
Ans.

a. 11010.11001 b. 11000010.00001
c. 100101010.110011 d. 10000.000111

______________________________________________________________________________

4. Convert the following decimal fractions to binary with a maximum of six places to the right
of the binary point:

a.  25.84375 b. 57.55 c. 80.90625 d. 84.874023
Ans.

a. 11001.11011 b. 111001.100011
c. 1010000.11101 d. 1010100.110111

______________________________________________________________________________

5. Represent the following decimal numbers in binary using 8-bit signed magnitude, one's
complement and two's complement:

a. 77 b. -42 c. 119 d. –107
Ans.

a. Signed magnitude: 01001101
One's complement: 01001101
Two's complement: 01001101

b. Signed magnitude: 10101010
One's complement: 11010101
Two's complement: 11010110

c. Signed magnitude: 01110111
One's complement: 01110111
Two's complement: 01110111
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d. Signed magnitude: 11101011
One's complement: 10010100
Two's complement: 10010101

______________________________________________________________________________

6. Using a "word" of 3 bits, list all of the possible signed binary numbers and their decimal
equivalents that are representable in:

a. Signed magnitude b. One's complement c. Two's complement
Ans.

a. 011 to 111, or +3 to -3
b. 011 to 100, or +3 to -3
c. 011 to 100, or +3 to -4

______________________________________________________________________________

7. Using a "word" of 4 bits, list all of the possible signed binary numbers and their decimal
equivalents that are representable in:

a. Signed magnitude b. One's complement c. Two's complement
Ans.

a. 0111 to 1111, or +7 to -7
b. 0111 to 1000, or +7 to -7
c. 0111 to 1000, or +7 to -8

______________________________________________________________________________

8. From the results of the previous two questions, generalize the range of values (in decimal)
that can be represented in any given x number of bits using:

a. Signed magnitude b. One's complement c. Two's complement
Ans.

a. -(2x-1-1) to +(2x-1-1)
b. -(2x-1-1) to +(2x-1-1)
c. -(2x-1) to +(2x-1)

______________________________________________________________________________

9. Given a (very) tiny computer that has a word size of 6 bits, what are the smallest negative
numbers and the largest positive numbers that this computer can represent in each of the
following representations?

a. One's complement b.  Two's complement
Ans.

a. Largest Positive: 0111112 (31) Smallest Negative:  1000002 (-31)
b. Largest Positive: 0111112 (31) Smallest Negative:  1000002 (-32)

______________________________________________________________________________

10. You have stumbled on an unknown civilization while sailing around the world.  The people,
who call themselves Zebronians, do math using 40 separate characters (probably because
there are 40 stripes on a zebra).  They would very much like to use computers, but would
need a computer to do Zebronian math, which would mean a computer that could
represent all 40 characters.  You are a computer designer and decide to help them.  You
decide the best thing is to use BCZ, Binary Coded Zebronian (which is like BCD except it
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codes Zebronian, not Decimal).  How many bits will you need to represent each character if
you want to use the minimum number of bits?

Ans.
40 characters need to be represented by binary coded Zebronian (BCZ), so you will need 6
bits.  5 bits would only give you 32 (25) unique characters.   Note that 6 bits would allow
you to represent 64 characters.

______________________________________________________________________________

11. Perform the following binary multiplications:

a.  1100 b. 10101 c.    11010
× 101 × 111 × 1100

Ans.
a. 111100 b. 10010011 c. 100111000

______________________________________________________________________________

12. Perform the following binary multiplications:

a.     1011 b.  10011 c. 11010
× 101 × 1011 × 1011

Ans.
a. 1000010 b. 1111001 c. 100011110

______________________________________________________________________________

13. Perform the following binary divisions:

a.  101101 ÷ 101 b. 10000001 ÷ 101 c. 1001010010 ÷ 1011
Ans.

a. 1001 b. 1101 c. 110110
______________________________________________________________________________

14. Perform the following binary divisions:

a. 11111101 ÷ 1011    b. 110010101 ÷ 1001 c. 1001111100 ÷ 1100
Ans.

a. 10111 b. 101101 c. 110101
______________________________________________________________________________

15. Use the double-dabble method to convert 102123 directly to decimal.  (Hint: you have to
change the multiplier.)

Ans.
102123 converted to decimal is 104 as shown below:

  1    0   2   1   2

       3   9  33  102
      +0  +2  +1   +2
       3  11  34  104
 x3   x3  x3  x3
  3    9  33 102

______________________________________________________________________________
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16. Using signed-magnitude representation, complete the following operations:

+ 0 + (-0)=
(-0) + 0 =
   0 + 0 =
(-0) + (-0) =

Ans. (assuming 4 bit representation)
  +0 + (-0) = 0000 + 1000 = 1000 (-0)

  (-0) + 0 = 1000 + 0000 = 1000 (-0)

     0 + 0 = 0000 + 0000 = 0000 (+0)

(-0) + (-0) = 1000 + 1000 = 0000 (+0)

______________________________________________________________________________

17. Suppose a computer uses 4-bit one’s complement numbers.  What value will be stored in
the variable j after the following pseudocode routine terminates?

 0 à j   // Store 0 in j .
-3 à k   // Store -3 in k.

while k = 0
  j = j + 1
  k = k - 1
end while

Ans.

J  (Binary)  K (Binary)
-------------- --- ----------------

0 0000 -3 1100
1 0001 -4 1011 (1100 + 1110) (where last carry is added to sum doing 1's complement addition)
2 0010 -5 1010 (1011 + 1110)
3 0011 -6 1001 (1010 + 1110)
4 0100 -7 1000 (1001 + 1110)
5 0101 7 0111 (1000 + 1110) (This is overflow -- but you can ignore)
6 0110 6 0110
7 0111 5 0101
-7 1000 4 0100
-6 1001 3 0011
-5 1010 2 0010
-4 1011 1 0001
-3 1100 0 0000

______________________________________________________________________________

18. If the floating-point number storage on a certain system has a sign bit, a 3-bit exponent
and a 4-bit significand:
a.  What is the largest positive and the smallest positive number that can be stored on this

system if the storage is normalized?  (Assume no bits are implied, there is no biasing,
exponents use two's complement notation, and exponents of all zeros and all ones are
allowed.)

b.  What bias should be used in the exponent if we prefer all exponents to be non-negative?
Why would you choose this bias?

Ans.
a. Largest Positive: 0.11112 x 23 = 111.12 = 7.5
 Smallest Positive: 0.12 x 2-4 = .000012 = 1/32 = 0.03125
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b. For all non-negative exponents, we would need a bias of 4.
______________________________________________________________________________

19. Using the model in the previous question, including your chosen bias, add the following
floating-point numbers and express your answer using the same notation as the addend
and augend:

 
0 1 1 1 1 0 0 0
0 1 0 1 1 0 0 1

Calculate the relative error, if any, in your answer to the previous question. 
Ans.

0 1 1 1 1 0 1 0    Error =  2.4%

______________________________________________________________________________

20. Assume we are using the simple model for floating-point representation as given in this
book (the representation uses a 14-bit format, 5 bits for the exponent with a bias of 16, a
normalized mantissa of 8 bits, and a single sign bit for the number):
a. Show how the computer would represent the numbers 100.0 and 0.25 using this

floating-point format.
b. Show how the computer would add the two floating-point numbers in part a by

changing one of the numbers so they are both expressed using the same power of 2.
c. Show how the computer would represent the sum in part b using the given floating-

point representation.  What decimal value for the sum is the computer actually storing?
Explain.

Ans.

a. 100.0 =

0.25 =

b. Adding in part(a) we get: .11001 x 27 = .11001         x 27

+ .1        x 2-1 = .000000001 x 27

= .110010001 x 27

c. The sum from part b in the given floating point notation is:

which is .11001 x 27 = 1100100 = 100.
______________________________________________________________________________

21. What causes divide underflow and what can be done about it?

Ans.
Divide underflow is happens when the divisor is much smaller than the dividend. The
computer may not be able to reconcile the two numbers of greatly different magnitudes,
and thus the smaller gets represented by zero.  The result of the division then becomes the
equivalent of a division by zero error.  Compare this to underflow, which is a condition that
can occur when the result of a floating point operation would be smaller in magnitude

0 1 0 1 1 1 1 1 0 0 1 0 0 0

0 0 1 1 1 1 1 0 0 0 0 0 0 0

0 1 0 1 1 1 1 1 0 0 1 0 0 0
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(closer to zero, either positive or negative) than the smallest representable quantity.
Division underflow could be avoided by using repeated subtraction.

______________________________________________________________________________

22. Why do we usually store floating-point numbers in normalized form?  What is the
advantage of using a bias as opposed to adding a sign bit to the exponent?

Ans.
There are two reasons to use normalized form.  First, normalized form creates a standard
so each floating point value has a unique binary representation.  Second, with normalized
numbers, we can "imply" the high-order 1 in the significand, giving us an extra bit of
accuracy for "free".  Using a bias allows an extra bit position to be used for the magnitude
of the exponent, as no sign bit is required.

______________________________________________________________________________

23. Let a = 1.0 × 2
9
, b = - 1.0 × 2

9
 and c = 1.0 × 2

1
.  Using the floating-point model described in

the text (the representation uses a 14-bit format, 5 bits for the exponent with a bias of 16, a
normalized mantissa of 8 bits, and a single sign bit for the number), perform the following
calculations, paying close attention to the order of operations.  What can you say about the
algebraic properties of floating-point arithmetic in our finite model?  Do you think this
algebraic anomaly holds under multiplication as well as addition?

b + (a + c) =
(b + a) + c =

Ans.
b + (a + c) = b + [1.0 x 29

+  1.0 x 21]

= b + [1.0          x 29

      +       .000000001  x 29 )
= b +  1.000000001  x 29

= b +  0.1000000001 x 210   (but we can only have 8 bits in the mantissa)
= b +  0.10000000 x 210

= b +  1.0 x 29

= (-1.0 x 29) + (1.0 x 29) = 0

(b + a) + c = [(-1.0 x 29) + (1.0 x 29)] + c
= 0 + c
= c
= 1.0 x 21  = 10

When one number is significantly larger than the other, round off error occurs due to the
limited number of bits in the mantissa.  Multiplication does not require the values to be
expressed with the same powers of 2, and does not suffer from this problem.

______________________________________________________________________________

24. a.  Given that the ASCII code for A is 1000001, what is the ASCII code for J?
b.  Given that the EBCDIC code for A is 1100 0001, what is the EBCDIC code for J?

Ans.
a. If A = 1000001, then J = 1001010
b. If A = 1100 0001, then J = 1101 0001

 _____________________________________________________________________________
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25. Assume a 24-bit word on a computer.  In these 24 bits, we wish to represent the value 295.
a. If our computer uses even parity, how would the computer represent the string 295?
b. If our computer uses 8-bit ASCII and even parity, how would the computer represent

the string 295?
c. If our computer uses packed BCD, how would the computer represent the number

+295?
Ans.

Binary
Value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1

ASCII 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1

Packed
BCD 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0

______________________________________________________________________________

26. Decode the following ASCII message, assuming 7-bit ASCII characters and no parity:
1001010 1001111 1001000 1001110 0100000 1000100 1001111 1000101  (Blue indicates
a correction was made from what is in the textbook.)

Ans.
100 1010 = J
100 1111 = O
100 1000 = H
100 1110 = N
010 0000 = space
100 0100 = D
100 1111 = O
100 0101 = E

______________________________________________________________________________

27. Why would a system designer wish to make Unicode the default character set for their new
system?  What reason(s) could you give for not using Unicode as a default?

Ans.
(Hint: Think about language compatibility versus storage space.) Although Unicode would
make systems compatible (with each other and with other ASCII systems(), it requires 16
bytes for storage compared to the 7 or 8 required by ASCII or EBCDIC.

______________________________________________________________________________

28. Write the 7-bit ASCII code for the character 4 using the following encoding:
a. Non-return-to-zero
b. Non-return-to-zero-invert
c. Manchester Code
d. Frequency modulation
e. Modified frequency modulation
f.  Run length limited

(Assume 1 is “high,” and 0 is “low.”)
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Ans.

______________________________________________________________________________

29. Why is NRZ coding seldom used for recording data on magnetic media?
Ans.

NRZ coding is seldom used for recording data on magnetic media because it has
unacceptably high error rates and not contain sufficient transitions to keep read/write
heads synchronized.

______________________________________________________________________________

30. Assume we wish to create a code using 3 information bits, 1 parity bit (appended to the end
of the information), and odd parity.  List all legal code words in this code.  What is the
Hamming distance of your code?

Ans.
The legal code words are:
0001 1000
0011 1011
0100 1101
0111 1110
and the Hamming distance of these code words is 1.

______________________________________________________________________________

31. Are the error-correcting Hamming codes systematic?  Explain.
Ans.

Error-correcting Hamming codes interleave additional error-checking (parity) bits into the
actual information bits, but do not append these bits.  In a systematic code, the first k bist
of the codeword must be the same as the corresponding message bits (the parity bits must
be appended),  so by definition, Hamming codes are not systematic.

______________________________________________________________________________
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32. Compute the Hamming distance of the following code:

0011010010111100
0000011110001111
0010010110101101
0001011010011110

Ans.
4

______________________________________________________________________________

33. Compute the Hamming distance of the following code:

0000000101111111
0000001010111111
0000010011011111
0000100011101111
0001000011110111
0010000011111011
0100000011111101
1000000011111110

Ans.
4

______________________________________________________________________________

34. Suppose we want an error-correcting code that will allow all single-bit errors to be corrected
for memory words of length 10.
a. How many parity bits are necessary?
b. Assuming we are using the Hamming algorithm presented in this chapter to design our

error-correcting code, find the code word to represent the 10-bit information word:
1001100110.

Ans.
a. m + r + 1 <= 2r

10+ r + 1 <= 2r

         11 + r <= 2r

      which implies that r is 4
b. The code word for 1001100110 is found as follows:

Parity bit 1 checks 1,3,5,7,9,11,13, so Bit 1 must be 0 (assuming even parity)
Parity bit 2 checks 2,3,6,7,10,11,14, so Bit 2 must be 0
Parity bit 4 checks 4,5,6,7,12,14, so Bit 4 must be 1
Parity bit 8 checks 8,9,10,11,12,13,14, so Bit 8 must be 1

______________________________________________________________________________

35. Suppose we are working with an error-correcting code that will allow all single-bit errors to
be corrected for memory words of length 7. We have already calculated that we need 4
check bits, and the length of all code words will be 11. Code words are created according to
the Hamming Algorithm presented in the text. We now receive the following code word:

           1 0 1 0 1 0 1 1 1 1 0

1 0 0 1 1 0 1 0 1 1 1 0 0 0
14 13 12 11 10 9 8 7 6 5 4 3 2 1
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Assuming even parity, is this a legal code word? If not, according to our error-correcting
code, where is the error?

Ans.
The error is in bit 5.

______________________________________________________________________________

36. Repeat exercise 35 using the following code word:

         0 1 1 1 1 0 1 0 1 0 1
Ans.

Bit 1 checks 1,3,5,7,9 and 11, but this is an odd number of 1's è error
Bit 2 checks 2,3,6,7,10, and 11, which is an odd number of 1's è error
Bit 4 checks 4,5,6, and 7, which is an even number of 1's è ok
Bit 8 checks 8,9,10, and 11, which is an odd number of 1's è error
Since errors occur in bit positions 1, 2, and 8, the error is in bit number 1+2+8=11

______________________________________________________________________________

37. Name two ways in which Reed-Soloman coding differs from Hamming coding.
Ans.

Reed-Soloman codes are formed by polynomial division operating on whole characters
(symbols), and are thus block-level codes.  Hamming codes are bit-parity operations over
certain defined bits of a symbol (so these are bit-level codes).  Reed-Soloman codes are
good at detecting and correcting burst errors, whereas Hamming codes are not.

______________________________________________________________________________

38. When would you choose a CRC code over a Hamming code?  A Hamming code over a CRC?
Ans.

CRCs are useful for checking data sent over telecommunication lines.  If a CRC error
occurs, a retransmission is requested. You would choose a CRC when you can ask for
retransmission and do not want to sustain the (space and time) overhead of Hamming
codes.   Hamming codes are good at forward error correction:  they can correct  errors when
retransmission is not possible, such as when data is stored on a disk.  CRC is better than
Hamming in terms of speed, but Hamming is better than CRC in terms of complexity
(Hamming codes do not require complex circuits).

______________________________________________________________________________

39. Find the quotients and remainders for the following division problems modulo 2.
a.  10101112 ÷ 11012            
b.  10111112 ÷ 111012

c.  10110011012 ÷ 101012     
d.  1110101112 ÷ 101112

Ans.
a. 1101 Remainder 110      b.  111 Remainder 1100

      c. 100111 Remainder 110  d.  11001 Remainder 1000
______________________________________________________________________________

0 1 1 1 1 0 1 0 1 1 1
11 10 9 8 7 6 5 4 3 2 1
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40. Find the quotients and remainders for the following division problems modulo 2.
a.  11110102 ÷ 10112     
b.  10101012 ÷ 11002       
c.  11011010112 ÷ 101012

d.  11111010112 ÷ 1011012

Ans.
a. 1101  Remainder 101 b. 1100  Remainder 101
c. 111011 Remainder1100 d. 11010 Remainder 1001

______________________________________________________________________________

41. Using the CRC polynomial 1011, compute the CRC code word for the information word,
1011001.  Check the division performed at the receiver.

Ans.
Codeword: 1011001011

_________________________________________________________________________________________________________________

42. Using the CRC polynomial 1101, compute the CRC code word for the information word,
01001101.  Check the division performed at the receiver.

Ans. 
The codeword is 01001101100.   Dividing this by 1101 modulo 2 should yield a zero
remainder.

Append three 0s to the end of the information word and divide:

1101 01001101000
     1101

 1001
 1101
  1000
  1101
   1011
   1101
    1100
    1101
       100 --> remainder

The information word (with appended zeros) + remainder = codeword
so we have: 01001101000 + 100 = 01001101100

To check the division:

1101 01001101100
      1101
       1001
       1101
       1000
       1101
        1011
        1101
         1101
         1101
         0000 --> remainder

______________________________________________________________________________
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*43. Pick an architecture (such as 80486, Pentium, Pentium IV, SPARC, Alpha, or MIPS).  Do
research to find out how your architecture approaches the concepts introduced in this
chapter.  For example, what representation does it use for negative values?  What character
codes does it support?

Ans.
No answer.

Sample Exam Questions

1. Fill in the following addition table for base 3.

+ 0 1 2

0

1

2

Ans.
Row 1: 0, 1, 2
Row 2: 1, 2, 0
Row 3: 2, 0, 1

____________________________________________________________________________________________

2. Perform the following base conversions using subtraction or division-remainder:

a.  58910 = _________ 3
b.  225910 = ________ 5
c.   70110  =  ________ 7
d.  309510 = ________ 9

Ans.
a. 2102113 b. 330145 c. 20217 d. 42189

____________________________________________________________________________________________

3. Show the representation of -16 (assuming 8-bit registers) using:

a. signed-magnitude representation
b. signed-1's complement
c. signed-2's complement

Ans.
a. 10010000

b. 11101111

c. 11110000
____________________________________________________________________________________________

4. Given the 8-bit binary number:   1 0 0 1 1 1 0 1
What decimal number does this represent if the computer uses:

a. signed-magnitude representation
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b. signed-1's complement
c. signed-2's complement

Ans.
a. - 29
b. - 98
c. - 99

____________________________________________________________________________________________
5. Assuming 2’s complement 8-bit representation, consider the following:

+70    = 010001102

+80    = 010100002

100101102 Is this correct?  Why or why not?
Ans.

No.  The result is a different sign than the two numbers we are adding so overflow has
occurred.

____________________________________________________________________________________________

6. If a computer uses signed-2's complement representation and 8 bit registers, what range
of integers can this computer represent?  What range of integers can the computer
represent if it is using signed magnitude representation?

Ans.
Range (signed 2's complement):  - 128 to + 127

Range (signed magnitude):  - 127 to + 127
____________________________________________________________________________________________

7. A 15-bit floating point number has 1 bit for the sign of the number, 5 bits for the exponent
and 9 bits for the mantissa (which is normalized).  Numbers in the exponent are in signed
magnitude representation.  No bias is used and there are no implied bits.  Show the
representation for the smallest positive number this machine can represent.

   0    1    1    1    1    1    1    0    0    0    0    0    0    0    0

  SIGN                  EXPONENT                   MANTISSA

Ans.
Value is +0.12 x 2-15.

____________________________________________________________________________________________

8. Assume we are using the simple model for floating-point representation as given in the
book (the representation uses a 14-bit format, 5 bits for the exponent with a bias of 16, a
normalized mantissa of 8 bits, and a single sign bit for the number).  Show how the
computer would represent the numbers 96.5 and -0.75 using this floating-point format.

Ans.

96.5 =

   -0.75 =

____________________________________________________________________________________________

0 1 0 1 1 1 1 1 0 0 0 0 0 1

1 1 0 0 0 0 1 1 0 0 0 0 0 0



Page 16
Last Updated: November 2003

9. Find the Hamming distance d for the following code: {01010,10101,11111,00000,00110}
Ans.

The distance is 2.
____________________________________________________________________________________________

10. a. To detect e single-bit errors, we need a Hamming distance d =  _____________.
b. To correct e single-bit errors, we need a Hamming distance d =  _____________.

Ans.
a. e+1 b. 2e + 1

____________________________________________________________________________________________

11. a. Suppose we want an error correcting code that will allow all single-bit errors to be
corrected for memory words of length 11.  How many check bits are necessary?

b. Suppose we are now working with memory words of length 8.  We have already
calculated that we need 4 check bits, and the length of all codewords will be 12.  We
now receive the following code word:

0 1 0 1 1 1 1 0 1 1 1 0

Is this a legal codeword, assuming odd parity?  If not, where is the error?

Ans.
a. 11+r+1<=2r implies an r of 4.

b.

Bit 1 checks 1,3,5,7,9 and 11, but this is an even number of 1's è error
Bit 2 checks 2,3,6,7,10, and 11, which is an odd number of 1's è ok
Bit 4 checks 4,5,6, 7, and 12, which is an odd number of 1's è ok
Bit 8 checks 8,9,10, 11 and 12, which is an odd number of 1's è ok
Since an error occurs in bit position 1, this is where the error is.

____________________________________________________________________________________________

12. Given that the ASCII code for the character "A" is 1000001, the ASCII code for "H" would
be:

a. 1010101 b. 1110101 c. 1000100 d. 1001000 e. none of these

Ans.
The correct answer is D.

____________________________________________________________________________________________

13. How many base-3 digits does it take to obtain as many combinations as can be done with
5 binary digits?

a.eleven b. three c. four
d.five e. this can't be done

Ans.
The correct answer is C.

____________________________________________________________________________________________

0 1 0 1 1 1 1 0 1 1 1 0
12 11 10 9 8 7 6 5 4 3 2 1
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14. ASCII, EBCDIC, and Unicode are translated into other codes before they are transmitted or
recorded.  These data encoding methods include all but which of the following:

a. non-return-to-zero encoding b. Manchester coding
c. non-return-to-zero-invert encoding d. run-length-limited coding
e. all of these are encoding methods for recorded or transmitted data

Ans.
The correct answer is E.

____________________________________________________________________________________________

TRUE OR FALSE.

_____ 1. BCD stands for Binary Coded Decimal and encodes each digit of a decimal number
to an 8-bit binary form.

_____ 2. Unicode is a 16-bit code, occupying twice the disk space for text as ASCII or EBCDIC
would require.

_____ 3. Hamming codes, used for error detection and correction, are useful for burst errors
(where we could reasonably expect multiple adjacent bits to be incorrect); Reed-
Soloman coding is more useful for random errors (where one can reasonably expect
errors to be rare events).

_____ 4. A signed-magnitude integer representation includes more negative numbers than it
does positive ones.

_____ 5. CRCs are useful when you can ask for retransmission; Hamming codes are good
when retransmission is not possible, such as when data is stored on a disk.

Ans.
1. True   2. True   3. False   4. True   5. False

____________________________________________________________________________________________


