
If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

11

Adnan Aziz is a professor at the Department of Electrical and Computer
Engineering at The University of Texas at Austin, where he conducts re­
search and teaches classes in applied algorithms. He received his PhD
from The University of California at Berkeley; his undergraduate degree
is from IIT Kanpur. He has worked at Google, Qua1comm, IBM, and sev­
eral software startups. 叭Then且ot designing algorithms, he plays withhis
children, Laila, Imran, and Omar.

Amit Prakash is a Member of the Technical Staff at Google, where he
works primarily on machine learning problems that arise in the context
of online advertising. Prior to that he worked at Microsoft in the web
search te缸n. He received his PhD from The University of Texas at Austin;
his undergraduate degree is from IIT Kanpur. 叭Then he is not improving
the quality of ads, he indulges in his passions for puzzles, movies, travel,
and adventures with his wife.

All rights reserved. No part of this publicatio丑 may be reproduced,
stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
the prior consent of the authors.

This book was typeset by the authors using Lesley L缸nport's

匹趴document preparatio丑 system and Peter Wilson's Memoir class.
The cover design was done using Inkscape. MacOSaiX was used to cre伽

ate the front cover image; it approximates Shela Nye's portrait of Alan
Turing using a collection of public domain images of famous computer
scientists and mathematicians. 古le graphic on the back cover was cre­
ated by Nidhi Rohatgi.

The companion website for the book includes a list of known errors for
each version of the book. If you come across a technical error, please
write to us and we will cheerfully send you $0.42. Please refer to the
website for details.

Ver咀on 1.0.0 (September I , 2010)

L叩ebsite:http://algorithmsforinterviews.com

ISBN: 1453792996
EAN-13: 9781453792995

To my father! Ishrat Aziz! for giving me my l~作long love of
learning

AdnanAziz

To my parents! Manju Shree and Arun Prakash! the most loving
parents I can imagine

Amit Prakash

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Table of Contents

Prologue·1

Problem Solving 丁'echniques . 5

I Problems 13

1 Searching. 14

2 Sorting. 23

3 Meta四algorithms. 29

4 Algorithms on Graphs· 41

5 Algorithms on Strings· 52

6 Intractability. 56

7 Parallel Computing· 62

8 Design Problems· 67

9 Discrete Mathematics· 73

10 Probability· 80

11 Programming· 88

II The Interview 99

12 Strategies For A Great Interview· 100

13 Conducting An Interview· 105

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Let's begin with the picture on the front cover. You may have observed
that the portra让 of Alan Turing is constructed from a number of pictures
("tiles") of great computer scientists and mathematicians.

Suppose you were asked in an interview to design a program that
takes an 垃nage and a collection of s x s-sized tiles and produce a mosaic
from the tiles that resembles the image. A good way to begin may be to
partition the image into s x s-sized squares, compute the average color
of each such image square, and then find the tile that is closest to it in
the color space. Here distance in color space can be L2-norm over Red­
Green-Blue (RGB) intensities for the color. As you look more carefully at
the problem, you might conclude that it would be better to match each
tile with an image square that has a similar structure. One way could
be to perform a coarse pixelization (2 x 2 or 3 x 3) of each 挝lage square
and finding the tile that is "closest" to the image square under a distance

V1
TABLE OF CONTENTS

III Solutions 109

l Searching· 110

2 Sorting' 123

3 Meta-algorithms· 130

4 Algorithms on Graphs· 144

5 Algorithms on Strings· 156

6 Intractability· 160

7 Parallel Computing· 167

Prologue

8 Design Problems· 174

9 Discrete Mathematics· 186

10 Probability· 194

11 Programming· 206

Index of Problems· 212

工 ι~N 时R..\T~ 于C.Pt N .sO R.."

2::Tit13;?32L;t23 山附吨吵

77
γau ARf / /

SOMEW且已民E //

100\ I INYεNTEj)

\坠主) A NEWMo):> E.L
I) ../ o~ Cot吨 Pυ1' A， ION

/ 五夺
(!?Cn MY A. t喝 oS

一一--lit干气" iauc. H G.VER.'f
U ../" PPlCKE'T oN

\~ THE INT€ 民NeT

/
政
嗖
￥

Figure 1. Evolution of a computer scientist

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

2
PROLOGUE 3

function defined over all pixel colors (for example, L2-norm over RGB
alues for each pixel). Depending 0日 how you represent the tiles, you

eI1d up with the problem of findirlg the closest point koma set of pohts
in a k-dimensional space.

If there are m tiles aRd the image is partitiORed into nsquaresr then
a brute-force approach would have O(m· η) time complexity. You could
improve 0口 this by first indexhg the tiles ushg aIIappropriate search
tree.Amore detailed disωsionon this approach is presented in Prob-

lem 8.1 and its solution.
If h a E-60miRUte hterviewy you can work thTough the above ideasr

write some pseudocode for your algorithm, and analyze its complex­
iiF youwo讪d have had a fairly successful ir阳忧w. In丑叼1p归a盯M削r时叫ticu吐1址阳lar艾盯:

would have d由em丑10∞I丑1st位ra挝ted tωo your in口1t怡erv飞vi坦ewe盯rt也ha挝t you possess several

key skills:

_ The ability to rigorously formulate real-world problems.
一The skills to solve problems and design algorithms.
一 The tools to go from an algorithm to a working program.
一 The malytical techMques required to determhe the computatioml

complexity of your solution.

Book Overview

Alσorithmsfor Interviews (AFI) aims to help engineers interviewing for
SOLar-e developnmtpmωns.The 严in叫T foω仙FI is algorithm
design. The entire book is prese口ted through problems interspersed with
discussions. 白1e problems cover key comepts md are well-motivatedr
challenging, and fun to solve.

We do not emphasize platforms and programmi哆 languages since
they differ across jobsy md cm be acquired fairly emly.II1terviews at

st large software compmies focus more on algorithmsr problem solv­
iLaJdesign skills than O丑 specific domain knowledge. Also, pI斗­
fobs aM progmm1hgla吨mges cm chmge quickly as requirements
chmge but the qualities mmtiORed above will always be hmdameI1tal to
anv successful software endeavor.

JTM questiom we pment should allbe solvable withh a om hour
iew and in rna叮 cases， take s由阳巾lly less time. A question

may take more or less time to completeF depmdhg OIIthe amOUIIt of
oding that is asked for.
。品 soldomvaryhtems ofdetailm-for some pdlemswe prese口t

detailed implementations in Java/C十十IPytho刊 for othersr we siTPly
sketch solutions. Some use fairly technical machinery, e.g., max-t1ow,
raI1domized malysisy etc.You will enComter such problems only if you

claim specialized knowledge, e.g., graph algorithms, complexity theory,
etc.

Interviewing is about more than being able to design algorithms
quickly. You also need to know how to present yourself, how to ask for
help when you are stuck, how to come across as being excited about the
company, and knowing what you can do for them. We discuss the non­
technical aspects of interviewing in Chapter 12. You can practice with
friends or by yourself; in either case, be sure to time yourself. Interview
at as many places as you can without it taking away from your job or
classes. The experience will help you and you may discover you like
companies that you did not know much about.

Although an interviewer may occasionally ask a question directly
from AFI, you should not base your preparation on memor恒ing solu用

tions from AFI. We sincerely hope that reading this book will be enjoy­
able and improve your algorithm design skills. The end goal is to make
you a better engineer as well as better prepared for software interviews.

Level and Prerequisites

Most of AFI requires its readers to have basic familiarity with algorithms
taught in a typical undergr叫uate-Ievel algorithms class. 古le chapters
O口 meta-algorithms， gr叩hs， and intractability use more advanced ma­
chinery and may require additional review.

Each chapter begins with a review of key concepts. This review is not
meant to be comprehensive and if you are not familiar with the material,
you should first study the corresponding chapter in an algorithms text­
book. There are dozens of such texts and our preference is to master one
or two good books rather than super血cially sample many. We like Algo­
rithms by Dasgupta, Papadirnitriou, and Vazirani because it is succinct
and beautifully written; Introduction to Algorithms by Cormen, Leiserson,
Rivest, and Stein is more detailed and serves as a good reference.

Since our focus is on problems that can be solved in an interview rel­
atively completely, there are many elegant algorithm design problems
which we do not include. Similarly, we do not have any straightforward
review-type problems; you may want to brush up ∞ these using intro­
ductory programming and data-structures texts.

The field of algorithms is vast and there are many specialized topics,
such as computational geometry, numerical analysis, logic algori仕lms，

etc. Unless you claim knowledge of such topics, it is highly unlikely that
you will be asked a question which requires esoteric knowledge. While
an interview problem may seem specialized at first glance, it is invariably
the case that the basic algorithms described in this book are sufficient to
solve it.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

4

Acknowledgments

The problems in this book come from diverse sources-our own expe­
riences, colleagues, friends, papers, books, Internet bulletin boards, etc.
To paraphrase Paul Halmos from his wo口derfulbook Problems for Math­
ematicians, Young and Old: "I do not give credits-who discovered what?
Who was first? Whose solution is the best? It would not be fair to give
credit in some cases缸1d not in others. No one knows who discovered the
theorem that bears Pythagoras' name and it does not matter. The beauty
of the subject speaks for itself and so be it."

One person whose help and support has improved the quality of this
book and made it fun to read is our cartoonist, editor, and proofreader,
Nidhi Rohatgi. Several of our friends and students gave feedback on
this book-we would especially like to thank Ian Varley, who wrote so­
lutions to several problems, and Senthil Chellappan, Gayatri Ramachan­
dran, and Alper Sen for proofreading several chapters.

We both want to thank all the people who have been a source of en­
lightenment and inspiratio口 to us through the years.

1/ Adnan Aziz, would like to thank teachers, friends, and students
from IIT Kanpur, UC Berkeley, and UT Austin. I would especially like
to thank my friends Vineet Gupta and Vigyan Singhal, and my teach­
ers Robert Solovay, Robert Brayton, Richard Karp/ Raimund Seidel, and
Somenath Biswas for introducing me to the joys of algorithms. My co­
author, Amit Prakash, has been a wonderful collaborator-this book is a
testament to his intellect, creativity, and enthusiasm.

1/ Amit Prakash, have my co-author and mentor, Adnan Aziz, to
thank the most for this book. To a great extent, my problem solving skills
have been shaped by Adnan. There have been occasions in life when
I would 口ot have made 吐Hough without his help. He is also the best
possible collaborator I can think of for any intellectual endeavor.

Over the years, I have been fortunate to have great teachers at IIT
Kanpur and UT Austin. I would especially like to thank Professors Scott
Nettles, Vijaya Ramachandran, and Gustavo de Veciana. I would also
like to thank my friends and colleagues at Google, Microsoft, and UT
Austin for all the stimulating conversations and problem solving ses­
sions. Lastly and most importantl)T, I want to thank my family who have
been a constant source of support, exciteme时/ and joy for all my life and
especially during the process of writing this book.

ADNAN AZIZ
ad丑臼l@a工gorithmsforinterviews.com

AMIT PRAKASH
amit@algorithmsforinterviews.com

Problem Solving Techniques

It's not that I/m so smartt it's just
that I stay with problems longer.

A. Einstein.

-Developing problem solving skills is1ikekamizlg to p1ay a m ·
instrument一】-a book or a teacher cm poht you h the right directiOIL but
O干ly your hayd workwill take you where you want to g0·Like a m-

/ youn创 tohowunde蝴吨 concepts but theory is no substitute
for practice;for th1s reasonr AFI consists primarily of problems

Great problem sokers have ski11s that carmot be captured by a set of
rules.Stilly whm faced with a cEIdleI1ging algoyithm desigIIprob1em it is
rlpfu1Mwe a sma11setdgm向阳iples that may be applicable
we eIImerate a c01lection of such prhciples h Table 1.ofteIL you may
have to use more than one of these techdques.

We will I1ow look at some concrete examples of how these techRiques
an be applied.

DIVIDE-AND-CONQUER AND GENERALIZATION

A triomho is formed by joining three unit-sized squares in m L-shape.
Amu也ted ches由oar斗 (he丑cefor也 8 x 8 Mboard) is made up of 64 unit­
sized squares arzmged m m 8 × 8squarey miI111s the topleft squaye-sup­
2:12oua盯r把.它eas咏ωk

om口lin丑10ωst白ha挝t covers the 8 x 8Mbo侃ard. (Since there are 63 squares
h the 8 × 8Mboard and-we have ntriomhosr a valid phcement canmt
have overlapping triommos or trioIIlinos which extend out of the 8 × 8
Mboard.)

Divide-aI1d-COIlquer is a good strategy to attack this problem-k1stead
of the 8 × 8Lfboardr1etFs consider m n × nLfboard-A2 × 2Mboard c-n
be covered w圳 triomir叫阳比of tl盯ame exact shape. You阳m41二Z;
i己2?吃:3:2:::;江i工::?俨俨hat挝ta 创阳om红min丑linO口∞1旧盯O叩pI阳丑m阳nen臼m叫n

S臼sing can be used to c∞omput怡e a plac臼em工丑len丑lt for an rηZ叶十Ixη十1

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

6 PROBLEM SOLVING TECHNIQUES 7

Technique Description

Divide-and- Can you divide the problem into two or more
conquer smaller independent sUbproblems and solve

the original problem using solutions to the
subproblems?

Recursion, dynamic If you have access to solutions for smaller in-
programmmg stances of a given problem, can you easily con-

struct a solution to the problem?

Case analysis Can you split the input/execution into a num-
ber of cases and solve each case in isolation?

Generalization Is there a problem that subsumes your prob-
lem and is easier to solve?

Data-structures Is there a data-structure that directly maps to
the given problem?

Iterative refinement Most problems can be solved using a brute-
force approach. Can you formalize such a so-
lution and improve up∞ it?

Small examples Can you find a solution to small concrete in-
stances of the problem and then build a so-
lution that can be generalized to arbitrary 让卜

stances?

Reduction Can you use a problem with a known solution
as a subroutine?

Graph modeling Can you describe your problem using a graph
and solve it using an existing algorithm?

Write an equatio丑 Can you express relatio口ships in your problem
in the form of equations (or inequalities)?

Auxiliary elements Can you add some new element to your prob-
lem to get closer to a solution?

Variation Can you solve a slightly different problem and
map its solution to your problem?

Parallelism Can you decompose your problem into sub-
problems that can be solved independently on
different machines?

Caching Can you store some of your computation and
look it up later to save work?

Symmetry Is there symmetry in the input space or solu-
tion space that car飞 be explo让ed?

Table 1. Commo日 problem solving techniques.

Mboard-However you wmquickly see tht tkislhe of reasonhg does
not lead you anywhere.

Another hypothesis is that if a placement exists for an n xη Mboard，
then one also exists for a 2n x 2η Mboard. This does work: take 4 n x n

Mboards and arrange them以orma严 x2ηsquareimuchawdthi
three of theMboards have theEIIUSSIng square set towards the center
a时 one Mboard has its missi吨叩are outward to coin创e with the
missing corner of a 2ηx2η 孔1board. The gap in the ce口ter can be covered
with a trio吨。 and， by hypothesis, we ~a~ cover the 4η × η Mboards
with triominos as well. Her丑nee aplacαemen时1吐te以χi妇st怡sforany ηt也ha挝ti扫s a power
O们f归2. In丑叩pa缸削I

挝ωO∞I丑川1 used inη川t白he pm f cm be dimetly coded to fhd the actuai COLe-::L
as well. Obs盯e阳恤P伊阳ro伪blemd由err红mo

ella臼sg伊ene咀eraliz泣za挝tion (from 8 x 8 tω02俨饥 x2俨η).

RECURSION AND DYNAMIC PROGRAMMING

Suppose you were to desig1aI1algorithm that takes az111npareIIthesized
e创S臼蚓S剖i∞町C∞O叫1干卢1让t牛归gμad创d出创i让挝t赳i妇阳Oαna叫mu均lica甜ti∞ O句perato创创r吼.

thepa盯ren丑lt白he臼Sl曰za拍tio∞I丑1 t出:ha挝tm工丑laxi垃m丑li坦ze臼s the 飞value淀e of the expressio∞n. For
mpley the expression5-3·4+6yields my of the followiIIgva111es:

-25 = 5 一 (3 ， (4 + 6))

-13 = 5 一 ((3 . 4) + 6)

20 = (5 - 3) . (4 + 6)

-1 = (5 一 (3 . 4)) 十 6

14 = ((5 - 3) . 4) + 6

S」;芷:2C甲吟叫S由如M均中抄C∞om叫pu盹t怡e 由the p归a盯盯削r跄ren时.它吱m创叫e缸m创I丑时毗1吐巾t也thesizatio∞I口山1
aX1牛中叫I虹m削n旧1让ize臼sits怡sva叫alue叩1凡e今， i扰t is easy to ider哟T the optimum top level

parenthesization• pareRtheSIze on each side of the operators azld determ
mt whi中 operator r虹叫I

e仅cur岛Sl凹飞ve c∞ompu时ta挝甜t拄io∞n of the rnaχi垃m丑III曰zln口19 pa盯ren口时t白he臼si垃za剖tim丑1 for
u由be今产pre蚓O∞丑mS leads to repeated calls with idmtical argume时s. Dy­

programming avoids these repeated computations;refer to Prob­
lem 3.11for a detailed exposition-I

CASE ANALYSIS

Y沟ou are gi扣Vmemaset S ofE distincthtegm mdaCPUthathas aspecial
mstruetiOIL SORt-Ethat cm sort5htegers h OIIe cycle.Your task is
to identi命 the 3largest integers h S ushg SORt-5to compaye and sort
subsets of afurthermorer you must miIIimize the number of calls to
SORT5.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

8 PROBLEM SOLVING TECHNIQUES 9

If all we had to compute was the largest integer in the set, the opti­
mum approach would be to form 5 di司oint subsets 81,…, 85 of 8/ sort
each subset, and then sort {max 81,…, max 85 }. This takes 6 calls to
SORT5 but leaves ambiguity about the second and third largest integers.

It may seem like many calls to SORT5 are still needed. However if
you do a careful case analysis and eliminate all x ε8 for which there are
at least 3 integers in 8 larger than X/ 0口ly 5 integers remain and hence
just one more call to SORT5 is needed to compute the result. Details are
given in the solution to Problem 2.5.

FIND A GOOD DATA STRUCTURE

Suppose you are given a set of files, each containing stock quote infor­
mation. Each line contains starts with a timest缸丑p. The files are indi飞rid­

ually sorted by this value. You are to design an algorithm that combines
these quotes into a single file R containing these quotes, sorted by the
出nestamps.

This problem can be solved by a multistage merge process, but there
is a trivial solution using a min-heap data structure, where quotes are
ordered by timestamp. First build the min-heap with the first quote from
each file; then iteratively extract the minimum entry e from the min-heap/
write 让 to R, and add in the next entry in the file corresponding to e.
Details are given in Problem 2.10.

ITERATIVE REFINEMENT OF BRUTE-FORCE SOLUTION

Consider the problem of string search (cf Problem 5.1): given two strings
s (search string) and T (text), find all occurrences of s in T. Since scan
occur at any offset in T , the brute-force solution is to test for a match at
every offset. This algorithm is perfectly correct; its time complexity is
O(η. m)/ where n and m are the lengths of sand T.

After trying some examples, you may see that there are several ways
in which to ir口prove the time complexity of the brute-force algorithm.
For example, if the character T[i] is not present in s you can suitably ad­
vance the matching. Furthermore, this skipping works better if we match
the search string from its end and work backwards. These refinements
will make the algorithm very fast (linear-time) on random text and search
strings; however, the worst case complex让y remains O(η ·m).

You can make the additional obser飞ration that a partial match of s
which does not result in a full match implies other offsets which cannot
lead to full matches. For ex缸nple， if s 二 αbdαbeabe and iff starting back­
wards, we have a partial match up toαbeαbe that does 口ot result in a full
match, we know that the next possible matching offset has to be at least
3 positions ahead (where we can match the secondαbe from the partial
match).

By puttiI1g together these refinemeI1ts you will have arrived at the
famous Boyer-Moore string search algorithm-its worstmcase time C m­
plexityis oh+m)(whichis thebestpossible ffomatheoreticalperspecm
tivek it is also one of the fastest strhg search dFrithms h practice.

SMALL EXAMPLES

Problems that seem difficult to solve in the abstract, can become much
mo时ractablewhen you examine small concrete instances. For instan二
co且sider tl时ollowi口g problem: there a时00 clo时 doors alo吨 a … ri­
dorr numbered from1t0500.A persOI1walks through the corridor and
opens each door.AIIother person walks through tke corridor and closes
every alternate door. Continuing 如 this m缸me乙 the i-th person c
aI1d toggles the position of every t-th door starthgfrom door t.y;
to determine exactly how many doors are opmafter the 500-th persOII
has walked through the corridor.

It is very difficult to solve this problemushg abstract variables.How­
ever if you try the problem for ljp374710?md20doorsr it takes mder
ammte to see that the doors that remah opmare l?479716.··F regard­
less of the total I1umber of doors.The pattern is obvious-the doors that
re中am op中 are 中ose numbered by perfect squares. Once you make
ths cOImeetlOIL1tls easy tOEZ?ve it for the generalcase-HeIIce the totd
number of open doors is ly500J = 22. Refer~to Problem 9A for a detailed
solution.

REDUCTION

Conside气the probkm of fiMing if om st血g is a rotation of the other,
e.g., "car" 缸1d Harc"are rotatiORs of each other A I1aturd approach may
be to rotate the first strhgby everypomible offset aM ttmcomar4
wi中 the second st出g. This algorithm would have quadratic ti斗 com­
plexity.

You may I1otice that this problem is quite s扛nilar to string search
which cm be domh1inear-tmer albeit mhg a somewhat complex alm
gorithm.So it would be I1aturd to try to reduce this problem to string
search.IndeedrifwecomatemtethesecondstringwithitselfaMsearcE
for the first stying h tke resulting string, we will find a match iff the two
original strhgs are rotatiOI1s of each other.This reduction yields a linear­
time algorithm for our problem;details are giveR iRProbkII15.4.

Usually you try to reduce your proble~ to an easier problem. But
sometmesr you need to reduce a problem bmWI1to be difficult to your
giveI1problem to show that your problem is difficult.Such probkms are
described in Chapter 6.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

10 PROBLEM SOLVING TECHNIQUES 11

GRAPH MODELING

Drawing pictures is a great way to brainstorm for a potential solution. 日
the relati(;nships in a given problem can be represented using a graph,
auite often the problem can be reduced to a well-known graph problem.
至or example, suppose you are given a set of barter rates between com­
modities and you are supposed to find out if 缸1 arbitrage exists, i.e., there
is a way by which you can start with αunits of some commodity C and
perform a series of barters which results in having more thanαunitsof
C.

We can model the problem with a graph where commodities corre-
spond to vertices, barters correspond t? edges, .~~ the :d?e ,:eight ~s
s~t to the logarithm of the barter rate. If we can find a cycle in the graph
with a positke weightrwe wouldhave fOUI1d such a series of exchnges.
Such a cycle can be solved using the Bellma扣Ford algorithm (cf. Prob­
lem 4.19).

After some (or a lot) of tr划-and-error， you may begin to wonder if
a such a configuration exists. Prov
hard. However if you think of the 8 x 8 square board as a chessboard,
you will observe that the removed comers are of the same color. Hence
the board consists of either 30 white squares and 32 black squares or vice
versa. Since a domino will always cover two adjacent squares, anyar­
rangement of dominoes must cover the same number of black and white
squares. Hence no such configuration exists.

The or地inal problem did not talk about the colors of the squares.
Adding these colors to the squares makes it easy to prove impossibility,
illustrating the strategy of adding auxiliary elements.

VARIATION

WRITEANEQUATION

Some problems can be solved by expressing them in the language of
mathematics. For example, suppose you were aske~ to write an algo­
rithm that computed binomial coefficien怡， G) =硕兰布

The problem with computing the binomial coefficient directly from
the definition is that the factorial function grows very quickly and can
overflow an integer variable. If we use floating point represe口tations

for numbers, we lose precision and the problem of overflow does n?~ go
away. These proble~s potentially exist even if the final value .of G) i~
small. One c~ try to factor the numerator and denominator and try and
cancel out commo日 termsbut factorization is itself a hard problem.

The binomial coefficients satisfy the addition formula:

Suppose we were asked to design an algorithm which takes as input an
undirected graph and produces as output a black or white coloring of the
vertices such that for every vertex, at least half of its neighbors differ in
color from 让.

We could try to solve this problem by assigning arbitrary colors to
vertices and then flipping colors wherever constraints are not met. How­
ever this approach does not converge 0口 all examples.

It turns out we can define a slightly different problem whose solution
will yield the coloring we are looking for. Define an edge to be diverse if
its ends have different colors. It is easy to verify that a color assignment
that maximizes the number of diverse edges also satisfies the constraint
of the original problem. The number of diverse edges can be maχ迦lized

greedily flipping the colors of vertices that would lead to a higher num­
ber of diverse edges; details are give口 in Problem 4.11.

PARALLELISM

\
、

1
·
B
』
，
，
，
/

丁
t
品
才

1
·
·
4

一
一

η
k

//IlI\

+\
飞

l
l
l
/

才
l
在

-k
η

/
I
l
i
t飞
、

一
一

\
飞

l
i
l
/

nk/
I
I
I
-飞
\

In the context of interview questio口s， parallelism is useful when dealing
with scale, i.e., when the problem is so large that it is 红卫possible to solve
it on a single machine or it would take a very long time. The key insight
you need to display is how to decompose the problem such that (1.) each
subproblem can be solved relatively independently and (2.) constructing
the solution to the or培inal problem from solutions to the subproblems is
not expensive in terms of CPU time, main memory, and network usage.

Consider the problem of sorting a petascale integer array. If we know
the distribution of the numbers, the best approach would be to define
equal-sized ranges of integers and send one range to one machine for
sorting. The sorted numbers would just need to be concatenated in the
correct order. If the distribution is 卫ot known then we can send equal­
sized arbitrary subsets to each machine and then merge the sorted results

This identity leads to a straightforward recursion for computing (~)
which avoids the problems mentioned above. Dynamic programming
has to be used to achieve good time complexity-details are in Prob阳

lem 9.1.

AUXILIARY ELEMENTS

Consider an 8 x 8 square board in which two squares 0且 diagonallyoppo­
site corners are removed. You are given a set of thirty-one 2 x 1 dominoes
and are asked to cover the board with them.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

12

using a min-heap. For details on petascale sorting, please refer to Prob­
lem2.2.

CACHING

Caching is a great tool whenever there is a possibility of repeating com­
putations. For example, the central idea behind dynamic programming
is caching results from intermediate computations. Caching becomes ex­
tremely useful in another setting where requests come to a service in
an online fashion and a small number of requests take up a significant
amount of compute power. Workloads on web services exhibit this prop­
erty; Problem 7.1 describes one such problem.

SYM如1ETRY

While symmetry is a simple concept it can be used to solve very difficult
problems, sometimes in less than intuitive ways. Consider a 2-player
g缸ne in which players alternately take bites from a chocolate bar. The
chocolate bar is an ηx m rectangle; a bite must remove a square and all
squares above and to the right in the chocolate bar. The first pI句rer to eat
the lower leftmost square loses (think of it as being poisoned).

Suppose we are asked whether we would prefer to play first or sec­
ond. One approach is to make the obser飞ration that the game is sym­
metrical for Player 1 and Player 2/ except for their starting state. If we
assume that there is no winning strategy for Player 1/ then there must be
a way for Player 2 to win if Player 1 bites the top right square in his first
move. Whatever move Player 2 makes after that can always be made by
Player 1 as his f让st move. Hence Player 1 can always win. For a detailed
discussion, refer to the Problem 9.13.

CONCLUSION

In addition to developing intuition for which technique may apply to
which problem, it is also important to know when your technique is not
wor烛19 and quickly move to your next best guess. In an interview set­
ting/ even if you do not end up solving the problem entirely, you will
get credit for applying these tecm问ues in a systematic way and clearly
communicating your approach to the problem. We cover nontechnical
aspects of problem solving in Chapter 12.

Part I

Problems

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

1.1. COMPUTING SQUARE ROOTS 15

Chapter 1

Searching

Searching is a basic tool that every
programmer should keep in mind
for use in a wide variety of
situations.

"The Art of Computer
Programming, Volume 3 - Sorting

and Searching," D. Knuth, 1973

Given an arbitrary collection of ηkeys， the only way to determine if a
search key is present is by examhhg each demeI1t which yields O(η)

complexity.If the collection isHorgmizedHF searching cm be sped up
dramatically. Of course, inserts and deletes have to preserve the organi­
zation; there are several ways of achieving this.

Binary Search

Bhafy search is at the heart of more interview questiom thm my other
shgle algorithm.Flmdamentally}binary search is a mturddivide-md­
COI1quer strategy for searchhg.The idea is to eliminate half the keys from
consideration by keeping the keys in a sorted array. If the search key is
I10t equal to the middle element of the array}OI1e of tke Wo sets of keys
to the~left and to the right of the middle element can be eliminated from
further consideration.

Questions based on binary search are ideal from the interviewers per­
spective: it is a basic technique that every reasonable candidate is sup­
卢sed to know and it can be impleme口ted in a few lines of code. On the
时her hand, binary search is much trickier to impleme口t correctly than it
appears-you should implement it as well as write corner case tests to
ensure you understand it proper!予

Many published implementations are incorrect 妇 subtle and not-so­
subtle ways-a study reported that it is correctly implemented in only
five out of twenty textbooks. Jon Bentley, in his book Programming Pearls
reported that he assigned binary search in a course for professional pro­
grammers and fou日d that 90% perce时 failed to code 让 correctly despite
having ample time. (Bentley's students would have been gratified to
know that his own published扛nplementationof binary search, in a chap­
ter titled "Writing Correct Programs"/ contained a bug that remained un­
detected for over twenty years.)

Binary search can be written in many ways-recursive, iterative, diι
ferent idioms for conditionals, etc. Here is an iterative implementatio口

adapted from Bentley's book, which includes his bug.

1 I public class BinSearch {
2 I static int search(int [] A, int K) {
3 I int I = 0;
4 I int u = A. Ie吨th -1;
5 lint m;
6 I while (I <= U) {

7 I m = (l+u) /2;
8 I if (A[m] < K) {
9 I I = m + 1;

10 I } else if (A[m] == K)
11 I return m;
12 I } else {
13 I u = m-l;
14 I
15 I }
16 I return -1;
17
18

百le error is in the assignment m = (1+u) /2; it can lead to over丑ow

and should be replaced by m = 1 + (u-l) /2.
The time complexity of binary search is given by B (η) = c 十 B(η/2).

This solves to B (η) = O(log 叫/ which is far superior to the O(n) ap­
proach needed when the keys are unsorted. A disadvantage of bi­
nary search is that it requires a sorted array 缸ld sorting an array takes
O(ηlog叫 time. However if there are many searches to perform, the time
taken to sort is not an issue.

We begin with a problem that on the face of it has nothing to do with
binary search.

1.1 COMPUTING SQUARE ROOTS

Square root computations can be implemented using sophisticated nu­
merical techniques involving iterative methods and logarithms. How­
ever if you were asked to impleme丑t a square root function, you would
not be expected to know these techniques.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

16 CHAPTER 1. SEARCHING 1.7. INTERSECT TWO SORTED ARRAYS 17

Problem 1.1:Implement a fasthteger square root functiOI1that takes
in a 32-bit unsigned 让lteger and returns another 32-bit unsigned integer
that is the floor of the square root of the input.

There are many variaI1ts of searchhg a sorted array that require a little
moretUinkhandcmte opportunitiesformissingcomermes Forthe
followi吨 problems， A is a sorted array of ir由gers.

1.2 SEARCH A SORTED ARRAY FOR k

Write a method that takes a sorted array A of integers and a key k md
retums the hdex of first occurrmce of k h A.Retum-l if k does Rot
appear in A. Write tests to verify your code.

1.3 SEARCH A SORTED ARRAY FOR THE FIRST ELEMENT LARGER

THANk

Design amfacieIIt algorithm1hatfiMs the iMex ofthe f缸i让r时st occurre丑

aneιlem丑leI时1让t larger t白han丑1 a s叩pe仅Cα1凶白ed key k; return 一-Ii证f every element is
less than丑lor equal t怡ok.

1.4 SEARCH A SORTED ARRAY FOR A[i] = i

2:252品业;232:iztt;:1;22lt:zt;:
A[i] = i or indicati吨 that no s旧h index exists.

1.5 SEARCH AN ARRAY OF UNKNOWN LENGTH

suppose you dOROtknow thelenghofAh advame;accemingA[tlfor
i beymd the end of the array throws m except10孔

Problem 1.5: Find the index of the first occurrence in A of a specified
key k; return -1 if k does not appear in A.

1.6 MISSING ELEMENT, LIMITED RESOURCES

百le storage capacity of hard drives dwarfs that of RAM. This ca口 lead to
interesting time-space tradeoffs.

Problem 1.6: Given a file containing roughly 300 million social security
IIIbers(9-digit I1umbers)y fiI1d a 9-digit number that ismt h the file.

You have unlimited drive space but only2megabytes of RAM at yo r

disposal.

1.7 INTERSECT T飞何o SORTED ARRAYS

A natural implementatio丑 for a search engine is to retrieve documents
that match the set of words in a query by main姐姐ing an inverted index.
Each page is assigned an integer identifier, its dOGument-id. An i让nv飞ve臼r‘怡d

i坦I丑ld由eχi妇s a mapping t出ha挝t takes a word ωand returns a sorted arηra叮yof

P归ag伊e命创-i挝dswhichc∞O∞I口lt妇ainω一the sort order could be, for ex缸工lple， the page
rank in descending order. When a query contains multiple words, the
search engine finds the sorted array for each word and then computes
the intersection of these arrays-these are the pages containing all the
words in the query. The most computationally intensive step of doing
this is finding the intersection of the sorted arrays.

Problem 1.7: Given sorted arrays A and B of lengths nand m respec­
tivel予 return an array C COl削ni吨 elements common to A and B. The
array C should be free of duplicates. How would you perform this inter­
section if.一(1.)η 自 m and (2.)η «m?

Hashing

Hashing is another approach to searching. Hashing is qualitatively dif­
ferent from binary search-the idea of hashing is to store keys in an array
of length m. Keys are stored in array locations based on the "hash code"
of the key. The hash code is an integer computed from the key by a hash
function. If the hash function is chosen well, the keys are distributed
across the array locations uniformly randomly.

There is always 也e possibility of two keys mapping to the same loca­
tio凡 in which case a "collision" is said to occur.τ'he standard mechanism
to deal with collisions is to maintain a linked list of keys at each location.
Lookups, inserts, and deletes take 0(1 十 η/m) complexity, whereηis the
number of keys. If the "load" n/m grows large, the table can be rehashed
to one with a larger number of locations; the keys are moved to the new
table. Rehashing is expensive (e(η+m) time) but if it is performed infre­
quently (for example, if performed every time the load increases by 2x),
its amortized cost is low.

Compared to binary search trees (discussed on Page 20), inserting and
deleting in a hash table is more efficient (assuming the load is constant).
One disadvantage of hashing is the need for a good hash function but
this is rarely an issue in practice. Similarly, rehashing is not a problem
outside of realtime systems and even for such systems, a separate thread
can perform the rehashing.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

18
CHAPTER 1. SEARCHING 1.13. ROBOT BATTERY CAPACITY 19

1.8 ANAGRAMS

A丑agr缸工1s are popular word play puzzlesr where by rearranghg letters
of one set of words you get mother set of words.For exampley Hel

二 m anigramforutwdve plus oneFF Cmsswordpl四Ie en-tziz:马:ωikeω be able to ger口阳1
Q"iver丑1 set of letters.

i213:23eZ1132UIZtLZZ;ZJEaZZ
1.9 SEARCH FOR A PAIR WHICH SUMS TO 8

Let A be a sorted array of integers and 8 a target integer.

Problem 1.9:Design m efficient algorithm for determiniI1g if there exist
apair of hdices kjhotmcessadly disthct)such that Am 十 A[j] =8.

1.10 ANONYMOUS LETTER

A hash can be viewed as a dictionary. As a result, hashing comma口ly
appears when processing with strings.

:zttz:1立32222221:ι:rizzzt
Iγthod is to return true if L cm be writter111shg llf md false otherwise.
17a以r appears k times in L, it mu时 app…t least k 恤臼川)

1.11 PAIRING USERS BY ATTRIBUTES

You are building a soci们etw州咿
of、呼f attributes. You would like t切a pa挝ir each user with ar丑lot出he臼r unpaired

LSe臼r巾.
i马P严e仅cifωy， you are given a叫uer附 ofus优e臼 where

2扫3工k;7y泣江:旦弘二乒♂:立飞:巳:rz立β:2:;二;?fS♂z且:2;:::F古;t古峦::z:z; :勾;♂;4
E忠口;zz:::汇:r?1Z:;:::艺i;芷::;r且且::立:2?:江2且i古t:t:;芦:立:二r?;泣;乌:;汇:t立且z盯飞江阻二与;口rr二
theun丑lpai让red set.

?t出:73日:12JZ;1221:22;二z:;工;ii
of attributes as well?

1.12 MISSING ELEMENT

Hashing can be used to find an element which is not prese口t in a g1Ven

set.

Problem 1.12: Given an array A of integers, find a口 integer k that is 口at

prese丑tinA. Assume that the integers are 32-bit signed integers.

1.13 ROBOT BATTERY CAPACITY

A robot needs to travel along a path that includes several ascents and
descents. When it goes up, it uses its battery as a source of energy and
when it goes down, it recovers the pate时ial energy back into the battery.
The battery recharging process is ideal: on descending, every Joule of
gravitational potential energy converts into a Joule of electrical energy
that is stored in the battery. The battery has a limited capacity and once
it reaches its storage capacity, the energy generated from the robot going
down is lost.

Problem 1.13: Given a robot with the energy regeneration ability
described above, the mass of the robot m and a sequence of three­
dimensional co-ordinates that the robot needs to traverse, how would
you determine the minimum battery capacity needed for the robot to
complete the trajectory? (Assume the robot starts with a f旬ull悖y cha盯rg萨ed

battery and the battery is used a∞丑l悖y for ov飞ve臼主r∞mi坦I丑飞g gravity.)

1.14 SEARCH FOR MAJORITY

There are several applications where you want to identify tokens in a
given stream that have more than a certain fraction of the total number
of occurrences in a relatively inexpensive manner. For ex缸丑pIe， we may
want to identify the users using the largest fraction of the network band­
width or IP addresses originating the most HTTP requests. Here we will
try to solve a simplified version of this problem called "majority-find".

Problem 1.14: You are reading a sequence of words from a very long
stream. You know a priori that more than half the words are repetitions of
a single word W but the positions where W occurs are unknown. Design
an efficient algorithm that reads this stream only 0丑ce and uses only a
constant amount of memory to identify W.

1.15 SEARCH FOR FREQUENT ITEMS

In practice, we may not be interested in just the majority token but all the
tokens whose count exceeds say 1% of the total token count. It is easy
to show that it is 垃丑possible to do this in a single pass when you have
limited memory but if you are allowed to pass through the stream twice,
it is possible to identi句T the common tokens.

Problem 1.15: You are reading a sequence of strings separated by white
space from a very large stream. You are allowed to read the stre缸n twice.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

20 CHAPTER 1. SEARCHING 1.18. SEARCHING TWO SORTED ARRAYS 21

Devise an algorithm that uses only O(k) memory to identify all the words
that occur more than I~l times in the stream, whereηis the Ie吨th ofthe
stream.

Binary Search Trees

A problem with arrays is adding and deleting elements to an array is
computationally expensive, particularly when the array needs to stay
sorted. Binary Search Trees (BSTs) are similar to arrays in that the keys
are in a sorted order but they are easier to perform insertions and dele­
tions into. BSTs require more space than arrays since each node has to
have a pointer to its children and its pare时.

The key lookup, insert, and delete operations for BSTs take time pro­
portional to the height of the tree, which can in worst-case be 8(η)， if
inserts 缸ld deletes are nai:飞rely implemented. However there are 垃L

plementations of insert and delete which guarantee the tree has heig忧

。(log 叫. These require storing and叩dati吨 additionaldata at the tree
nodes. Red-black trees are an ex缸叩Ie of such balanced BSTs and they
are the workhorse of modern data-structure libraries-for example, they
are used in the C++ STL library to implement sets.

Keep in mind that BSTs are, in certain respects, qualitatively different
from the trees described in Chapter 5 (Algorithms on Graphs) and 让 is

important to understand these differences. Specifically, in a BST, there is
positionality as well as order associated with the children of nodes. Fur­
thermore, the values stored at nodes have to respect the BST property­
the key stored at a node is greater than or equal to the keys stored in the
nodes of its left subchild and less than or equal to the values stored in the
nodes of its right subchild.

1.16 SEARCH BST FOR A KEY

Searching for a key in a BST is very similar to searching in a sorted array.
Recursion is more natural but for performance, a while-loop is preferred.

Problem 1.16: Given a BST T， 丘rst write a recursive function that
searches for key K , then write an iterative function.

1.17 SEARCH BST FOR x> k

BSTs offer more than the abili可 to search for a key-they can be used to
find the min and max elements, look for the successor or predecessor of
a given search key (which mayor may not be present in the BST), and
enumerate the elements in a sorted order.

Problem 1.17: Given a BST T and a key K , write a method that searches
for the first entry larger than K.

1.18 SEARCHING TWO SORTED ARRAYS

GiveI1a sorted array Ar if you want to fhd the bth smaHest elementF
Y?u cm simply retum A[k 一 1] which is an 0(1) operatio孔If you are
given two sorted arrays of Ie口gthηand m and you need to f扛ld the k-th
smallest element h the uniOI1of the Wo arraysr you could poteI1tidly
merge the two sorted arrays缸1d thm look for the mswer but that would
take O(n+m)time.You canbuild the merged array 0到ly till the first k
eleme附.This wouldbe a O(k)operation-cmyou dobetter than this?

Problem 118:You are given Wo sorted arrays of lengths m and n.Give
a O(logm+lψ~) time algorithm for computi吨 the k-th smallest出nent
iI1the uniOI1of the Wo arrays.keep iRmiIId that the elements may be
repeated.

1.19 INTERSECTING LINES

slfpose you are designing a rectmgular prMed circuit board (PCB)
item you are supposed to conz1ect a set of pohts from one ed问 to an­

othersetofpoints?ttheopp。由 edge-Themetallinescomectkthe
points should I10tmtersect with each other;otherwiser there will be a
short circuit. You盯rjo伪bi扫s t怡ode吐te町r‘τ'm

linηle臼s o!丑1 the PCB surface in a way t出ha挝t avoids short circuits. Let's assume
we comect each pair using a straight line of metal.It is a prove口fM

that you cm com1ect the pairs withut intersectiOI1(using either straight
edlhes)iEyou cm CORRect them using straight lines that do not

intersect.

p时1emi-19:HOWW0111dyoudetermineifagivemetofstmightlines
intersect in a given rectangle or not?

1.20 CONTAINED INTERVALS

h various applications (such ashyhg out computer chips)F it is 加lp
tanttofiMwhmagivemhape is comp1制ycominedinside moher
shape. Le吐hFS4OamP抖ler川V刊ver臼臼ers‘'sion of t白h由is P严ro时O伪hIe川巾r把ewe ar叫.
C臼emedwith line segment怡s alo∞I丑19 a straight lin口leo

Problem 130:Write a fUIICHon that takes a set of opm htervals on the
realline (αi ， bi) for i E {0 ， 1 ，… ?η- I} and determines if there exists
some interval (向 ?bl)thatiscompletelycORtainedinside amtherinterval
(αm ， bm). If s山h pairs of intervals exist, then ret旧n one such pai卫

1.21 VIEW FROM T丑E TOP

Th哈 a simplified 可Mmof ?prob1mht oftm comes up h computer
gr叩hICS一-you are gIveIIa millIOI1overlapphgline segments of differeRt

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

22
CHAPTER 1. SEARCHING

colors situated at differe口t heights. Impleme口t a function that draws the
lines as seen from the top.

1.22 COMPLETION SEARCH

Y()11 ~rp workinσin the finance office for ABC corporation. There are η

e叫izegi二mboyee i received $hS句iin丑盯C∞om丑lp严en丑nsa
C∞om、vensa甜io∞I丑1 was $8.

41isvea乙 the corporation needs to cut payroll叫enses to $S'. The
CEOwantstoputacapσonsalaries-every employee who earned more
than $σlast year will be paid $σthis year; employees who earned I
than$σwill see no change in their salary.

For exampler if(S17S27SLS4A)=(90730?100740720)aIId Sf =210,
then 60 is a suitable value for σ.

Problem 1.22: Design an efficient algorithm for finding such a σ， if one

exists.

1.23 MATRIX SEARCH

Let A be an n x n matrix whose er吐出s are real numbers. Assu平e that
along any column and along any row of A, the entries appear ill mcreas-

ing sorted order.

Problem 1.23:DesigI1m efficieI1t algorithm that decides whether a real
mber Z appears h A.How mmy mtries of A does your algorithm

inspecththe worst-case?Cm you prove a tigM lower bomd that my
suJh algorithmhas to considerintheworst-case?

1.24 CHECKING SIMPLICITY

A polygon is defined to be simple if none of its edges intersect with each
other except for their endpoints.

Problem 1.24: Give an 0 (n log 叫 time algorithm to deterrr由e if a poly­
gon with n vertices is s扛丑pIe.

Chapter 2

Sorting

A description is given of a new
method of sorting in the
random-access store of a
computer. The methods compares
very favourably with other
known methods in speed, in
economy of storage, and in ease
of programming.

"Quicksort," C. Hoare, 1962

Sorting-…-rearranging a collection of items into increasing or decreasing
order-is a common problem in computing. Sorting is used to prepro­
cess the collection to make searching faster (as we saw with binary search
through an array), as well as to identify items that are similar (e.g., stu­
dents are sorted on test scores).

NaIve sorting algorithms run in 8 (η2) time. There are a 丑umber of
sorting algorithms which ru日 in O(η. log n) time-Mergesort, Heapsort,
and Quicksort are examples. Each has its advantages and disadvantages:
for example, Heapsort is in-place but not stable; Mergesort is stable but
not in-place. Most sorting routines are based on a compare function that
takes two items as input and returns 1 if the first item is smaller than
the second item, 0 if they are equal and -1 otherwise. However it is also
possible to use numerical attributes directly, e.g., in Radixsort.

2.1 GOOD SORTING ALGORITHMS

What is the most efficient sorting algorithm for each of the following
situations:
一 A small array of integers.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

24 CHAPTER 2. SORTING 2.6. LEASTDISL生NCESORTING 25

2.7 PRIVACY AND ANONY肌lIZATION

已OUt"合 γ。υ A. RRAN~在

T问~~自 S1Al'tJG5 t时

。民警奋民 O~ 试制喝风τf

\

LATtR、.. •
悦。τ延1'0 S革 L在:

民已VE良 HH~G cs l'剖GO~'i
5 1'υb运时15 AS Mov E:.民§

气

SEVE 捷、 Al HoU 尺3

I At吮 VfH主'Y CLOSE
To ff飞 OVI 盹玛 A

L.INEf\ R SOON&> oN
so~n时吗 l时 CA.s€

τ叫睦 ('..o£.， Of SW GIi铲

IS £l每创\ F leAN1' \."i
MoR怠 T民~N T试 E

cos, of C.O I'4飞 PP\l\f;.

Figure 2.

The Massachusetts Group Insurance Commission had a bright idea back
in the mid 1990s-it decided to release "anonymized" data on state em-

2.6 LEAST DISTANCE SORTING

You come across a collection of 20 stone statues in a line. You want to
sort them by height, with the shortest statue on the left.白le statues are
very heavy and you want to move them the least possible distance.

Problem 2.6: Design a sorting algorithm that minimizes the total dis­
tance that the statues are moved.

且ot change-if A beats B in one time-trial and B beats C in another time­
trial, then A is guaranteed to beat C if they are in the same time-trial.

Problem 2.5: What is the minimum number of time-trials needed to de­
termine who to send to the Olympics?

一 A large array whose entries are random numbers.
一 A large array of htegers that is already almost sorted.
一 A large collection of htegers that are drawRfrom a very small

range.
-Aljfze collectionofnumbersmostofwhich are duplicates
-Stabiiityis叫ui蚓， i.e., the relative order of two records that have

the same sorthg key should mt be changed.

2.4 FINDING THE MIN AND MAX SIMULTANEOUSLY

iven a set of numbers, you can find either the min or max of the set in
N-lcomParisoms each.whm you need to fiI1d bothy cm you do better
than 2N - 3 comparisons?

Problem 2.4: Find the min and max elements from a set of N elements
usi吨丑o more than 3N/2 - 1 comparisons.

2.5 EFFICIENT TRIALS

You are the coach of a cycling te缸n with 25 members and need to deter­
mine the fastest, second-fastest, and third-fastest cyclists for selection to
the Olympic te缸孔

You will be evaluating the cyclists using a time-trial course 0日 which
dy5cyclists cm race at a time.You cm use the completiOIItimes from a

time-trial to rmk the 5cyclists amORgst themselves-no ties are possible
e cOI1ditions caRChmge over timer you camot compare perfop

mmces across differeI1t time-trials.The relative speeds of cyclists does

2.3 FINDING T丑E WINNER AND RUNNER-UP

There are 128players participathg h a tenI1is tourI1ameIIt Assume that
the uz beats yry relatimship is tymsitiver i.e-F for allplayers AF By and Cr
if A beats Band B beats C, then A beats C.

Problem 2.3: What is the least number of matches we need to organize
to fhd the best player?How maI137matches do you I1eed to fhd the best
and the second best player?

2.2 TERASORT

The sorthg algorithms alluded to above assume that all the data you
need to sort will fit h the RAM.What if your data will mt fit 恒 the

memory?

Problem 2.2: Sort a file containing 1012 100 byte strings.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

26 CHAPTER 2. SORTING 2.10. MERGING SORTED ARRAYS 27

ployees that showed every shgle kospital visit they had.The goal was
to help the researchers. The state spe丑t time removing identifiers such
as name , addressy md social security IIUmber-TM Governor of MaSE
sachlmtts assured the public that this was suffideI1t to pmtect patmt
privacy-TheI1a graduate studeI1tr LataI1ya sweeIIey>saw significmt pita
falls h this approach.She requested a copy of the data aRd by COIlathg
the data hmultiple ColumRSrshe was able to idmtify the health records
of the GoverI1or.This demonstrated that extreme care I1eeds to be takerl

OIIymizing data.One way of msuriIIg privacy is to aggregate data
such that any record cm be mapped to at least k iI1dividualSF for some

large value of k.

Problem 2.7:Suppose you are giveIIa matrix My where each row rep­
resents m iI1dividual md each Colum represeI1ts m attribute about the
hdividual such as age or geI1der.GiveI1a set of ColumI1s to be deletedy
vouwmt to determhe if each row has at least k duplicate rows with
ex缸tly the same contents in the remaini吨 C仙mns. How would you
verify this efficiently?

2.8 VARIABLE LENGTH SORT

Most sorting algorithms r句 0口 a basic swap 问. When records are of
different lengths, the swap step becomes nontrivial.

Problem 2.8: Sort lines of a text file that has a million lines such that
the average length of a line is 100 characters but the longest line is one
million characters long.

2.9 UNIQUE ELEMENTS

suppose you are giveI1a set of mmes md your job is to produce a set of
UI1iqm first names.If you just remove the last Ilame from all the na
you may have some duplicate first names.

Problem 2.9: How would you create a set of first names that has each
name occurring∞lyonce? Specifically, design an efficient algorithm for
removing all the duplicates from an array.

岛fax-heap

Another data-structure that is useful in diverse co口texts is the max-heap,
sometimes also referred to as the priority queue. (There is no relationship
between the heap data-structure and the portio口 of memory in a process
bythe samemme.)Aheapis akiMofabimrytree-itsupports O(logn)
iI1serts md COI1stmt time lookup for the max element.(The mbheap is

a completely symmetric version of the data-structure and supports con­
stant time lookups for the min element.) Searching for arbitrary keys has
O(η) time complexity-a町thi吨 that can be done with a heap can be
done with a balanced BST with the same complexity but with possibly
some space and time overhead.

2.10 MERGING SORTED ARRAYS

You are given 500 files, each containing stock quote information for an
SP500 company. Each line contains an update of the following form:

1232111 131 B 1000 270
2212313 246 S 100 111.01

The first number is the update time expressed as the number of millisec­
onds since the start of the day's trading. Each file individually is sorted
by this value. Your task is to create a single file containing all the up­
dates sorted by the update time. The individual files are of the order of
1-100 megabytes; the combined file will be of the order of 5 gigabytes.

Problem 2.10: Design an algorithm that takes the files as described
above and writes a single file containing the lines appearing in the in­
dividual files sorted by the update time. The algorithm should use very
little memory, ideally of the order of a few kilobytes.

2.11 ApPROXIMATE SORT

Co日sider a situation where your data is almost sorted一-for ex缸口pIe， you
are receiving time-stamped stock quotes and earlier quotes may arrive af­
ter later quotes because of differences in server loads and network routes.
What would be the most efficient way of restoring the total order?

Problem 2.11: There is a very long stream of integers arriving as an in­
put such that each integer is at most one thousand positions away from
its correctly sorted position. Design an algorithm that outputs the in­
tegers in the correct order and uses only a constant amount of storage,
i.e., the memory used should be independent of the number of integers
processed.

2.12 RUNNING AVERAGES

Suppose you are given a real-valued time series (e.g., temperature mea­
sured by a sensor) with some noise added to it. In order to extract
meaningful trends from noisy time series data, it is necessary to perform
smoothing. If the noise has a Gaussian distribution and the noise added
to successive samples is independent and identically distributed, then

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

2.13 CIRCUIT SIMULATION

the running average does a good job of smoothi吨. However if the noise
ca口 have an arbitrary distribution, then the running median does a better
job.

Problem 2.12: Given a sequence of trillion real numbers on a disk, how
would you compute the running mean of every thousand entries, i.e.,
the first point would be the mean of α[0]，… ， a[999] ， the second point
would be the mean ofα[1]， . . . ,a[1000] , the third point would be tl阳nean

of α[2]，… 7α[1001]， etc.? Repeat the calculation for median rather than
口lean.

28 CHAPTER 2. SORTING

Chapter 3

Meta-algorithtns

While performing timing analysis of a digital circuit, a component is
characterized by a Boolean functio日 of the Boolean values at its inputs
and the delay of pr叩agating changes from the inputs to the output. For
example, a gate may compute the AND function and have a delay of 1
nanosecond from each input to the output or a wire may simply prop­
agate signal from one end to another in 0.5 口anoseconds. In order to
simulate how the entire circuit would behave when a set of inputs are
given to the circuit, we use "event dr如en simulation". Here each event
represents a change in the signal value and triggers one or more events
in the future.

Problem 2.13: You are given a set of nodes, V1 . . . ,Vn such that the value
for each node at time to is O. An event (t ,v ,p) is a triplet that represents
change in the value for node v at time t to pote且tial p (p can be either 0 or
1). You are given a set of input events. Each node 叫 also has a function
Fi associated with it that maps an input event to a set of output events
(output events can happen only after an input event). How would you
efficiently compute all the events that will happen as a result of the input
events?

The important fact to observe is
that we have attempted to solve a
maximization problem involving
a particular value of x and a
particular value of N by first
solving the general problem
involving an arbitrary value of x
and an arbitrary value of N.

"Dynamic Programming,"
R. Bellman, 1957

Dynamic Programming

There are a number of approaches to designing algorithms: exhaustive
search, divide-and-conquer, greed)T, randomized, parallelization, back­
tracking, heuristic, reduction, approximation, etc.

Problems which are naturally solved using dynamic programming
(DP) are a popular choice for hard interview questions. DP is a general
technique for solving complex optimization problems that can be decom­
posed into overlapping subproblems. Like divide-and-conquer, we solve
the problem by combining the solutions of multiple smaller problems but
what makes DP efficient is that we are able to reuse the intermediate re­
sults and often dramatically reduce the time complexity by doing sol.

To illustrate the idea, consider the simple problem of computing Fi­
bonacci numbers defined by Fn = Fn- 1 十 Fn一2， Fo 口 0， and F1 = 1. A

lThe word "programming" 坦 dynamic programming does not refer to computer
programming-the word was chosen by Richard Bellman to describe a program in the
sense of a schedule.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

阳M

It is easy to define a recurrence relationship forμA (i , j). This is essentially
the largest sequeI1ce sum till j-l added to A[kl(or zero if that sum
happens to be negative). HenceμA(i ， j) = max(O ， μA(i ， j - 1) + A[j]).
Using this relationship, we can tabulate μA(l ， j) for j ε[1，叫 in linear­
time. Once we have all these value吮S鸟， the an丑lswe凹rtωo our 0倪ri培ginal p严ro伪blem

i妇s simply m工丑la缸，Xj托ε [口1 ，卢冉7饥川Z

pass.
Here are two variants of the subarray maximization problem that c缸1

be solved with minor variations of the above approach: find indicesα

and bsuch that 2二?=AHl is一(1.) closest to °and (2.) closest to t.
A common mistake that people make while solving DP problems is

trying to thhk of the recursive case by splitting the problem irlto two
equalhalvesFOla Q11icksortr i.e-F somehow solve the subproblems for
arrays A[l ， η/2] and A[n/2 十 1 ，叫 and combine the results. However in
most cas~s， the~e two subproblems are not sufficient to solve the original
problem.

31

Figure 3. "Be fearful when others are greedy"-W. Buffett

t'>'f NI瓦时l己 P~6(马民Al叫叫It崎

WIt.\.龟aVEυ$ l'钝巨 orτ1附υ叫

r~τri TO C， f飞.OSS~飞~ R. tVE R,

/

3.2 FROG CROSSING

3.1 LONGEST NONDECREASING SUBSEQUENCE

In genomics, given two gene sequences, we try to find if parts of one
gene are the same as the other. Thus it is important to 位ld the longest
common subsequence of the two sequences. One way to solve this prob­
lem is to construct a new sequence where for each literal in one sequence,
we insert its position into the other seque丑ce and then find the longest
nondecreasing subsequence of this new subsequence. For example, if
the two 叫uences are (1 ,3,5,2,7) and (1 ,2,3,5,7), we would construct
anew seque丑ce where for each positio丑 in the first sequence, we would
list its position in the second seque丑ce like so, (1 ,3,4,2,5). Then we find
the 10口gest nondecreasi吨 sequence which is (1 ,3,4,5). Now, if we use
the numbers of the new sequence as indices into the second sequence,
we get (1 ,3,5,7) which is our 10丑gest common s由sequence.

Problem 3.1: Given an array of integers A of length n, find the longest
sequence (h ,… ik) such that ij < ij十 1 and A[ij] 三 A[ij叫 for any j ε

[1 ,k 一 1].

3.1. LONGEST NONDECREASING SUBSEQUENCECHAPTER 3. MELιALGORITHMS

function to compute Fn that recursively invokes itself to compute ~η-1

and Fn -2 would have a time complexity that is exponential in n. How­
ever if we make the observation that recursion leads to computing贝 for

i E [0 ， η- 1] repeatedly, we can save the computatio丑 time by s时to创ri恒I丑1

these results an口ld reus店sing them. This makes the time complexity linear in
凡 albeit at the expense of O(叫 storage. Note that the recursive imple­
mentation requires O(η) storage too, though on the stack rather than the
heap and that the function is not tail recur咀ve since the last operation
performed is + and not a recursive call.

The key to solving any DP problem efficiently is finding the right way
to break the problem into subproblems such that
一 the bigger problem can be solved relatively easily once solution to

all the subproblems are available, and
- you need to solve as few subproblems as possible.

In some cases, this m可 require solvi吨 a slightly different optimiz时io口

problem tharIthe original proMem.For exampley COI1sider the follow­
ing problem: give口 an array of integers A of length 凡 find the interval
indices a and bsuch that 2:~=α A[i] is maximized.

Letrs try to solve this problem assumiRg we have the s0111tiORfor the
subarray A[l ， 饥- 1]. In this case, even if we knew the largest sum subar­
ray for array A[l ， η-I]， it does not help us solve the problem for A[l ， η].

Now, consider a variant of this problem. Let

30

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

3.3 CUTTING PAPER

We now consider an optimum planning problem in two dimensions. You
are given an L x lV rectangular piece of kite-paper, where L and Ware
positive integers and a list of n kinds of kites that can be made using
the paper. The i-th kite de鸣n， i ε[1爪] requires an li x 叫 rectangle

of kite-paper; this kite sells for Pi' Assume li' ωi ， Pi are positive integers.
You have a machine that can cut rectangular pieces of kite-paper either
horizontally or vertically.

Problem 3.3: Design an algorithm that computes a pro自t maximizing
strategy for cutting the kite-paper. You can make as many instances of a
given kite as you want. There is no cost to cutting k让e-paper.

DP is often used to compute a pIa口 for performing a task that consists
of a series of actions in an optimum way. Here is an example with an
interesting twist.

Problem 3.2: There is a river that isηmeterswide. At every meter from
the edge, there mayor may not be a stone. A frog needs to cross the river.
However the frog has the limitation that if 让 has just jumped x meters,
then its r肌t jump must be between x-I and x 十 1 meters, inclusive.
Assume the first jump can be of∞ly 1 meter. Given the position of the
stones, how would you determine whether the frog can make it to the
other end or not? Analyze the runtime of your algorithm.

33

Table 2. Number of Electoral College votes per state and Washington, DC

Alabama 9 Indiana 11 Nebraska 5 South Carolina 8Alaska 3 10耳气Ta 7 Nevada 5 South Dakota 3Arizona 10 Kansas 6
NNNeeewwwJMHeraesmxeiypcoshire

4 Tennessee 11Arkansas 6 Ke口饥Icky 8 15 Texas 34California 55 Louisiana 9 5 Utah 5Colorado 9 Ma社le 4 NewYork 31 Vermont 3
Con工lecticut 7 Maryland 10 North Carolina 15

wmV飞fVilAaexsgsschtuoVuinxaksgapto1mna
13Delaware 3 Massachusetts 12 North Dakota 3 11Florida 27 Michigan 17 Ohio 20 5Georgia 15 M泣mesota 10 Okl址lorna 7 10Hawaii 4 Mississippi 6 Oregon 7

WTwoaytsaOhl江ie山Il1eg1cgttOoIrUsDC
3Idaho 4 Missouri 11 pmemodseyIlvdmanida 21 3Illinois 21 Montana 3 4 538

3.5. TIES IN A PRESIDENTIAL ELECTION

3.5 TIES IN A PRESIDENTIAL ELECTION

The US PresideIIt is elected by the members of the Electoral College.21e
umber of electors per state andWashiI1gtOIL DCF are givezlh Table 2.

A11electors from each state as well as washingtOIU DC cast their vote for
the same candidate.

probkm3.5:Suppose there are two cmdidates hthe presidential deem
FT EOWW0111dyo叩吨rammatically d伽'mine if a tie is a possibil­
........ .

CHAPTER 3. MELιALGORITHMS32

3.4 飞叮ORD BREAKING

Suppose you are designing a search engine. In addition to getting key­
words from a page's content, you would like to get keywords from URLs.
For example, bedbathandbeyond. com should be associated with "bed
bath and beyond" (in this version of the problem we also allow "bed bat
hand beyond" to be associated with it).

Problem 3.4: Given a dictionary that can tell you whether a string is
a valid word or not in constant time and given a st血19 s of length 凡

provide an efficient algorithm that ca口 tellwhether s can be reconstituted
as a seque口ce of valid words. In the event that the string is valid, your
algorithm should output the corresponding sequence of words.

The next three problems have a very similar structure. Given a set of
objects of different sizes, you need to partition them in various ways. The
solutions also have the same common theme that you need to explore all
possible partitions in a way that you can take advantage of overlapping
subproblems.

3.6 RED OR BLUE HOUSE MAJORITY

suppose you want to p1ace a bet on the outcome of the coming elections.
specifiedly}you are betthg if the US House of Representatives will have
a Democratic or a Republicmmajority.A polli吨 compa町 has com­
puted the probabiHty of winRing for each cmdidate h the individual
dectiom.You a?e interested iRjust onemmber-whatis the probability
that the Repubhcm Paz-ty is going to have a majority h the House?

Problem 3.6: Given that a party needs 223 or more seats to win a maior­
武ym 牛e FOuseyhowwouldyou compute the probability ofaItepubIL

-f ASS?m?eachrace is indepmdent md thattheprobability of a
Republican winning the race i is Pi'

3.7 LOAD BALANCING

suppose you want to build a 1arge distributed storage system mthe web.
MiniOI1s of users wiH store terabytes of data on your servers.One way
to desig1tke system would be to hastleach 11ser-Fs logh idr partitiOI1the
hash rmges into equal-sized bucketsr and store the data for each bucket

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

3.9 OPTIMUM BUFFER INSERTION

You are given a tree-structured logic circuit that can be modeled as a
rooted tree, exactly as in Problem 3.8. Signals degrade as they pass
through successive gates.

You can overcome this degradation by "buffering" gates-buffering
enhances its output but does not change its logical functionality.

Problem 3止 How would you efficie时ly compute the least nur由er of
gates to buffer in the circuit so that after buffering, every path of k or
more gates has at least one buffered gate? More formally, given a rooted

of users on one server. For this scheme, mapping a user to the server that
serves the user is a simple hash computation.

However if a small number of users occupy a large fraction of the
storage space, hashing will not achieve a balanced partition. One way to
solve this problem is to make the hash buckets have a nonuniform width
based 0口 the load in that hash range.

Problem 3.7: You have n users with unique hashes h1 through hn and
m servers, numbered 1 to m. User i has B i bytes to store. You need to
find numbers K 1 through K m such that all users with hashes between
K j and Kj十1 get assigned to server j. Design an algorithm to find the
numbers K 1 through K m that minimizes the load on the most heavily
loaded server.

So far we have applied DP to one-dimensional and two-dimensional ob­
jects. Here are applications of DP to trees.

3.8 VOLTAGE SELECTION

You are given a logic circuit that can be modeled as a rooted tree-the
leaves are the primary inputs, the internal nodes are the gates, and the
root is the single output of the circuit.

Each gate can be powered by a high or low supply voltage. A gate
powered by a lower supply voltage consumes less power but has a
weaker output signal. You want to minimize power while ensuring that
the circuit is reliable. To ensure reliability, you should not have a gate
powered by a low supply voltage drive another gate powered by a low
supply voltage. All gates consume 1 nanowatt when connected to the
low supply voltage and 2 nanowatts when connected to the high supply
voltage.

Problem 3.8: Design an efficient algorithm that takes as input a logic
circuit and selects supply voltages for each gate to minimize power co扣

sumption while ensuring reliable operation.

353.10. TRIANGULATION

Givenan u叩arenthe归ed expression of tl时ormυo刚1°1' . .°川队-1，
wherevo ,… ,vn -1 are operands with known real values and On 、.. .、 0".，_，)

are specified operatiomrwewaI1t topareI1thesize the expresmn sO ajtA
maximize its value.

Problem 3.11:Devise m algorithm to solve this problem h the specid
case that the operands aye aHpositive and the OR1y operatiom are ·amI丑1
十.

Explain how you w八矿飞vouldmodify your algorithm to deal with the case
in which the operands can be positive an丑ld 口neg伊at由i如ve ar丑ld +an丑ld 一 are the
O∞口1抄yope臼ra挝ti妇ons.

Suggest how you would generalize your approach to 让lclude multi­
plication azld divisiOI1(pretend divide-bTzero never occurs).

-25 = 5 一 (3.(4+6))

-13 = 5 一 ((3 . 4) 十 6)

20 = (5-3)·(4+6)

-1 = (5 一 (3.4)) + 6

14 = ((5 - 3) . 4) 十 6

3.11 MAXIMIZING EXPRESSIONS

The value of an arithmetic expression depends upo口 the order in which
the operatiOIls aye performed-For exampler depmdizlg upoηhowone
pare且thesizes the expression 5 - 3 . 4 十 6， one can obtain anyone of the
following values:

3.10 TRIANGULATION

Let P be a convex pol月on with n vertices specified by their x and y co­
ordinates. A triangulation of P is a collection of η- 3 diagonals of P such
that I1O Wo diagonals intersectr except possibly at their endpohts.Ob­
serve that a triangulation splits the polygon's interior intoη- 2 disjoint
triangles. Define the cost of a tria吨ulatioz1to be the sum of tke1engths
of the diagonals that it is made up of.

probkm3.10:Desigz1m effideI1t algorithm for fhdhg a trimgulatiOR
that minimizes the cost.

treer how would you color the edges of the graphhgreen or red such
thtmpath from amde to my mcestor-coz1tahs more than k successive
red edges and the number of green edges is minimized?

DP cm also be applied to geometric cORstr1ICHor1Sy as illustrated by this
problem:

CHAPTER 3. MELιALGORITHMS34

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

3.13 MINIMIZE WAITING TIME

A database has to respond to n sin巾mmclient SQL queries h
service time required for query i is kmillisecoMs aM is kmWI1m?d

ance. The 10∞ok灿up严s are processed s优eq伊飞uent出ia址all均l悖ybut can b快e processed in
an丑n，飞vo旧rde臼r. We们wi恒sh tωomir
is 征伍1削ime client i俑t怡ak阳e臼创st怡or耐.它吐e吐t四urn. For example, if the lookups are s凹ed
i口 order of 让lcreasing i, then the client making the i-th query has to wait

2:~=1 tj milliseconds

Problem 3.13: Design an efficient algorithm for computing缸loptimum
order for processing the queries.

3.12 SCHEDULING TUTORS

￥'ou are responsible for scheduling tutors for the day at a tutoring com­
卢町 For 二ach day, you have received a number of r叩臼ts for tutors
Each wquest has a specified start time md each lessORis thirty miI111tes
10吨 YLu have more tutors ttm reqlmts.Each tutor cm start work
at any time. However tutors are co日strained to work only one stretch
which camot be lOI1ger than two hours md each tutor caI1service o口ly

one request at a time.

Problem 3.12: Given a set of requests for the day, design an efficient
alzorithm to compute the least r1umber of tutors I1ecessary to schedule
all the requests for the day.

Greedy Algorithms

A greedy algorithm is one which makes decisiOI1s that are locally op
m and 口ever changes them.This approach does mt wor-k gen p

ally. For example, consider maki吨 change for 48 pence in the old B飞itish
mcywhere the coim came h 30724?127673Flpmce deRomhat10户S

A greedy algorithm would iterative137choose the largest deI1omhat1OII
coh that is less thm or equal to the amount of chmge that remahs to h
made. If we try this for 48 pe口ce， we get 30,12,6. However the optimum

would be 24 ,24.
In its most general form, the coin changing problem is NP-

Mrd(4.ChapteJ6)but for some coimgesr the greedy fl写frit』mm
optimum-e-E-r if tt1e denomiRatiom are ofthe form {lAT27俨}. Ad hoc

guments can be applied to show that 让 is also optimum for VS coins
iiZgeneralproblem ca由e solved in pseudopolynomial time using DP
in amanner s让nilar to Problem 6.1.

37

A user interface (VI) designer is trying to design a menu system that
customers use to trigger certain tasks. He wants to minimize the average
amount of time it takes for a customer to perform tasks.

If a menu item is at the i-th positio凡 it takes i units of time for the
user to reach there (linear scan) and it takes c units of time to click on it.

3.15 EFFICIENT USER INTERFACE

3.14. HUFFMAN CODING

3.14 HUFFMAN CODING

In 1951, David A. Huffman and his classmates in a graduate course on
information theory at MIT were given the choice of a term paper or a
final exam. For the term pape乙 Huffman's professor, Robert M. Fano,
had given the problem of finding an algorithm for assigning binary codes
to symbols such that a given set of symbols can be represented in the
smallest number of bits.

Huf缸lanworked on the problem for months, developing a number of
approaches but none that he could prove to be the most efficient. Finally,
he despaired of ever reaching a solution and decided to start studying
for the final. Just as he was throwing his notes in the garbage, the idea of
using a frequency-sorted binary tree came to him and he quickly proved
this method to be the most efficient.

Huffman's solution proved to be a significant improvement over the
"Shannon-Fano codes" proposed by his professor Robert M. Fano alo口g

with Claude E. Sh缸mon-the inventor of Information Theory.
Let's look at an application of Huf缸lan coding. We want to compress

a large piece of English text by building a variable length code book for
each possible character. Consider the case where each character in the
text is independent of all other characters (we can achieve better com­
pressio丑 if we do not make this assumption but for this problem we will
ignore this fact).

One way of doing this kind of compression is to map each character
to a bit string such that no bit string is a prefix of another (for example,
011 is a prefix of 0110 but not a prefix of 1100).

We can simply encode the text by appending the bit strings for each
character in the text. While decoding the string, we can keep reading the
bits until we find a string that is in our code book and then repeat this
process until the entire text is decoded.

Since our objective is to compress the text, we would like to assign
the shorter strings to more probable characters and the longer strings to
less probable characters.

Problem 3.14: Given a set of symbols with corresponding probabilities,
find a prefix code assignment that minimizes the expected length of the
encoded string.

CHAPTER 3. MELι·ALGORITHMS36

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Each menu item can have multiple levels of sub-menus and a sub-menu
can be reached by clicking on its parent menu item.

The designer is provided with a user study that details how often
users want tasks to be triggered. (In a real application, we would also
worry about grouping related items in the same sub-menu as well but
for this problem we will ignore grouping requirements.)

Problem 3.15: How should the menu system be designed so as to min­
imize the average UI interaction time if c = I? How would you do it if
c> I?

3.17 POINTS COVERING INTERVALS

Consider an engineer responsible for a number of tasks on the factory
floor. Each task starts at a fixed time and ends at a fixed time. The en­
gineer wants to visit the floor to check on the tasks. Your task is to help
him minimize the number of visits he makes. In each visit, he can check
on all the tasks taking place at the time of the visit. A visit takes place at
a fixed time and he can only check on tasks taking place at exactly that
time.

More formally, model the tasks as ηclosed intervals on the realline
H们问]， i = 1 ，… 7η. A set S of visit times 11covers" the tasks if [a们 bi]nS 并

仇 for i = 1 ，… p 饥-

Problem 3.17: Design an efficient algorithm for finding a minimum car­
dinality set of visit times that covers all the tasks.

3.16 PACKING FOR USPS PRIORITY MAIL

ηle United States Postal Service makes fixed-sizemail shipping boxes­
you pay a fixed price for a give口 box and can ship anything you want
that fits in the box. Suppose you have a set of n items that you need to
ship and have a large supply of the 4 x 12 x 8 inch priority mail shipping
boxes. Each item will fit in such a box but all of them combined may take
multiple boxes. Naturally, you want to minimize the number of boxes
you use.

The first-直t heuristic is a greedy algorithm for this problem-it pro­
cesses the items in the sequence in which they are first give丑 and places
them in the first box in which they fit, scanning through boxes in increas­
ing order. First-fit is not optimum but it 口ever takes more than twice as
many boxes as the minimum possible.

Problem 3.16: Impleme口t first-fit to run in 0 (川ogη) time.

393.18. RAYS COVERING ARCS

3.18 RAYS COVERING ARCS

Let's 可 you are responsible for the security of a castle. The castle has

z;:1SazzzzttIZJ;;2233272:注::22
TC (The arcs fo<differeI1t robots may overlap-)You want to mOI1itor

therob?tsbyi 丑stallmgcameras atthe ceI1terofthecastle thatlookoutto
the pemI1eter.Each camera cm look along a ray.To save costF you would
like to minimize the number of cameras.

More formally, let [8们向]， i = 1 ，… 7ηbe n arcs, where the i-th a作 is
the s叫points on the p町imeter们盯由rcle that subtend an吨k
in the interval [8i ，队] at the center.

A ray is a set of pohts that d subtmd the same angle to the oriiI1­
weide时ya叫T by the angle it makes时a由etothex-axis AsetRof
rays "covers" the arcs if [8i ，向]nR 弄的， for i = 1,… , no

probkm318: D四gnanef丘fi侃归l与g伊O拙m时for findin丑吨ga 红m削础1让由削i扛I
di妇I丑na旧a础lit守y covering t白he set of rays.

3.19 k-CLUSTERING

A k-clustering of a set O is a collectiOR{0170?··Ok}ofmnempty
subsets (11气毡'c吐clu瞅1店S吐t创') of 0吵ich ha臼s t白h时e followin丑1二 Pi二二P臼臼‘
an丑ld 0i n 0乌j 7并1:. 0=斗}i=jρ) .

Let d be a function (the 11distance") from 0 x 0 to Z飞 where Z+ is
the set of 口onnegative integers.

The need to compute a k-clusteringF iRwhich elements that are far

ztazt:t122tti273332耳;乙:咒E
store, etc.

Define the sepamtion sc of a k-clustering C to be tke distmce be­
tween the two objects in different clusters which are closest, i.e.. .'I户­
min{d(肌 q)lp ε Oi ， q ε Oj ， i 并 j}. Ir阳itivel35 the separati F7·y uu

of how good a job the clusterhg does of keephg thhgs WHet1are
far apart in different clusters.

There is a nat可al greedy algorithm to compute the clustering: start
with 101 clusters, i.e., one cluster per eleme丑t of O. Look for the pai
of elemmts h di{femt clusters which are closest aMmerge 出eir two
clusters; repeat this merge a total of n - k 出nes to obtain k clusters

This algorithmcmk made t切O

!白os挝彻tor陀e t阳he dis时tan丑m阳Cωe臼sb悦em吨gc∞onside臼r时 and a union-find data-structure
to represent and merge the subsets.

probkm3.19:Prove that the resulthg cluster has the maximum separa­
tion of all possible k-clusterings.

CHAPTER 3. MELιALGORITHMS38

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Note that the algorithm above is very s让丑plistic: it does not attempt to
balance cluster sizes, look at distances outside of pairwise closest ones,
exploit my structure hthe distance fmction(e.g-r the trimgle hequal­
ity)F etc.II1a realistic settiI1gy these md mazqmore consider-at-on are
taken 让lto account.

3.20 PARTY PLANNING

LeOIla is holdhg a party md is tryhg to select people to hvite from her
frieRd cirk-SMhas N trieI1ds and she kmws which pairs of frimds
already how each other.Leomwmts to hvite as mmy frimds as pos­
sible but she waIIts each hvitee to how at least six other invitees and
丑ot know six other invitees.

Problem 3.20: Devise an efficient algorithm也at takes as input Leona's
N friends and a set of pairs of friends who know each other and returns
缸1 invitation list that meets the above criteria.

40 CHAPTER 3. MEL生-ALGORITHMS

Chapter 4

Algorithtns on Graphs

Concerning these bridges, it was
asked whether anyone could
arrange a route in such a way that
he would cross each bridge once
and only once.

"The solution of a problem
relating to the geometry of

positio口，" 1. Euler, 1741

A graph is a set of vertices and a set of edges connecting these vertices.
Mathematically, a directed graph is a tuple (V,E) , where V is a set of
vertices and E c V x V is the set of edges. An undirected graph is also
a tuple (V,E); however E is a set of unordered pairs of V. Graphs are
often decorated, e.g., by adding lengths to edges, weights to vertices, a
start vertex, etc.

Graphs naturally arise when modeling geometric problems, such as
determining connected cities. However they are more general since they
can be used to model many kinds of relatioηships.

A graph can be represented in two ways-using an adjacency list or
an adjacency matrix. In the adjacency list representatio 凡 for each vertex v,
a list of vertices adjac创 toυis stored. The a伽cency matrix representa­
tion uses a IVI xlVI Boolea开valuedmatrix indexed by vertices, with a 1
indicating the presence of an edge. The complexity of a graph algorithm
is measured in terms of the number of vertices and edges.

A tree (sometimes called a free tree) is a special kind of graph-it is an
undirected graph that is connected but has no cycles. (Many equivalent
de直到itions exist, e.g., a graph is a free tree iff there exists a unique path
between every pair of vertices.) There are a number of variaηts 0口 the

basic idea of a tree-e.g., a rooted tree is one where a designated vertex

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

is called the root, an ordered tree is a rooted tree in which each vertex has
an ordering on its children, etc.

434.2. ORDER NODES IN A BINARY TREE BY DEPTH

4.2 ORDER NODES IN A BINARY TREE BY DEPTH

There are various traversals that can be performed ∞ a tree: in-or由主，

pre-orde乙 and post-order are three natural examples.

Problem 4.2: How would you efficiently return an array A[O. . .h] ,
where h is the height of the tree and A [i] is the head of a linked list of
all the nodes in the tree that are at height i?

4.3 CONNECTEDNESS

A connected graph is one for which, given any vertices u and 问 there

exists a path from u toυ. The notion of connectedness holds for both
directed and undirected graphs-for undirected graphs, we sometimes
simply say there exists a pa也 betwee口 u and v.

Intuiti飞rely， some graphs are more connected than others-e.g., a
clique is more connected than a tree. To be more quantitative, we could
refer to a graph as being 2V-connected if it remains connected even if any
single edge is removed. A graph is 23-connected if there exists an edge
whose removalleaves the graph connected.

One application of this idea is in fault tolerance for data networks.
Suppose you are given a set of datacenters connected through a set of
dedicated point-to-point links. You want to be able to reach from any
datacenter to any other datacenter through a combination of these dedi­
cated links. Sometimes one of these links can become temporarily out of
service and you want to ensure that your network can sustain up to one
faulty link. How can you verify this?

Problem 4.3: Let G = (V,E) be a c∞O∞丑血nne创cted und巾i扛让rected g伊rap卢h. How
would you efficiently check if G i妇s2扫王-c∞on丑nect怡ed♂? Car丑1 you make your al­
g伊O倪ω主r恤i

4ιPCB WIRING

Consider a collection of p electrical pins. For each pair of pins, there may
ormay且ot be a wire joining them. There are ωpairs of pins with a wire
joining them.

Problem 4.4: Give an 0 (p 十 ω) time algorithm that determines if it is
possible to place some of the pins on the left half of a PCB and the rest
O丑 the right half such that each wire is between a pin on the left and a
pin on the right. Your algorithm should return a placement, should one
exist.

Problem 4.1: Given a two-dimensionalmatrix ofblack and white entries
representing a maze with designated entrance and exit points, find a path
from the entrance to the exit, if one exists.

母〉

• U$!N~当事。υ民
已OLOR l'吠f.O P， Ef吨3ωE
c.f>，悦 CLAS£lf '1窃t\NF.，s
INτ(') FoU民 CATet10制思s

of ~\S k. ".

认fAllS了REE了C1RAP\1了HEO只\S了

CHAPTER 4. ALGORITHMS ON GRAPHS

Figure 4. The power of obscure proofs

.讯号~Ne..€ I.N毡
oo~乙 LVS.W 延L呼铲ROV E.
可试l\i't认惩钧。v睬N问tNT

MU f.i 吗\"JE. υS 夺 100

(iHLI.ION~ ii.t.S毛l"H~ 1."$.
毯C.OMO""i tS f)OCM毯。

Lξτ§飞r~~飞Y 吃 gR.T总~

日~~ I也 eAt也队在Nt>、
怠V良民? 总t>6;1:;已在电事b)
REo?袋~~e.吗T po c. u\')\τ

P巳r t<,VI.:\ SωA'f ta.()!)每怯τ

l?:.'1 a.. i=oR, \1 ..‘

4.1 SEARCHING A MAZE

It ismturdto apply graph models md algorithms to spatial problems­
Consider ablack md white digitized image of a maze-wMte pixels rep­
reseI1t open areas mdblack spaces are walls.Umre are Wo special pixels:
one is designated the entrance and the other is the exit

Graph Search

Computhg vertices which are reachable from other vertices is a fuzv
dameRtaloneratioI1·There afe two basic algorithms-Depth First Search
(DFS)anddfeadtkFirstsearch(BFS)·Both are lhear-ti中e-O(IVI+ lEI)·
They differ from ead other h terms of the additionaLmformatiOI1they
provider e.g-r BFS cm be used to compute distmces from the start vertex
md DFS cm be used to check for the preseRce of cycles.

42

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

4.8 TREE DIAMETER

Packets in Ethernet LANs are routed according to the unique path in a
tree whose vertices correspoM to climts and edges correspond to phySE
ical commetiom betweeIIthe clients.II1this problemr we waI1t to desigI1

4.5 EXTENDED CONTACTS

You are give口 a social network. Specifically, it consists of a set of indi­
viduals md for each hdividualy a list of his contacts-(The COIItact relam
iio时ip medMbe symmetric-Amaybe aCOI1tact ofBbutB maynot
be acOLtact of A)Let's defim C tobe anexteMed contact ofAifhe is
either a cOI1tact of A or a cORtact of aI1exteI1ded contact of A.

Problem 4.5: Devise an efficient algorithm which takes a social network
and computes for each individual his extended co口tacts.

4.7 EPHEMERAL STATE IN A FINITE STATE MACHINE

A finite state machime(FSM)is a set of states SF a set of hputs IF md a
trmsitioMmctimT :S × IHS.If T(S?i)=ur we say that S lgods to

n applicatio口 of input i. The t甘ran丑lsi凶t柱io∞I丑1£缸un口nctio∞口 Tcan丑1 be g萨ene曰eraliz坦zedd

tωos叩ence臼s of ir口叩1

other~ise， T(s , ,,) ~ T(T(s , (io,i1 ,. .. ,in -2) I' in -1)'
The stateeissaidtobeephemeralifthereis asequeme?fhputsqsuch

that there does not exist an input sequence (3 for w~i~h TJ!\巳?α) ， (3) = e.
Informally, e is ephemeral if there is a possibility of the FSM starting at e
and getthg to a state f from which it caI1I10t reMm to e.

Problem 4.7: Design an efficient algorithm which takes an FSM and re­
turns the set of ephemeral states.

45

4.11 ASSIGNING RADIO FREQUENCIES

If two neighboring radio stations are using the same radio frequency,
there would be a region geographically between them where the signal
from both stations would be equally strong and the resulting interference
would cause neither of the signals to be usable. Hence neighboring radio
stations try to pick different frequencies. Consider the problem where

4.9 TIMING ANALYSIS

4.10 TEAM PHOTO DAY-1

You are a photographer for a soccer meet. You will be taking pictures of
pairs of opposing teams. Each team has 20 players on its roster. Each
picture will consist of two rows of players, one row for each of the two
teams. You want to place the players so that if Player A stands behind
Player B , he must be taller than Player B.

Problem 4.10: Describe an efficient method that takes as input two
te缸m 缸ld the heights of the players in the teams and checks if it is pos­
sible to place players to take the picture-if it is possible, your function
should print which team comes to the front and the order in which the
players appear. How would you generalize your approach to determine
the largest number of teams that can be photographed simultaneously
subject to the same constraints?

A combinational logic network consists of primary inputs and logic
gates. Some of the gates may be designated as being primary outputs.
Each gate has an output and a number of inputs-these inputs may be
pr妇lary inputs or the outputs of other gates. A cycle of gates is defined as
a sequence of gates (90 ,91 ，…?如一1 ， 90) starting and ending at the same
gate such that for each consecutive pair of gates in the sequence, the first
gate is an input to the second gate. Cycles of gates are disallowed.

Each gate has a fixed delay. A change at the primary让lputpropagates
through the logic network and eventually the output of every gate stops
changing.

Problem 4.9: Given a logic network with primary inputs changing, find
the smallest time after which all the primary outputs no longer change.

an algorithm for finding the "worst-case" route, i.e., the 机"10 clients that
are furthest apart.

Problem 4.8: Let T be a tree, where each edge is labeled with a real­
valued distance. Define the diameter of T to be the length of a longest
path in T. Design an efficient algorithm to compute the diameter of T.

4.9. TIMING ANALYSISCHAPTER 4. ALGORITHMS ON GRAPHS

4.6 EULER TOUR

Leonhard Euler wrote a paper titled HSeven Bridges of kbenigsbergH m
1736.It is cOI1sidered to be the first paper iI1graph theory.The probm

as set in the city of K凸enigsberg， which was situated on both sides
of the Pr吨eIRiver md heluded two islands which were comected to
each other md the mahland by seveIIbridges.Euler posed the probl
of fhdhg a walk through the city tkat would cross each bridge exactly

e. In the pape乙 Euler demonstrated that 让 was impossible to do so.
More gemmlly}m Euler tour of a conmeted directed graph Gt

(VJ)is a cycle that heludes each edge of G exactly ORce;it may repeaL

vertices more than 0口ceo

Problem 4.6: Design a linear-time algorithm to 位ld an Euler tour if one

exists.

44

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

we have just two frequencies available and we are given a neighborhood
graph of a set of radio stations. We are supposed to assign the frequencies
to the radio stations such that the interference is minimized. Suppose we
are interested如 a simpler problem where we are happy if for any give口

radio station, the majority of its neighbors use a different frequency from
the given statio孔 This can be modeled as a graph coloring problem.

Let G 工 (V， E) be an undirected graph. A twoωcoloring of G is a
function assigning each vertex of G to black or white. Call a two-coloring
diverse if each vertex has at least half its neighbors opposite in color to
itself.

Problem 4.11: Does every graph have a diverse coloring? How would
you compute a diverse coloring, if it exists?

Advanced Graph Algorithms

Up to this point we looked at basic search and combinatorial proper­
ties of graphs. The algorithms we considered were alllinear-time com­
plexity and relatively straightforward-the major challenge was in mod
eling the problem appr叩riately.

There are essentially four problems on graphs that can be solved effi­
cient1y, i.e., in polynomial time. All other problems are either variants of
these or very likely，口ot solvable by polynomial time algorithms.

- Matching-given an undirected graph, find a maximum collection
of edges subject to the constraint that every vertex is incident to at
most one edge. The matching problem for bipartite graphs is es­
pecially common and the algorithm for this problem is much sim­
pIer th缸1 for the general case. A common variant is the maximum
weighted matching problem in which edges have weights and a
maximum weight edge set is sought, subject to the matching con­
straint.

- Shortest paths-given a graph, directed or u日directed， with costs
on the edges, find the minimum cost path from a given vertex to all
vertices. Variants include computing the shortest path for all pairs
of vertices, the case where costs are all nonnegative, and constraints
on the number of edges.

- Max flow-given a directed graph with a capacity for each edge,
find the maximum flow from a given source to a given sink, where
a flow is a function mapping edges to numbers satisfying conser­
vation (旦ow into a vertex equals the flow out of it) and the edge
capacities.

- Minimum spanning tree-given a connected undirected graph
(V,E) with weights on each edge, find a subset E 1 of the edges
with minimum total weight such that (只 E1

) is connected.

4.13 COUNTING SHORTEST PATHS

47

You are given a map to a maze of rooms interconnected by one-way cor­
ridors. The map specifies a set of entrance rooms and a treasure room.

4.15 SHORTEST PATHS IN THE PRESENCE OF RANDOMIZATION

You are give口 a map with a set of cities connected by roads of known
lengths.

A storm has made some roads uncrossable. For each road, you know
the probability of the road being uncrossable. A given path consisting of
a set of roads is considered uncrossable if any of the roads in the path is
uncrossable.

Problem 4.14: Find a path between a given pair of cities that is the mini­
mum length path amongst all the paths for which the probability of being
crossable is greater than 0.9.

4.14 RANDOM DIRECTED ACYCLIC GRAPH

There may be many shortest paths between two vertices in a graph. It
is commonly the case that a single shortest pa由 is required, possibly
one with the fewest edges, as in Problem 4.12. Sometimes we want to
know the number of shortest paths, e.g., when analyzing the structure of
a Boolean function or checking the stability of a system.

Problem 4.13: Develop an efficient algorithm that computes the number
of shortest paths between vertices s and t in an undirected graph with
unit cost edges.

4.12 SHORTEST PATH WITH FEWEST EDGES

4.12. SHORTEST PATH WITH FEWEST EDGES

Each of these has a polynomial time algorithm and can be solved ef­
ficient1y in practice for very large graphs.

In the usual formulation of the shortest path problem, the number of
edges in the path is not a consideration.

Heuristically, if we did want to avoid pa出s with a large number of
edges, we can add a small amount to the cost of each edge. However
depending∞ the structure of the graph and the edge costs, this may not
result in the shortest path.

Problem 4.12: Design an algorithm which takes as input a graph G =

(V,E) , directed or undirected, a nonnegative cost function on E and ver­
tices s and t; your algorithm should output a path with the fewest edges
amongst all shortest paths from s to t.

CHAPTER 4. ALGORITHMS ON GRAPHS46

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Some of the rooms are special-whe口 you arrive at a special room，了ou
are ran丑1d巾oml悖yt甘ran口1S叩po臼r‘t怡ed out of it through or丑le of the 0∞I丑ne曰e

leadin口1只 out of i让t. Tl怆1曰emap d出es且i驴伊1旧at怡es which rooms are Sp€l仅ci坦al. You are
also t怡old t由ha挝t the way the maze i妇sd出es剖ig罗n曰edi坦s that once you leave a room,
there is no way of coming back to it.

Problem 4.15: Find a strategy which gets you to the treasure room in the
minimum expected time.

4.18 STABLE ASSIGNMENT

Consider a department with N graduate students 缸ld N professors.
Each student has ordered all the professors based on how keen he is to
work with them. Each professor has an ordered list of all the students.

Problem 4.18: Devise an algorithm which takes the preferences of the
students缸ld the professors and pairs a student with his adviser. There
should be n。如dent-adviser pair , (sO ,aD) and (sl ， α1) such that sO
prefersα1 to αOand α1 prefers sO to s1.

4.16 TRAVELING SALESMAN WITH A CHOICE

S叩pose you are a 叫esr口ma

iιI yo∞u can make p(i) pro且t. The cost of going from city i to city j is
c(i, j) > O. You want to establish a route for yo旧self such that you start
from a city, visit a set of cities, and then come back to the or地inal city.
You can choose to ignore certain cities if you like. Your objective is to
maximize the ratio of profit-to-cost.

Problem 4.16: Devise an efficient algorithm for finding a route which
maximizes the ratio of the total profit to the total cost.

49

4.19 ARBITRAGE

4.20 BIRKHOFF-VON NEUMANN DECOMPOSITION

A crossbar is a piece of networking hardware which has a number of
inputs and outputs. It can simultaneously transfer packets from inputs
to outputs in a single cycle, as long as no more than one packet leaves an
input and no more than one packet arrives at any given output. (Assume
all packets are of the same Ie且gth and take equally long to transfer.)

Problem 4.20: You are given an N x N matrix of nonnegative integers;
A[i,j] encodes the number of packets at input i that need to be trans­
ferred to output j. What is the least number of cycles needed to perform
the transfer encoded by A?

4.21 CHANNEL CAPACITY

You are exploring the remote valleys of Papua New Guinea, one of the
last uncharted places in the world. You come across a tribe that does
not have money-instead it relies on the barter system. There are N
commodities which are traded and the exchange rates are specified by
a two-dimensional matrix. For example, three sheep can be exchanged
for seven goats; four goats can be exchanged for 200 pounds of wheat,
etc.

Problem 4.19: Devise an efficient algorithm to determine whether or
not there exists an arbitrage-a way to start with a single unit of some
commodity 0 and convert it back to more than one unit of 0 through a
sequence of exchanges. Assume there are no transaction costs, rates do
not fluctuate, and that fractional quantities of items can be sold.

4.19. ARBITRAGE

Suppose we have the capability of transmitting one of the five symbols,
A,B ,0 ,D ,E, through a communication channel. In the absence of er­
rors, we can communicate log2(5) bits with each symbol.

Now, suppose the channel is noisy-specifically, the receiver can­
not differentiate between the following pairs of symbols: IT
{(A ,B) , (B ,O) ,(O,D) ,(D ， E) ， 何， A)}. We can still achieve error-free
commu口ication by arranging with the receiver to only transmit two out
of the five symbols一…-e.g.， A and O. We cannot transmit more than two
symbols and guarantee that we do not make errors because then some
pair must be in IT. In this fashion, we are limited to log2(2) = 1 bit per
symbol transmitted.

Problem 4.21: Design a scheme for the given channel by 飞Nhich the
transmitter and receiver can achieve more than 1 bit per symbol trans­
mitted.

CHAPTER 4. ALGORITHMS ON GRAPHS

4.17 ROAD NETWORK

The Texas DepartmeIIt of TrmsportatiORis COI1siderhg addhg a I1ew
section of highway to the τ以as Highway System. Each highway section
connects two cities.

The state officials have submitted a number of proposals for the new
highway-each proposal includes the pair of cities being connected and
the length of the section.

Problem 4.17: Devise an efficient algorithm which takes the existing
network, the proposals for new highways, and returns one of the pro­
posed highways which minimizes the shortest driving distance between
the cities of EI Paso and Corpus Christi.

48

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

4.24 2ωSAT

4.23 DANCING WITH THE STARS

4.25 THEORY OF EQUALITY

Programs are usually checked using testing-a I1umber of manually
written or random test cases are applied to the program and the pro­
gram's results are checked by assertions or visual inspectio孔

Formal verification consists of examining a program and analytically
determining if there exists an input for which an assertion fails. Formal

51

verification of general programs is undecidable. However there are sig­
nificant subclasses of general programs for which the verification prob­
lem is decidable.

Consider the following problem: give口 a set of variables Xl ,… ,X n ,
equality constraints of the form Xi = Xj , and inequality constraints of the
form Xi '7兰 Xj， is it possible to satisfy all the constraints simultaneously?
For example, the constrain恒的 = X2 ,X2 = X3 ， 句 - X4 ,Xl '7三 X4 cannot
be satisfied simultaneously.

Such constraints arise in checking the equivalence of loop-free pro­
grams with uninterpreted functions.

Problem 4.25: Design an efficient algorithm that takes as input a col­
lection of equality and inequality constraints and decides whether the
constraints can be satisfied simultaneously.

4.25. THEORY OF EQUALITYCHAPTER 4. ALGORITHMS ON GRAPHS

You are orgmizhg a celebrity dmce charity.specifiedy;a I1umber of
celebrities have offered to be p盯住lers for a ballroom dance. The general
public has been in飞rited to offer bids on how much they are willing to pay
for a dance with each celebrity.

Some rules governing the dance are一(1.) each celebrity will dance
o口ce at the most, (2.) each bidder will dance∞ce at the most, and (3.) the
celebrities and the bidders are disjoint.

Problem 4.23: Design an algorithm for pairing bidders with celebrities
to maximize the revenue from the dance.

A Boolean logic expression is said to be in coηju丑ctive normal form
(CNF)if complemeRtation is ody applied to variables;the operat10于十

is applied to variables。由eirn咿tion. For example, (α +b+ 气) . (αF 十

b) . (α 十 e' 十 d) is in CNF. The terms α + b + e' ， αf 十 b， andα+ c' + dare
referred to as clauses.

Determining whether an expressio口 in CNF is satisfiable is conjec-
tured to be intractable-i.e., no polynomial time algorithm exists for this
problem. However some variants of CNF can be solved in polynomial
tin四.

Problem 4.24: Design a linear-time algorithm for checking if a CNF in
which each clause contains no more than two variables is satisfiable.

4.22 TEAM PHOTO DAY-2

TMs pfoblem is a COI1timlatior1of Problem 4.1Or where we waI1ted m
ahwrithm to find the maximum number of teams that could be put in
one photogr叩h， subject to a placement constraint.

Problem 4.22: Design an efficient algorithm for computing the mini­
mum number of subsets of teams so that the teams in each subset can
be organized to appear in one photograph, subject to the placement con­
straint and each team appears in some subset.

50

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 5

Algorithm.s on Strings

A general purpose computer
program and special purpose
apparatus for matching strings of
alpha口umeric characters are
disclosed.

H4i

t
叮
叮
/

g9KItr
·
-
i

、
t

wmL
吟
、
。

i

Am
σ
O
O

RE'
且
俨
可

比
K

M
ι
2
·

xeT

Algorithms that operate 0口 strings are of great practical and founda­
tional import缸lce. Practical applications include web search, compila町
tio日， naturallan伊age processing, text editors, and DNA analysis. From
a theoretical perspective, any program can be viewed as implementing a
function from {O,1}-valued strings to {O,1}-valued strings, according to
certain string rewriting rules.

5.1 FIND ALL OCCURRENCES OF A SUBSTRING

A good string search algorithm is 如nd缸nental to the performance of
many applications and there are several elega时 algorithms proposed for
it, each with its own tradeoffs. As a result, there is no one perfect answer
to 让. If someone asks you this questio口 in an interview, the best way to
approach this problem would be to work through one good algorithm in
detail and discuss the breadth of other algorithms for solving this prob­
lem.

Problem 5.1: Given two strings s (search string) and T (text), find all
occurrences of s in T.

5.2. STRING MATCHING WITH UNIQUE CHARACTERS 53

5.2 STRING MATCHING 飞气71TH UNIQUE CHARACTERS

Suppose we are looking for a search string S in another string T. A naIve
algorithm would try to match all the characters in S to characters in T at
each offset. τhe worst-case complexity of the naIve algorithm is 8(181 .
ITI)-consider the case where Sis 2ηOs and T isη- 1 Os followed by a
1.

Problem 5.2: The worst-case behavior for the naIve algorithm requires
many duplicated characters. Suppose no character occurs more than
once in the search string. Devise an algorithm to efficiently search for
all occurrences of the search string in the text string.

5.3 ROTATE A STRING

Let A be a string of length n. If we have enough memory to make a copy
of A , rotating A by i positions is tr如ial; we just compute B[j] = A[(i + j)
mod 叫. If we are given a丑ly a constant amount of additional memory c,
we can rotate the string by c positions a total of k = I~ l times but this
increases the time complexity to 8(η . k).

Problem 5止 Designa 8(η) algorithm for rotati吨 a st血g of n letters to
the left by i positions. You are allowed only a constant number of bytes
of additional storage.

5 .4 TEST ROTATION

In Problem 5.3, we faced the problem of efficiently 凶plementing rota­
tion with a limited amount of memory. We now consider the problem of
testing if one string is a rotation of another.

Problem 5.4: Develop a linear-time algorithm for checking if a string
S is a cyclic rotation of another string R. (For example, arc is a cyclic
rotation of car.)

5.5 NORMALIZE URLs

A URL is described canonically in the following way:
<protoco工>:II<hostname>: [<port>J/<path>

There may be a number of different URL strings that are se­
mantically equivale口t. For example, cnn. com is equivaleηt to
http://c丑丑. com and http://www . ece. utexas. edu. I Ii丑dex.html
to http://www.ece.utexas.edu. App抖lica挝ti妇or口lS such as web search
which deal with URLs need tωop严er延fo臼rm t仕r‘'an缸nsfo创r宜m丑na旧a挝tio∞I丑ns回s t切o a URL string
tωor丑10创r‘宜m工丑lali且ize i让t. The t仕ra田'an缸I丑lsfo臼r‘'rna挝tior丑ns毡s may vary from application to appli­
cation.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Problem 5.5: Implement a function which takes a URL as input and per­
forms the following transformations on it: (1.) make hostname and pro­
tocollowercase, (2.) if it ends in index.html or default.html, remove the
filename, (3.) if protocol field is missing, add ''http://'' at the beginning,
and (4.) replace consecutive'I' characters by a single'I' in the "path"
segment of the URL.

5.8 EDIT DISTANCES

Spell checkers make suggestions for misspelled words. Given a misω

spelled string s, a spell checker should return words 坦 the dictionary
which are close to s.

One definition of closeness is the number of "edits" it would take to
transform the misspelled word into a correct word, where a single edit is
the deletion or insertion of a single character.

Problem 5.8: Given two strings A and B , compute the minimum num­
ber of edits needed to transform A into B.

5.7 PRETTY PRINTING

Consider the problem of arranging a piece of text in a fixed width font
(i.e., each character has the same width) in a rectangular space. Breaking
words across line boundaries is visually displeasing. If we avoid word
breaking, then we may freque时ly be left with many spaces at the end of
lines (since the next word will not fit in the remaining space). However
if we are clever about where we break the lines, we can reduce this effect.

Problem 5.7: Given a long piece of text, decompose it into lines such
that no word spans across two lines and the total wasted space at the
end of each line is minimized.

555.9. REGULAR EXPRESSION MATCHING

5.9 REGULAR EXPRESSION MATCHING

Are凯dar expression is a seque口ce of characters that defines a set of
matching strings.For this problemr we defhe a simple subset of a full
regular expressi∞ Ian伊age:

一 Alphabeticaland numerical characters match themsel飞res. For ex­
缸丑pIe， aW9 will match that string of 3 letters wherever让 appears.

The metacharacters ". and $ stand for the beginning and end of the
string. For example,aW9 matches aW9 0到ly at the start of a string
aW9$ matches aW9 or均 at the end of a string, andaW9$ match孟
a string only if it is exactly equal to aW9.

一哑巴 metacharacter . matches any single character. For example,
a.9 matches a89 and xyaW9123 but not aw89.

- The metacharacter * specifies a repet让io口 of the single previous
period or a literal character. For ex缸nple， a. *9 matches aw89.

By definition, regular expression r matches string s if s contains a
substring starting at any position matching r. For example, aW9 and a. 9
match string xyaW9123 butaW9 does not.

Problem 5.9:Desigz1m algorithm that takes strings S 缸ldr 缸ld returns
if r matches s. (Assume r is a well-formed re伊lar expression.)

CHAPTER 5. ALGORITHMS ON STRINGS

5.6 LONGEST PALINDROME SUBSEQUENCE

A palindrome is a string which is equal to itself when reversed. For ex­
ample, the human Y二chromosomecontains a gene with the amino acid se­
quence (0,A ,0 ,A ,A ,T ,T ,0 ,0 ,0 ,A ,T ,G,G,G,T ,T ,G,T ,G,G,A ,G) ,
which inel叫es the palin丑ldromic subseque口ces (T,G ,G ,G ,T) a丑

(σT， G ， Tη). Palindromic subsequences in DNA are significant because
they influence the ability of the strand to loop back on itself.

Problem 5.6: Devise an efficient algorithm that takes a DNA sequence
D[l ， …冲 and returns the Ie吗th of the longest palindromic subse­
quence.

54

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 6

Intractability

All of the general methods presently known for
computhg the chromatic Rumber of a graph,
deciding whether a graph has a Hami1to日ian

circuit! or solving a system of linear inequalities
in which the variables are co日strained to be 0 or
I! require a combinatorial search for which the
worst-case time requirement grows
exponentially with the length of the input. In
this paperF we give theorems which strORgly
suggest! but do not imply! that these problems!
as well as many others! will remain intractable
perpetually.

IIReducibility Among Combinatorial
Problems/' R. Karp! 1972

h mgheeriI1g setthgsr you will sometimes enc01mter-problems that
m be directly solved ushg etikieI1t textbook algorithms suck as bhary

ch md shortest paths-As we have sem iI1the earlier chaptersF 让

is often difficult to identify such problems because the core algor让hmic
problem is obscuredby details.More geI1erally}you may eI1Comter prob­
lems which can be transformed into equivale丑t problems which have an
efficient textbook algor让hm or proble~swhich can be solved efficiently
using meta-algorithms such as D卫

It is very ofteRthe case however that the pyoblem you are give丑陋

intfactable-i.e-F there may not exist m effideI1t algorithm for the probm
lem-Complexity theory addresses these problems-7some tlave bem
prove口 to not have an efficient solutio口 (such as checking the validity of
relationships involving王+，<，→ on the integers) but the vast majority
are ORly cOnjectured to be iIItractable The CNF-SAT problem(4.Prob-

6.1. 0-1 KNAPSACK 57

V
」旷

叫
忖
)

刊m
阳

厅
」
飞

J

m队
白
〈

DYNA问l已

P武DO陪AMMING

ALGOR阳M$:

o (f1~2.())

SE.:WNG ON £BAY:
。 (I)

STILL W~l<!NG
ONYOOR R队JfEf

\

如\

§钊忻州ε

HEt..L UP.

Figure 5. P = N P! by XKCD

lem 6.5) is an example of a problem that is co口jectured to be intractable.
When faced with a problem that appears to be intractable! the first

thing to do is to prove intractability! typically by efficiently reducing a
problem that is intractable to it. Often this reduction gives insight into
the cause of intractability.

Unless you are a complexity theorist, proving a problem to be in­
tractable is a starting point! not an end point. Remember something is
a problem only if it has a solution. There are a number of approaches to
solving intractable problems:

- Brute-force solutions which are typically expone口tial but may be
acceptable! if the instances encountered are small.

- Branch-and-bound techniques which prune much of the complex­
ity of a brute-force search.

一 Approximatio丑 algorithmswhich return a solution that is provably
close to optimum.

- Heuristics based on insight! common case analysis! and careful tun­
ing that may solve the problem reasonably well.

一 Parallel algorithms! wherein a large number of computers can work
0口 subparts simultaneously.

6.1 0-1 KNAPSACK

A thief has to choose from n items. Item i can be sold for 叫 dollars and
weighs 叫 pounds (叫 and 叫 are integers). The thief wants to take as
valuable a load as possible but he can carry at most W pounds in his
knapsack.

Problem 6.1: Design an algorithm that will select a subset of items that
has maximum value and weighs at most W pounds. (This problem is

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

6.3 FACILITY LOCATION PROBLEM

6.2 TRAVELING SALESMAN IN THE PLANE

called the 0-1 knapsack problem because each item must either be taken
or left behind-the thief cannot take a fractional amount of an item or
take an item more than once.)

The following two problems exhibit structure that can be exploited
to come up with fast algorithms that return a solution that is within a
constant factor of the optimum (2 in both cases).

59

6.7 HARDY-RAMANUJAN NUMBER

τbe mathematician G. H. Hardy was on his way to visit his collaborator
S. R缸丑an叫an who was in the hospital. Hardy remarked to Ramanujan
that he traveled in taxi cab number 1729 which seemed a dull one and he
hoped it was not a bad omen. To this, Ramanujan replied that 1729 was a
very interesting number-it was the smallest number expressible as the
sum of cubes of two numbers in two different ways. Indeed, 103 + 93 =
123 + 13 二 1729.

也1 , , ~~2
Z ←→ x-~ f一→ Z ••…•• x

6.6 SCHEDULING

We need to schedule N lectures in M classrooms. Some of those lectures
are prerequisites for others.

Problem 6.6: How would you choose when and where to hold the lec­
tures in order to finish all the lectures as soon as possible?

6.5 CNF-SAT

The CNF-SAT problem was defined如 Problem4.24. In that problem, we
asked for a linear幽time algorithm for the special case where each clause
had exactly two literals.

Problem 6.5: Design an algorithm for CNF-SAT. Your algorithm should
use branch-and-bound to prune partial assignments that can easi抄 be

shown to be unsatisfiable.

吐le following problems illustrate the use of heuristic search and
pruning principles.

constructed as follows: the first element is x; each succeeding element is
either the square of some previously computed element or the product
of any two previously computed elements. The number of multiplica­
tions to evaluate xn is the number of terms in the shortest such program
sequence minus one. No efficient method is known for the problem of
determining the minimum number of multiplications needed to evalu­
ate xn ; the problem for multiple expo且e时s is known to be NP-complete.

Problem 6.4: How would you determine the minimum number of mul­
tiplications to evaluate x 30?

A straight-line program for computing俨 is a finite seque口ce

6.4. COMPUTING X N

6.4 COMPUTING x n

CHAPTER 6. INTRACL生BILITY

Let Ao ， … ， Aη-1 be a set of ηcities. We are trying to select k cities to
locate warehouses. We w缸lt to choose the k cities in such a way that
the cities are close to the warehouses. Let's say we define the cost of
a warehouse assignment to be the maximum distance of any city to a
warehouse.

The problem of finding a warehouse assignment that has the mini-
mum cost is known to be NP-complete.

Problem 6.3: Design a fast algorithm for selecting warehouse locations
that is provably within a constant factor of the optimum solution.

The following two problems are best solved using branch-and-bound
with intelligent bounding and branch selection.

Suppose a salesman needs to visit a set of cities A o,A 1 ,… ,A n - 1 . For
any ~ordered pair of cities (Ai ,A j), there is a cost c(Ai ,A j) of traveling
from the first to the seco日d city. We need to design a low cost tour for the
salesman.

Ato旧 is a sequence of cities (Bo,B 1 ,. . . ， Bιη一b B心 It car川tar时ta挝ta叮

cityan口ld the sale臼sm工丑lan丑lcan v札isit让t the cities in any order. All the cities must
appear in the s由sequence (Bo,B 1,… ,Bn - 1). (Note that this implies
that all the cities in this subsequence are distinct.)

The cost of the tour is the sum of the costs of the ηsuccessive pairs
(Bi ,B i+1 mod 山 i 二 o toη-1.

Determining the minimum cost tour is a classic NP-complete problem
and the problem remains hard even if we just ask for a tour whose cost
is within a given mult毕Ie IvI of the minimum cost tour. However there
is a special case for which this problem ca口 be efficiently solved.

Problem 6.2: Suppose all the cities are located in some Euclidean space
and the cost of traveling from one city to another is a constant multiple
of the distance between the cities. Give an efficient procedure for com­
puting a tour whose cost is 驴lar缸lteed to be within a factor of two of the
cost of an optimum tour.

58

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

6.10 PRIMALITY CHECKING

6.9 NEAREST POINTS IN THE PLANE

Problem 6.7: Given a口 arbitrarypositive integer 凡 howwould you de­
termine if it can be expressed as a sum of two cubes?

616.10. PRIMALITY CHECKING

In an interview context, if you are asked to 凶pleme丑t primality
checking, you are just expected to provide some s迦lple improvements
over the basic brute-force approach.

Problem 6.10: Implement a function which takes a numberη 缸ld re­
turns whether the number is prime or not. What is the runtime of your
algorithm?

CHAPTER 6. INTRACL生BILITY

Primality checking has received a great deal of attention from mathe­
maticians and theoretical computer scientists and there are a number of
highly sophisticated approaches to efficiently solving this problem. One
reason for this is that number theory plays a key role in cryptography.

The brute-force approach to checking if n is a prime is to divide n by
every smaller number. The size of input here is the number of bits in η

and hence the brute-force algorithm has exponential time complexity.

Instead of having single integers in the array, if you have integral points
in a two-dimensional plane, the problem of finding a closest pair of
points becomes significantly more difficult. There are fast exact algo­
rithms for this problem but they are tricky to analyze and impleme口t

Can you design a heuristic for identifying the closest pair of points?

Problem 6.9: You are given a list of pairs of points in the two­
dimensional Cartesian plane. Each point has integer x and y co­
ordinates. How would you find the two closest points?

60

6.8 COLLATZ CONJECTURE

Lothar Collatz proposed this remarkable co叫ecture in 1937: "Define C :
{I ,2,3,…,} 1----+ {I ,2,3,…,} as follows: if n is even, C (η) =η/2， else
C(η)=3η 十 1. Then for any choice of 凡 C2(η) = I , for some i".

For example, if we start with the number 11 缸ld iteratively compute
C2(11) , we get the sequence 11 ,34,17,52 ,26 ,13,40 ,20,10,5,16,8,4,2,1.

Despite intense efforts, the Collatz co吟ect旧e has not been proved or
disproved.

Suppose you are given the task of proving or disproving the Collatz
co口jecture for the first billion integers. A direct approach would be to
compute the convergence sequence for each number in this set.

Problem 6.8: How would you prove that Collatz hypothesis works for
at least the first N integers? 叭That is the runtime of your algorithm?

The following problems have the property that they can, in princi­
pIe, both be solved in polynomial time. However the polynomial time
solutions are not straightforward and in the context of an interview, a
heuristic solution may be preferable.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

7.1 SERVLET WITH CACHING

Problem 7.1: Design a servlet which implements an online spell correc­
tio丑 suggester. Specifically, it takes as input a string s and computes an
array of entries in its dictionary which are closest to the string using the
edit distance specified in Problem 5.8.

Since computing the edit distances s to each entry in the dictionary is
time consuming, you should implement a caching strategy. Specifically,
cache the most rece时ly computed result.

Parallelism can also be used for fault tolerance-for example, if a ma­
chine fails in a cluster that is serving web pages, the others can take over.

Concrete applications of parallel computing include graphic user in­
terfaces (a dedicated thread handles VI actions resulting in increased re­
sponsiveness), Java virtual machines (a separate thread handles garbage
collection which would otherwise lead to blocking), web servers (a sin­
gle logical thread handles a single client request), scientific computing (a
large matrix multiplicati∞ can be split across a cluster), and web search
(multiple machines crawl, index, and retrieve web pages).

There are two primary models for parallel computation-the shared
memory model, in which each processor can access any location in mem­
ory 缸ld the distributed memory model, in which a processor must ex­
plicitly send a message to another processor to access its memory. The
former is more appropriate in the multicore setting and the latter is more
accurate for a cluster. The questions in this chapter target a shared mem­
ory model. We cover some problems related to the distributed memory
model such as leader election and host discovery as well as applications
such as web search in Chapter 8.

Writing correct parallel programs is challenging because of the subtle
interactions between parallel components. One of the key challenges is
races-two concurre时 instructionsequences access the same address in
memory and at least one of them writes to that address. Other chal­
lenges to correctness are starvation (a processor needs a resource but
never gets it/ e.g., Problem 7.5)/ deadlock (A and B acquire resources M
and N respectively and then try to acquire Nand M respectively, e.g.,
Problem 7.10)/ and livelock (a processor keeps retrying an operation that
always fails). Bugs caused by these issues are very difficult to find using
testing; debugging them is also very difficult because they may not be re­
producible since they are load dependent. It is also often true that it is not
possible to realize the performance implied by parallelism-sometimes
a critical task cannot be parallelized, making it ir口possible to improve
performance, regardless of the number of processors added. S坦lilarly，

the overhead of commu丑icating intermediate results between processors
can exceed the performance benefits.

637. 1. SERVLET WITH CACHING

The activity of a computer must include the
proper reacti口g to a possibly great variety of
messages that can be se时 to it at unpredictable
moments, a situation which occurs in process
control, traffic control, stock control, banking
applications, automization of information flow
in large organizations, centralized computer
service and, finally, all information systems in
which a number of computers are coupled to
each other.

"Cooperating seque时ial processes," E. D斗kstra，

1965

Parallel computation has become increasingly common. For ex缸工lple，

laptops and desktops come with multicore processors h which each core
is a complete processor md accesses shamd memory.High-md compr
tation is often performed using clusters consisting of individual comput­
ers commmidting through a mtvmrk Parallelism provides a number
of benefits:

_ High performance-more processors working on a task (usually)
means it is completed faster.

_ Better use of resources-a program can execute while another waits
on the disk or network.

_ Fairness-letting different users or programs share a machine
rather than have one program run at a time to completion.

_ Convenience-it is often conceptually more straightforward to ac­
complistIa taskushg a set of concurreIIt programs for the subtasks
rather than have a single program manage all the subtasks.

Parallel Com.puting

Chapter 7

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

7.4 TIMER

白le following class, SimpleWebServer, implements part of a simple
HTTP server:

Problem 7.2: Suppose you find that SimpleWebServer has poor perfor­
mance because process丑eq frequently blocks on 10. What steps could
you take to improve SimpleWebServer's performance?

65

7.7 READERS-WRITERS WITH FAIRNESS

The specifications to both Problems 7.5 and 7.6 can lead to starvation­
the first may starve writers 缸ld the second may starve readers. The third

7.5 READERS-WRITERS

Consider an object s which is read from and written to by many threads.
(For example, s could be the cache from Problem 7.1.) You need to ensure
that no thread may access s for reading or writing while another thread
is writing to s. (Two or more readers may access s at the same time.)

One way to achieve this is by protecting s with a mutex that ensures
that no thread can access s at the same time as another writer. However
this solution is suboptimal because it is possible that a reader Rl has
locked s and another reader R2 wants to access s. 百lere is no need to
make R2 wait until Rl is done reading; instead, R2 should start reading
right away.

This motivates the first readers-writers problem: protect s with the
added constraint that no reader is to be kept waiting if s is currently
opened for reading.

Problem 7.5: Implement a synchronization mechanism for the first
readers-writers problem.

7.6 READERS-WRITERS 叭TITH WRITE PREFERENCE

Suppose we have an object s as in Problem 7五In the solution to Prob­
lem 7.5, a reader Rl may have the lock; if a writer W is waiting for the
lock and then a reader R2 requests access, R2 will be given priority over
W. If this happens often enough, W will starve. Instead, suppose we
want W to start as soon as possible.

This motivates the second readers-writers problem: protect s with
"writer-preference", i. e.，丑o write乙 once added to the queue, is to be kept
waiting longer than absolutely necessary.

Problem 7.6: Implement a synchronization mechanism for the second
readers-writers problem.

Problem 7.4: Develop a Timer class that manages the execution of de­
ferred tasks. Specifically, at creation, the constructor of Timer is passed
an object which includes a Run method and a name field (which is a
string). The Timer class must support-(l.) starting a thread at a given
time in the future; the thread is identified by name and (2.) canceling a
thread with a given name (you can ignore the request if the thread has
already started).

7.5. READERS-WRITERSCHAPTER 7. PARALLEL COMPUTING

Consider a web-based calendar in which the server hosting the calendar
has to perform a taskwhm the next caleI1dar eveI1t takes place-(The task
could be sending an email or an SMS.) Your job is to design a facility that
manages the execution of such tasks.

7.3 ASYNCHRONOUS CALLBACKS

It is common in a distributed computing environment for the responses
to not return in the same order as the requests were made. One way
to handle this is through an "asynchronous callback"-a method to be
invoked on response.

Problem 7.3: Implement a Requestor class. The class has to impleme口t

a Dispatch method which takes a Requestor object. The Requestor
ob;ect includes a request string, a ProcessResponse (string
r二spome〉 methody and m Execute method that takes a string md
returns a string.

Dispatch is to create a new thread which in飞Tokes Execute
on request. When Execute returns, Dispatch in飞Tokes the
ProcessResponse method on the response.

The Execute method may take m hdetermhate am01mt of time to
return; it may never return. You need to have a time码out mechanism for
this: assume the Requestor objects have an Error method that you can
invoke.

1 \ public class SimpleWebServer {
2 I - fi n a1 s t a ti c in t PORT = 8080;
3 I public s t a ti c void main (String [] args) throws IOException

4 I Se• Socket s……k = new S…rSoω(PORT);
5 I for (;;) {
6 I Socket sock = serversock. accept () ;
7 I ProcessReq (sock) ;
8
9

10

7.2 THREAD POOLS

64

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

7.10 DINING PHILOSOPHERS

7.8 PRODUCER-CONSUMER QUEUE

Two threads, the producer P and the consumer Q, share a fixed length
array of strings A. The producer generates strings one at a time which it
writes into A; the consumer removes strings from A , one at a time.

Problem 7.8: Design a synchronization mechanism for A which ensures
that P does not attempt to add a string into the array if it is full 缸ld C
does not try to remove data from an empty buffer.

readers-writers problem adds the constraint that no thread shall be al­
lowed to starve-the operation of obtaining a lock on s always termi­
nates in a bounded amount of time.

Problem 7.7: Impleme口t a synchronization mechanism for the third
readers-writers problem. It is acceptable (indeed necessary) that in this
solution, both readers and writers have to wait longer than absolutely
necessary. (Readers may wait even if s is opened for read and writers
may wait even if no one else has a lock on s.)

1/A Protocol for Packet Network
Intercommunication," V. Cerf

and R. Kahn, 1974

Design Probletns

Chapter 8

We have described a simple but
very powerful and flexible
protocol which provides for
variation in individual network
packet sizes, transmission
failures, sequencing, flow
control, and the creation and
destruction of process­
to-process associations.

This chapter is cOI1cerzled with system desigI1problems.Each ques­
tion can be a large open-ended software project. During the it由rview，

you should provide a higklevel sketch of such a system with thoughts
on various design choices, the tradeoffs, key algorithms, and the d~ta­
structures invol飞red.

8.1 MOSAIC

One popular form of computer art is photomosaics where you are given
a collection of images called"tiles".古le丑 given a target image, you want
to build mother image which dosely approximates the target mage but
is actually built by juxtaposing the tiles. Here the qual让Y of approxima­
tion is mostly defined by human perception. It is often the cas~ that with
a given set of tiles, a user may want to build several mosaics.

Problem 8.1: How would you desi伊 a software that produces high
quality mosaics with minimal compute t扛ne?

CHAPTER 7. PARALLEL COMPV{TING

7.9 BARBER SHOP

Consider a barber shop with a single barber B , one barber chai乙 and

ηchairs for customers who are waiting for their turn for a haircut. If
there are no customers, the barber sleeps in his chair. On entering, a
customer either awakens the barber or if the barber is cutting someone
else's hair, he sits down in one of the chairs for waiting customers. If
all of the waiting chairs are taken, the newly arrived customer simply
leaves.

Problem 7.8: Assume there is a thread for each customer and for the bar­
ber. Model the system using semaphores and mutexes to ensure correct
behavior.

In the dining philosophers problem n threads, numbered 0 to η- I, run
concurrently. There are n resources, numbered 0 toη- 1. Thread i re­
quires resources i and i + 1 modηbefore it can in飞Toke a method m.
(The problem gets its name because it models ηphilosopherssitting at a
round table, alternating between thinking, eating, and 飞N"aiting. There is
a single chopstick between each pair of philosophers. To eat, a philoso­
pher must hold two chopsticks-one placed immediately to his left and
one immediately to his right.)

Problem 7.10: Impleme丑t a synchronization mechanism for the dining
philosophers problem.

66

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

8 .4 SPELL CHECKER

Designing a good spelling correction system can be challenging. We
discussed spelling correction in the context of the edit distance (Prob­
lem 5.8). However in that problem, we just considered the problem of
computing the edit distance between a pair of strings. A spell checker
must find a set of words that are closest to a given word from the en­
tire dictionary. Furthermore, edit distance may not be the right distance
function when performing spelling correction-it does not take into ac­
cou时 the commonly misspelled words or the proximity of letters on a
keyboard.

Problem 8.4: How would you build a spelling correction system?

8.2 SEARCH ENGINE

Modern keyword-based search engines maintain a collection of several
billion documents. One of the key computations performed by a search
engine is to retrieve all the documents that contain the keywords con­
tained in a given query. This is a nontrivial task because it must be done
within few tens of milliseconds.

In this problem, we consider a smaller version of the problem where
the collection of documents can fit within the RAM of a single computer.

Problem 8.2: Given a million documents with an average size of 10 kilo­
bytes, desi伊 a program that can efficiently return the subset of docu­
ments containing a given set of words.

69
8.5. STEMMING

8.6 DISTRIBUTED THROTTLING

LetFs say you have N machines crawliI1g the world wide web such that
thempomibilityfor agmnURL!s msi伊ed to the crawler with id equal
toHash(URL)mod lv.Downloadmgapagetakes awayba口dwidthfrom
k semr hosthg it.TEmfore you wmt to mm that h my given
mmuter your crawler-s Rever request more thm B bytes from my host.

Problem 8.6: How would you impleme时 crawling under such a con­
straint?

8.5 STEMMING

WEeRauser submits the qu町 "computation"to a search engine, it is
TItepos叫ekmightbe interested也 documents containi丑gthewo臼r吐d

t恒er牛s' ， "c∞omput怡e"二， and "c∞ompu吐叫ting" a尬Iso. If you have several
ke严mrds m a query}1t becomes difficult to search for a11combimtions
of all variants of the words h the query-

One way to solve this problem is to reduce all variants of a Q"ivpn

word to ∞e common roo仁 both h the query str-hg md h th;;二:
re?s mfprocessisc也d stemming. An example of stemmingw∞ld

~ t computers ,computer,compute} •• comput. It is almost impossible to
suedmtly captur?all po四ble variants of all words in the E丑glish 1
guage but a few SImple r111es caaget us a majority of the cases.

Problem 8.5: Design a stemming algorithm that runs fast and does a
reaso丑able job.

8.7 IMPLEMENT PAGERANK

PageRank algorithm assigns a ra地 to web pages based on the number

:巳:目出叫:目出叫骂且且1;口;
1.Build amatrix Abased O丑 the hyperli地 structure of the web with
Aij 工去 ifthereis?1inkformbpagei towebpagejraM 出 is the
total Ilumber of unIqm outgoing lhks from page t.

2. Solve for X satis句Tin

X= ε. [1] + (1 - E)AT . X.

Here εis a scalar constant (e.g.，丰) and [1] represents a column
tor of Is. The value X[i] is the r~地 of the i-也 page.

The most commo丑ly used approach to sokhg the above equatiOI1is
to start with a value of Xy where each compomnt isi(where ηis thenumber of pages)aRd then perform the followiI1g iteration:

Xk= ε. [1] + (1 - E)AT . Xk一 1·

CHAPTER 8. DESIGN PROBLEMS68

8.3 IP FORWARDING

There are many applications where instead of an exact match of strings,
we are looking for a prefix match, i.e., given a set of strings and a search
string, we want to find a string from the set that is a prefix of the search
string. One application of this is Internet Protocol (IP) route lookup prob伊

lem. 叭厅le丑缸1 IP packet arrives at a router, the router looks up the next
hop for the packet by searching the destination IP address of the packet
in its routing table. The routing table is specified as a set of prefixes 0口

the IP address and the router is supposed to identify the longest match­
ing prefix. If this task is to be performed only once, it is impossible to do
better than testing each prefix. However an Internet core router needs
to lookup millions of destination addresses on 仕le set of prefixes every
second. Hence it can be advantageous to do some precomputation.

Problem 8.3: You are give口 a large set of strings S in advance. Given
a query string Q, how would you design a system that can identify the
longest string p ε S that is a prefix of Q?

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

8.8 SCALABLE PRIORITY SYSTEM

Problem 8.7: How would you design a system that can compute th~

ranks for a collection of a billion web pages in a reasonable amount of
time?

8.10 ONLINE ADVERTISING SYSTEM

Jingle, a search engine startup, w~ts to ~onet~ze its search results by
displaying advertisements alongside search results.

Problem 8.10: Design an online advertising system for Jingle.

71

Jingle is developing a search feature for breaking news. New articles are
collected from a variety of online news sources such as newspapers, bul­
letin boards, blogs, etc. by a single lab machine at Jingle. Every minute,
roughly one thousand articles are posted and each article is a 100 kilo­
bytes in size.

8.14 ISBN CACHE

The International Standard Book Number (ISBN) is a unique commer­
cial book identifier based on the 9-digit standard book numbering code
developed by Professor Gordon Foster from Trinity University, Dublin.
The la-digit ISBN was ratified by the ISO in 1974; since 2007, ISBNs have
contained 13 digits. The last digit in a la-digit ISBN is the check digit-it
is the sum of the first 9 digits, modulo 11; a 10 is represe时ed by an X. For
13 digit ISBNs, the last digit is also a check digit but is guaranteed to be
between a and 9.

Problem 8.14: Implement a cache for looking up prices of books identi­
fied by their ISBN. Use the least-recently-used strategy for cache eviction
policy.

Problem 8.13: Design a driving directions service with a web interface.

8.13 DRIVING DIRECTIONS

8.15 DISTRIBUTING LARGE FILES

8.11. RECO]\，在MENDATION SYSTEM

As a part of their charter to collect all the information in the world and
make it universally accessible, Jingle wants to develop a driving direc­
tions service. Users enter a start and finish address; driving directions
service returns directions.

8.12 ONLINE POKER

Clump E丑terprises has a large number of casinos. Their CEO wants to
create a website by which gamblers can play poker online.

Problem 8.12: Design an online poker playing service for Clump Enter­
prlses.

8.11 RECOMMENDATION SYSTEM

Jingle wants to generate more page views on its news site. One idea the
product manager has is to put in a sidebar of clickable snippets from
articles that are likely to be of interest to the reader.

Problem 8.11: Design a system that automatically generates the sidebar.

CHAPTER 8. DESIGN PROBLEMS

8.9 LATENCY REDUCTION

τ'he Pareto distribution is defined as follows:
/吨'\α

P[X > x] = 1 一(.v;) , if x > x m

- 1 if x 三 xm ·

MaiI1taiIIhg priority ha distributed system can be tricky-COI1sider the
crawler-s for a search engim visithg web pages in some prioritized order
or event driven simulation in molecular dynamics. In both cases, we
could be dealing with billions of entities with a given priority and we
need to do three things efficiently: (1.) find the highest priority e时让y，

(2.) insert new entities with a given priority, and (3.) delete certain entities
specified by a u口ique id.

Problem 8.8: How would you design a system that can implement these
requirements when the data cannot fit into a single machine's memory?

Here αand Xm are parameters of the distribution. It is one of the heavy­
tailed distributions that commonly occur in various workloads.

Suppose you are running a service on k servers and that any service
request can be processed by my of the servers.A giveIIserver cm pro­
cess only one request at a time. Depending on the request r , a server may
take time t(γ), where t叫(价例γ吟) follows a Par记et怡o di妇st甘ribu时1址ti讪O丑

Problem8.9吮: You have a service level ag伊re臼em丑len时1让twi让thyou盯1丘r clients which
requires t出ha挝t 99% of the r陀equests are serviced in less t白har口1 or丑le second.
How would you design the system to meet this requirement with mini-
mal cost?

70

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Jingle would like to serve these articles from a datacenter consisting
of a thousand servers. For performance reasons, each server should have
a copy of articles that were recently added. The datacenter is far away
from the lab machine.

Problem 8.15: Suggest an efficient way of getting the articles added in
the past five minutes from the lab machine to the servers.

8.17 HOST DISCOVERY

You are to devise a protocol by which a collection of hosts on the Internet
can discover each other. Hosts can communicate with each other using
TCP connections. For host A to communicate with host B , it needs to
know B's IP address.

Each host starts off with a set of IP addresses 缸ld the protocol code
that you implement which will run on a fixed port across all the hosts.

Problem 8.17: Devise a protocol by which hosts can discover all the
hosts participating in the protocol. The protocol should be fast and effi­
cient like in Problem 8.16.

8.16 LEADER ELECTION

You are to devise a protocol by which a collection of hosts on the Internet
can elect a leader. Hosts can communicate with each other using TCP
connections. For host A to communicate with host B , it needs to know
B's IP address. Each host starts off with a set of IP addresses and the
protocol code that you implement that will run on a fixed port across all
the hosts.

Problem 8.16: Devise a protocol by which hosts can elect a unique
leader from all the hosts participating in the protocol. The protocol
should be fast, in that it converges quickly; it should be efficient, in that
it should not involve too many connections, too many data exchanges,
and too much data exchanged.

Chapter 9

There is required, finally, the
ratio between the fluxion of any
quantity x you will and the
fluxion of its power x n

. Let x
flow till it becomes x 十 oand

resolve the power (♂十 0)η 如to

the infinite series
xn十ηoxn- 1 十 ~(n2-n)02xn一2+

i(η3_3η2 十主η)03 xn-3 . . .

"On the Quadrature of
Curves," I. Newton, 1693

Discrete Mathem.atics

Discrete mathematics comes up in algorithm design in many places such
as combinatorial optimization, complexity analysis, and probability esti­
mation. Discrete mathematics is also the source of some of the most fun
puzzles and interview questions. 在le solutions can range from simple
application of the pigeon-hole principle to complex inductive reasonh1.日

Some of the problems in this chapter fall into the category of brah1
teasers where all you need is one aha moment to solve the problem. Such
problems have falleIIout of fashion because it is hard to judge a caIIdim
date's ability based on whether he is able to make a tricky obser飞ration

in a short period of time. However they are asked enough times that we
feel it is important to cover them. Also, these problems are quite a lot of
fun to solve.

9.1 COMPUTING THE BINOMIAL COEFFICIENTS

T咀he臼sym丑卫lbol (亿~)川is 址血蜘1ωor时Oωr口rm红m丑1f岛or η (2;A♂Y iUj 1T立?立￡J;:扛.才俨:
t切o choose a kιm吃-elem丑len时1让t subset from an r知Z卜闯幽吃elemen时t set.

CHAPTER 8. DESIGN PROBLEMS72

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

9.5 HEIGHT DETERMINATION

You are givez1a Ilumber-of ideIItical balls and a building with N Eoors­
You how that tkere is m hteger X <N such that the ball willbImk if it

9.2 CLIMBING STAIRS

You are climbing a staircase with N steps. Every time you can Jump over
either one step or two steps.

Problem 9.2: How many ways are there to get to the top of the staircase?

9.4 500 DOORS

There are 500 closed doors off a corridor. A perso口 walks through the
以or and opens each door. Another pers∞ walks through the corri­

dar and closes every alternate door. Co口tinuing in this mann町 the i-th
perso口 comes and toggles the pas让ion of every i-th door starting from

door i.
Problem 9.4: How many doors will be open at the end after the 500-th
perso口 has passed through the doors?

75

9.6 BETTING ON CARD COLORS

A deck of 52 playing cards is shuffled. The deck is placed face-down on a
table. You can place a bet on the color of the top card at even odds. After
you have placed your beιthe card is revealed to you and discarded.
Betting continues till the deck is exhausted. On 缸ly card, you can bet
any amount from 0 to all the money you have and the odds are always
even.

Problem 9.6: You begin with one dollar. It is known that if you can
bet arbitrary fractions of the money you have, the maximum amount of
money that you guarante~_youcan win/ regardless of the order in which
the cards appea乙 is 252 /(骂)但 9.08132955. However you are allowed to
bet only in penny increments. Write a program to compute a tight lower
bound on the amount you can win under this restriction.

Invariants

The following problem was popular at interviews in the early 1990s: you
are given a chessboard with two squares at the opposite ends of a diag­
anal removed, leaving 62 squares. You are given 31 rectangular domi­
noes. Each can cover exactly two squares. How would you cover all the
62 squares with the dominoes?

It is easy to spend hours trying unsuccessfully to find such a cover­
ing. 咀lis will teach you that a problem may be intentionally worded to
mislead you into following a futile path.

There is a simple argument that no covering exists一…-the two squares
removed will always have the same color, so there will be either 30 black
and 32 white squares to be covered or 32 black and 30 white squares to
be covered. Each domino will cover one black and one white square, so
the number of black and white squares covered as you successively put
down the dominoes is equal. Hence it is impossible to cover the given
chessboard.
百lis proof of impossibility is an example of invariant analysis. A且 i丑­

variant is a function of the state of a system being analyzed that remains
constant in the presence of (possibly restricted) updates to the state. In­
variant analysis is particularly power如I at proving impossibility results
as we just saw with the chessboard tiling problem. The challenge is find­
ing a simple invariant.

is dropped from any floor X or higher but will remain intact if dropped
from a floor below X.

Problem 9.5: Given K balls and N 丑oors， what is the minimum number
of ball drops that are required to determine X in the worst-case?

9.6. BETTING ON CARD COLORSCHAPTER 9. DISCRETE MATHEMATICS

9.3 RA孔1SEY THEORY

In 1930/ Fran口lk Ram丑ns回se叮y wrote a pa叩pe臼r titled 1/Or丑lap严ro伪blem in formal

10ο仰飞w吨σ

μ%泛bιa马ms丑1回se叮yT咀h挝1曰eωy飞hi恒sho∞丑∞Oωr. H出ep伊rov刊edw咐ha时ti旭snowc叫alled Ram宜ms叫S町e句叮y's
theorem as m intermediate lemma h a biggey proof-The problem bel w
illustrates Ramsey's theorem.

Problem 9.3: There are six guests at a party such that any two guests
either know each other or do 口at know each other. Prove that there is a
subset of three guests who either all how each other or all do 口otknow

each other.

It is not obvious that the expressio丑 defining G) always yields an
integer. F旧thermore， direct computatio口 of G) from this expression

quickly results in tl阳1
t可yp严es ar陀eus店sed， even if the fin口lal result f直缸i扰t怡s inan 扛讪lt怡ege臼r. If fl如oa甜t怡s are used
the ex邓pres臼妇S剖io∞I丑1m丑la叮yr丑lOt yield an integer.

Problem 9止 De鸣n an efficie时 algorithm for computi吨(~) that has
the property that it never overflows if G) can be represe附d as an i且t

assume ηand k are ints.

74

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

9.7 EVENORODD

Let Abe a multiset of htegers.Consider the followhg process:raIIdomly
select two elements of A. If they are both even or both odd, remove them
from the set and insert a new even integer; if not, remove just the even
integer.

Problem 9.7: What can you say about the last remaining integer as a
£Undio口 of the numbers of even and odd integers initially in A?

Let's consider a more sophisticated example now, namely the MU
puzzle. The following rules may be applied to transform a string over
the alphabet {M,I ,U}:

1.If a strhg ends with m I, a U may be appmded(xIH XIU).For
example-MI to MIU.

2.A strimzafter a starthg M may be completely duplicated(MXM
Mxx). For example-MIU to MIUIU.

3. Three consecutive Is (III) may be replaced with a single U (xIIly f-+

xUy). For example-MIIIU to MUU.
4.Two cOIISecutive LIs maybe removed ULIUYH XY).For example-

MUUII to MIL
Problem: Is it possible to convert MI into MU by repeated applicatio且 of

these four transformation rules?
You cm try differeIIt strategies to fiI1d the right sequence of transfor-

IIlatiom md after a while you may begh to suspect that it is impossible
to perform this conversion.showhg thatm sequeRce of trmsforma­
tiom will implement tke trmsformatiORseems daunting at first-after
all, there are hfidtely many trmsformatiom.However cOImider the fol-
loWhg iIm白的 the r
口nev刊er川am丑lultip抖Ie of three.

We prove the invariant by induction on the number of transforma-
tiompJ由rmed∞ MI. For the baseωe， MI has 1 I, which is not a mul-
tiple of three.

For the hductive stepr trmsformatiom1md4do not chmge the
mber of Is, so induction goes through in this case. The number of Is

after appliedmof trmsfofIRatioI12is twice the number of Is.Sor if the
number of Is was 口ot a multiple of three, i.e., was of the form 3 .η 十 lor

3·η十2 ， then the 口umberof Is after transformation 2 is either 2· (3·η+1) 工
3 . (2 .卢)十 2 or 2 . (3 . n 十 2) = 3 . (2 .η 十 1) + 1, neither of which is a
multiple of 3.TransformatiOI13reduces the number of Is by three and
induction goes through in this case too.

Since MU has aIs~ which is a multiple of three, it is impossible to get
from MI to MU.

9.9 COMMON KNOWLEDGE

77

9.1a HERSHEY BAR

A Hershey bar is modeled as m x n rectangle of m .n pieces. You can take
a bar and break it along a horizontal or vertical axis into two bars.

Problem 9.10: How would you break a 4 x 4 bar into 16 pieces using as
few breaks as possible?

An explorer comes to an island with 100 inhabitants. Exactly half th叫"
habitants have blue eyes and half the inhabitants have green eyes. The
green eyes are indicative of a disease that brings all the island i吐labi­

tants in danger. There is an understanding on the island that whenever
someone learns that they have green eyes, they must leave the island;
they never leave the island for any other reaso日. The inhabitants are too
polite to inform anyone else of eye color. There are no other means for
the inhabitants to observe the color of their eyes 0口 the island.
币le 让让labit缸ltS assemble each day at exactly 9:00 AM, they see each

other, and then go back to their own houses. They never see anyone else
for the rest of the day. Furthermore, they are capable of instant logical
reasonIng.
咀le explorer visits one of their daily assemblies and says, "That's

interesting-some of you have blue eyes and some of you have green
eyes".

Problem 9.9: What would follow after this event? In particula乙 why

does this obser飞ration sadden the inhabitants?
在le explorer seems to have added no new knowledge to the system

since each inhabitant can already tell that am∞gst the inhabitants, some
have blue eyes and some have green eyes.

9.8. GASSING UP

9.8 GASSING UP

Co日sider a circular route that connectsηcities.You need to visit all the
n cities 缸ld come back to the starting city. In each cit)', a certain 缸丑ou丑t

of gasoline is kept for you such that the total amount of gasoline 0丑 the

route is exactly equal to the amount of gasoline needed to go around the
circular route once.

Problem 9.8: Is it always possible to f红叶 a starting po扛lt on the route
such that you can start there with an empty tank and complete the route?
How can you efficiently find this city?

CHAPTER 9. DISCRETE MATHEMATICS76

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

9.13 m xηCHOMP

Solve Problem 9.11 if the rectangle is of dimensio日 mxη.

Problem 9.13: Assuming the players have infinite computational re­
sources at their disposal, who will win the game?

9.12ηx 2 CHOMP

Solve Problem 9.11 if the rectangle is of dimensionηx 2.

Problem 9.12: Assuming the players have infinite computational re­
sources at their disposal, who will win the game?

799.16. SPACE-TIME INTERSECTIONS

9.16 SPACE-TIME INTERSECTIONS

Adam starts climbing a mountain at 9:00 AM on Saturday. He reaches the
summit at 5:00 PM. He camps at the summit overnight and descends the
mountain on Su口day. He begins and ends at the same time and follows
exactly the same route. His speeds may vary and he may take breaks at
different places.

Problem 9.16: Prove that there is a time and a place such that Ad缸丑 is at
exact与 the same place at the same time on Saturday as he is on Sunday.

CHAPTER 9. DISCRETE MATHEMATICS

9.15 PICKING UP COINS-II

Problem 9.14 does not ask for the optimum profit. Let's explore the
strategies that would maximize the winnings.

Problem 9.15: Derive an efficient algorithm for computing the maxi­
mum 旧nount of money F can win.

9.14 PICKING UP COINS-I

There are fifty coins in a line-these could be pennies, nickels, dimes, or
quarters. Two players, F and S , take turns at choosing one coin each­
they can only choose from the two coins at the ends of the line. The
game ends when all the coins have been picked up. The player whose
coins have the higher total value wins. Each player must select a coin
when it is his tum, so the game ends in fifty turns.

Problem 9.14: If you want to ensure you do not lose, would you rather
be F or S?

9.11η × ηCHOMP

Consider an n xηrectangle in the upper right quadrant in the Cartesian
plane, with the lower leftmost point at (0,0). The block (0,0) is known to
contain poison. Two players take turns at taking a bite out of the rectan­
gle. A bite removes a square and all squares above and to the right. The
first player to eat the square at (0 ,0) loses.

Problem 9.11: Assuming the players have infinite computational re­
sources at their disposal, who will win the game?

78

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

10.2 RESERVOIR SAMPLING

You are building a packet sniffer for your network that should be able
to provide a uniform sample of packets for any network session. You

10.1 OFFLINE SAMPLING

Let A be an array of ηdistinct elements. We want to compute a random
subset of k elements.

Problem 10.1: Design an algorlihm that returns a subset of k elements;
all subsets should be equally likely. Use as few calls to the random num­
ber generator as possible and use only 0(1) additional storage. (You can
return the result in the same array as input.)

8110.1. OFFLINE SAMPLING

ues, we can talk about the probability of X taking a particular value, i.e.,
p(X = 7i)' If X takes a cor由1∞us range of values and Fx is differen­
tiable, we talk of1.忡忡等于 as being the prob抽出ty density function.

The expected value E[X] of a random variable X taking a finite set
of values T = {70 ,71 ,… ,7 n -1} is simply 2::

T
;ET 7i . p(X = 7i), i.e., it is

the average value of X/ weighted by probabilliies. The notio丑 of ex­
pectation generalizes to countable sets of values. For a random vari­
able taking a co时inuous set of values, the sum is replaced wlih an in­
tegral and the weighting function is the probability density function.
The variance var(X) of a random variable X is the expected value of
(IX - E[X])2. Some of the key results in probability have to do with
bounds on the probability of events, e.g., the Chebyshev bound which
says 出at Pr(IX - E[X]I 三 kVV哥哥三古

There are a number of famous classes of random variables-the
Bernoulli random variable takes only two values, 0 and 1; li is used, for
example, in modeling c。如 tosses. The Poisson random variable takes
nonnegative values-it models the number of events in a fixed period
of timet e.g., the number of HTTP requests in a minute. The Gaussian
random variable takes all real values一-the sum of a series of identically
distributed independent random variables te丑ds to Gaussian.

For the most part, probability correspo旦出 to our intuition; there are
however notable exceptions. For example, at first glan鸣 li would seem
垃npossible for there to exists three ιsided dice A ,B ,0 such that A is
more likely to roll a higher number than B / B is more likely to roll a
higher number than 0/ and 0 is more likely to roll a higher number than
A. However if A has sides 2,2,4,4,9,9/ B has sides 1,1,6,6,8,8/ and
dice 0 has sides 3,3,5,5,7,7/ then the probability that A rolls a higher
number than B is ~ / the probability that B 时Is a hig快he川

i坦s ~ / and the probability that 0 rolls a higher number than A is ~

"Theory Of The Motion Of The
Heavenly Bodies Moving
About The Sun In Conic

Sections/" C. Gauss, 1809

Probability comes often in algorithms and software e口gineering， eliher
when you are tryhg to model a rmdom eveIItr such as a client request
or desigI1aI1efficient algorithmF such as Q1licksort Giverlthe richI1ess of
the subject, li provides a large number of interesti吨 puzzles and inter­
view questions.

To a first approximatio凡 a probabilliy measure is a function p from
subsets of a set E of eveI1ts to [071lthat has the propeyties thatp(E)=1
and p(A U B) = p(A) 十 p(B) for di司oint A and B. 飞Va植ar由ious姐sp严ro叩pe创r此ties臼san丑1

notat垃ior口1S ca缸工1 be given arour丑1d these co丑cept怡s. For ex缸丑ple， it is easy to
prove tkatp(A U B)=p(A)+p(B)-p(A n B)·

A random variable X is a function from E to (一∞7 ∞); i让tcαar丑1beiden丑1

t柱if且ie叫d with a cαumu吐1吐lat挝ti忖飞ve di坦st仕ri出bu时tio∞I口1 f缸un丑cti讪O丑 Fx : 提 •• [0 ,1]/ where
fX(7) = p(X- 1 ((一∞， 7J)). When X takes a finlie or count拙则ofval-

Therefore, that will be the most
probable system of values of
the unknown quantities
p ,q,r,s ,etc., in which the sum
of the squares of the differences
between the observed and
computed values of the
functions 1气 VI ， V" ,etc. is a
minimum, if the same degree of
accuracy is presumed in all the
obser飞rations.

Probability

Chapter 10

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

10.6 FORMING A TRIANGLE FROM RANDOM LENGTHS

always want to get k packets irrespective of the length (assuming each
session is longer than k).

Problem 10.2: Compute a random subset of size k from a set of un­
known size which is prese口ted as a sequence of elements.

10.3 ONLINE SAMPLING

Compute a random subset of size k from the integers in the interval
[0 ， η 二 1]·You should retum the result h m array of leI1gth k.You may
use only const缸1t additional storage. All subsets should be equally likely
and all permutations of the array should be叩ally likely.

83

Suppose we create a random permutati∞ of (1, 2,… ,n) as in Prob­
lem 10.51 i.e' l each permutation has equal probability.

Problem 10.8: What is the expected 口umber of numbers that get
mapped to themselves? What is the expected length of the largest in­
creasing subsequenceμ= (Xl 尸..， Xl) in a randomly chosen permuta­
tio口I where Xl is the first element of the permutation and Xk ,k > 1 is the
first element that is larger than Xk-l.

10.8 RANDOM PERMUTATIONS

10.9 UNIFORM RANDOM NUMBER GENERATION

Sometimes you may not have the perfect random number generator you
need. For example l it would require a bit of thinking to devise an algo­
rithm to pick one out of five frie口ds who gets to be the designated driver
by a coin flip such that the process is fair to everyone.

Problem 10.9: How would you implement a random number genera­
tor that generates a random integer betweenαand bl given a random
number generator that produces either zero or one with equal probabil­
让y. What would be the runtime of this algorithml assuming each call to
the given random number generator takes 0(1) time?

Suppose you want to write a load test for your server. You looked at
the inter-arrival time of requests to your server over a period of one year
and from this data you have computed a histogram of the distribution

10.10 NONUNIFORM RANDOM NUMBER GENERATION

Can you determine which of the above two methods of generating Ul
and U2 is more likely to produce a triangle without computing the exact
probabilities?

10.7 BALLS AND BINS

Suppose you have ηweb servers talking to m clients such that each client
picks a server uniformly at random. If you do 口ot end up wasting your
server capacitYI this is a nice way of pairing servers to clients since you
do not need to centralize anything. But there is a chance that some of
your servers are idle while clients are waiting to be served. How likely is
让 that there will be servers that are not doing anything? This problem is
often modeled using balls and bins.

Problem 10.7: If you throw m balls into n bins randomlYI how would
you compute the expected number of bins that do not have any balls?

10.7. BALLS AND BINSCHAPTER 10. PROBABILITY

10.5 RANDOM PERMUTATIONS 一-2

In Problem 10.4
1
we saw that generating random permutations is not as

straightforward as it seems.

Problem 10.5: Design an algorithm that creates random permutations of
{I ,2 ，...， η}. Each permutation should be eqt:时ly likely. You are given a
raI1dom IIUmber geI1eratioI1fUIICtiOIU use as few calls to it as possible-

Suppose you pick Wo IIumbers u1md d uniformly rmdomly md h­
dependeI1tly h the interval [0711·These IIumbers divide tEIe hterval
into three segments-the first of length IT山(uI ,u2) I the second of Ie吨th

max (uI ,u2) -mi叫uI ， u2)1 and the third of Ie吨th I-max (uI ,u2). What
is the probabil让y that these three segments can be assembled into a tri-
angle?

Repeat the computation for the cas~ wher~ w~ pi~k uI，u日iformly ran-
domly from [0, 1] and the川L2 unifor时

10 .4 RANDOM PERMUTATIONS 一-1

Consider estimating the probability of winni吨 a game ofbla仰仗I as
sumin丑19t由he cards were s由t挝1uf迁f且缸edpe臼r‘'fectl与y门un口旧1让i证fo创rm工丑11悖yb悦efor陀ed由eali坦I丑19han丑ld白S

an卫1d eve盯rγy归f甩one曰ei妇sp抖la叮yin丑19 rati柱io∞na址11悖y. One way to do this would be to gen­
erate a few raI1dom permutatiommd compute the chmces of wh丑ing
in each case where you are dealt the given cards. Here it would be im­
portmt that the process you use to geI1erate a random permutat1ORcan
generate any permutation with equal probabilit予 This can be tricky.

Problem 10.4: Does the following process yield a uniformly random
permutation of A? "For i ε{I ， 2，…?叶， swap A问 with a randomly
chosemelement of AH(The rmdomly choseI1elemeI1t couldbe i itself.)

82

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

10.11 EXPECTED NUMBER OF DICE ROLLS

Figure 6. FINANCIAL ENGINEERING: an oxymoron widely used circa 2008.

85

Problem 10.14: Suppose the price of Jingle stock 100 days in the future
is a normal random variable with mean $300 and deviation $20. What
would be the fair price of an opti∞ to buy a single share of Jingle at $300
in 100 days worth today? (Ignore the impact of interest rates.)

10.13 OPTION PRICING WITH INTEREST

Consider the same problem as Problem 10.12, with the existence of a
third asset class, a bond. A $1 bond pays $1.02 in 100 days. You can
borrow money at this rate or lend it at this rate.

Problem 10.13: Show there is a unique arbitrage-free price for the option
and compute this price.

10.12. OPTION PRICING-DISCRETE CASE

10.14 OPTION PRICING-…·…·CONTINUOUS CASE

Consider an option to buy a stock S that currently trades at $100. The
option is to buy the stock at $100 in 100 days.

Suppose we know there are only two possible outcomes-S will go
to $120 or to $70.

An arbitrage is a situation where you can start with a portfolio (x s

shares and X o options) which has negative value (since you are allowed
to short shares and sell options, both X s and X o may be negative) and
regardless of the movement in the share price, the portfolio has positive
value.

For ex缸叩Ie， if the option is priced at $26, we can make money by
buying one share for $100 and selling four options-the initial outlay on
the portfolio is 100 - 4 x 26 = -4. If the stock goes up, our portfolio is
worth 120 - 20 x -4 = $80. If the stock goes down, the portfolio is worth
$70. In either case, we make money with no initial investment, i.e., the
option price allows for an arbitrage.

Problem 10.12: For what optio且 price(s)， are there no opportunities for
arbitrage?

can either buy or sell the optio口 in co时unctionwith other transactions
and come up with a scheme of making money in a guaranteed fashion.
A fair price for an opti∞ wouldbe a price such that no arbitrage scheme
can be designed around it.

We now consider problems related to determining the fair price for an
option for a stock, given the distribution of the stock price for a period of
ti宜leo

10.12 OPTION PRICING-DISCRETE CASE

CHAPTER 10. PROBABILITY

TγFIef与L M J;M喝喝可A~\~Ne..E if电A如g

OfF ~ 'fo tJ CAN 0手~$怠ττ吟巳

1>\~F 忌ttaNcE 6γ 怠υ"I I t、1~

b毡良Iv A.τ \v ε Fυf、t1>5

Bob repeatedly rolls an unbiased 6-sided dice. He stops when he has
rolled all the six numbers on the dice. How many rolls will it take, 0口 m
average, for Bob to see all the six numbers?

'/0υTA~邑'foUR

A1> Dl'OONAL SMP>.If1
AN t> lN \I怠 Si IN A
b 巴~NI\τw毡'iH A.τ

?只/>..CKSτ讯Eo

~H~~ e. R怠 I~C~ lN
树Sfτ f\ N t>吗。O~

Option pricing

A call option gives the owner the right to buy something-a share, a
barrel of oil, an ounce of gold-at a predetermined price at a predeter­
mined time in the future. If the optio口 is not priced fairly, an arbitrageur

of the inter-arrival time of requests. Now, in your load test you want to
generate requests for your server such that the inter-arrival times come
from the same distributiOI1that you have seen iIIyour data.How would
you generate these inter-arrival t垃口es?

Problem 10.10: Given the probability distribution of a discrete random
variable X and a uniform [0 ,1] random number generato乙 how would
you generate instances of X that follow the given distribution?

84

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

10.17 SELECTING A RED CARD

10.18 SELECTING THE BEST SECRETARY

10.16 ONCE OR TWICE

8710.19. DIFFERENTIATING BIASES

Problem 10.18:Cm you come up with a strategy that results h your se­
leethgthebMmmrywithprobabilitygmt叫mi?WhatJMegy

zes the prob抽出ty of sele伽g the best阳附rJ?

10.19 DIFFERENTIATING BIASES

Two cohs that are ideI1tical h appeara丑ce are placed in a black cloth
bag.One is biased towards heads-it comes up heads with probabi1ity
0.6.The other is biased towards tails-it comes up heads withprobability
0.4.For both cohsr the outcomes of successive tosses are independeIIt.

probkm10.19:You select a coh at rmdom from the bag md toss it5
times.It comes up heads 3thes-what is the probability that it was the
coin tkat was biased towards tails?How mmy times do you need to toss
the coir1that is biased towards tails befomit comes up with a majority of
tails with probability greater than 茹?

10.20 THE COMPLEXITY OF AND-OR FORMULAS

S叩posewewanttoevaluateamxpressionoftheform(A 〈B)V(C〈D)lr
where 1\ and V are Boolea川ND and OR respec由ely and A , B , C, D a斗
Boolearlvariables.It iS I1aturd to use lazy maltiati071r i.e-rwheI1evaluat­
ing A < BF if we evaluate A first and it evaluates to falseF thm we skip
evaluating B.

WeI丑lOW defin丑le a restricted set of expressions: La expressions arθius1店S
B阮O∞olean丑川川飞var咱ar址臼ia抽bles; a叫肿川1 ex叩pres臼S蚓sio∞丑川i妇盯Sωoft白heform ((仲¢a l\仇ω)川)V(叫(仲ψO〈￠户1))/

F

W咐he悦r陀叫‘它e¢川1，川?八，'I/J飞4ψ!J川1

in an Lk expression are distinct.
we wmt to desig1m dgorithm for evahlatiI1g m LK expression md

want to miMIRize the number of variables that it reads.We do not care
how much time the algorithm spends traversing the expression. 一-

Problem 10.20:Prove that a determhistic algorithm-one h which the
choice of the mxt variable to read is a deterministic fumtiOI1of theval­
tes read so far-must read a114k variables h the worst-case.Cm you
uesigrla rmdomized dgorithm that reads fewervariabIes on m aver­
age, regardless of the values assigned to the variables?

CHAPTER 10. PROBABILITY

A deck of 52 playing cards is shuffled. The deck is placed face-down on a
table. You are trying to select a red card. You can either examine or select
the card that is currently at the top of the deck. If you choose to examine
the top card, its value is revealed and it is set face- up. If you choose
to select the top card, the game ends there-you win if you select a red
card and lose if the card is black. Once you examine a card, it cannot be
selected. If you have turned over 51 cards, you must select the last card.

Problem 10.17: What is the strategy that optimizes the likelihood of
your selecting a face card?

Suppose you are to choose a secretary from a pool of n secretaries who
you interview in a random order. Given any two secretaries, you can tell
who is better 缸ld the "is better" relationship is transitive. Once you in­
terview a secretary, you can select her as your secretary and the selection
process stops. Alternately, you can move on to the next one (but cannot
go back to a previous secretary).

Suppose you are playing a game against a dealer. In order to play the
game, you must pay $1. The dealer gets a random card from a full deck.
You are shown a randomly selected card from another full deck. You
have the choice of taking the card or exchanging it for another card which
is also randomly selected from a full deck. You win the game if and only
if the face value of your card is larger than that of dealer. If you win/
you get ωdollars. (The face value of an ace is 1; the face values of Jack,
Queen, and King are 12,13, and 14/ respectively.)

Problem 10.16: Whatwould be the value of ωsuch that it is a fair game,
i.e., for a rational playe巳 the expected gain is O.

10.15 OPTIMUM BIDDING

Consider an auction for an item in which the reserve price is set by the
seller to be a random variable X that is uniformly distributed in the range
[0,400]. You can place a bid B; if your bid is greater than or equal to the
reserve price, you win the auction and have to pay B. You can then sell
the item for an 80% markup over what you paid for it.

Problem 10.15: How much should you offer for the item?

86

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 11

Progralllllllng

First, since we are
programmers, we naturally
designed the system to make it
easy to write, test, and run
programs.

gd4
n
μ
n
u
η

-mMU
m
u如
m

e-tum
m
R

呵

百
飞
L
O

x
-

卫

τ
i
A
J

叫
」

Nmkyt‘
LEb

34FD
h

、
守

中
i
正
、

The focus of this book is algorithm desigI1problems that arise h software
hterviews-However basic programmhg questiom are aI1iIItegral part
of software interviews for many companies.

You should be ready to answer questions ∞ any skill you claim on
vourresume. In p可a盯rt缸icu吐1址la饵r巳~ dor口∞1ωotwritet白ha挝tyouknowsωom工net由hin丑19， UI时1让less

Oua盯r陀.宅ec∞or丑时1证f且id由erι』 t白ha旧a挝ty归ou can ar
;二n叫1旧 knowledg配e ofP民e缸盯er1‘'1 comes from cut出g-and-pasting Perl code from
th web to fM large duplicate fiksr ttm do mt include P民阳削臼er1 in川yo阳u旧r

τe七民e只h 怡 ωptωy r妃m阳e凹凹飞V巾ri
tiv刊e 仰eSJFaImy严s， lin协ked li毗 asymptotic complexity, etc. Although it
is likely that you are familiar with this materialr as you will seeF it ca口
stillbe the source of challmghg interview problems-Then we classify

111y asked questionsF:provide refereI1ces for places to read about
themr and give sample problems-A more comprehmsive list of such
problems is available 0丑 the companion website.

Bit Fiddling

吐le following problems involve manipulation of bit-level data. Bit fid-

11.1. COMPUTING THE PARITY OF A LONG 89

dling questions are often asked in interviews and one important thing
to note here is that it is very easy to introduce (and miss) errors in code
that manipulates bit-level data-when you play with bits, expect to get
bitten.

11.1 COMPUTING THE PARITY OF A LONG

The parity of a sequence of bits is 1 if the number of Is in the sequence
is odd; other叭rise， it is O. By keeping the parity of every word of data,
you can check for single bit errors in storage or transmission. It is fairly
straightforward to write a code that computes the parity of a long.

Problem 11.1: How would you compute parity if you had to perform
the computation for a very large number of longs?

11.2 REVERSING THE BITS IN A LONG

There are several variants of the parity problem posed above, e.g., com­
puting the number ofbits set to 1 in a long. Here is a bit fiddling problem
that is concerned with restructuring:

Problem 11.2: Write a function which takes a long x and returns a long
that has the bits of x reversed.

11.3 RUN-LENGTH ENCODING

Consider the problem of compressing black and white bitmap ir丑ages. A
ηx m pixel black-and-white image can be represented inηx m/8 bytes,
where each pixel is represented by a single bit. If you know that the
image consists of large blocks which have the same color, then one way
to compress the image is by just counting the Ie吨th of alternate sequence
of ones and zeroes. For example, 111111000011 becomes 6,4,2.

Problem 11.3: How would you most efficiently do run-length encoding
on a large bit sequence represented as a byte array?

Arrays

The simplest data-structure is the array, which is a contiguous block of
memory. Given an array A which holds n objects, A[i] denotes the i-th ob­
ject stored in the array. Retrieving and叩datingA[i] takes constant time.
However the size of the array is fixed, which makes adding more than
n objects impossible. Deletion of the object at location i can be handled
by having an auxiliary Boolean associated with the locatio丑 i indicating
whether the entry is valid or not. Insertion of an object into an array of

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Ie口gthncm be handled by allocathg a mw array with additiORal mem­
ory md copyMg over the eI1tries from t21e original array.This makes the
worst-case time of iIIsertiOI1high but if the Rew array has, for ex缸丑pIe，
twice the space ofthe orighalarmy}tke average time fomsertIOI11S con­
st缸1t since the expeElse of copyhg the array is infrequent-

Linked Lists

The next basic data-structure we consider is the linked list. A singly
linked list is a data-structure that contains a seque丑ce of nodes such that
e ch node cORtains m obiect md a refezmce to the mxt mde h the list.
The first node is referred to as the head and the last node is referred to as

11.6 REVERSE ALL THE WORDS IN A SENTENCE

GiveRa string CORtahklg a set of words separated by white spacer we
would like to trmstorm it to a strhgh wtlich the words appear h the
r凹erse order. For example, IIAlice likes Bob" 问 "Bob likes Alice". We
do not need to keep the or培inal string.

Problem 11.6: Implement a function for reversing the words in a string
that is in-place, i.e., uses only constant additional storage.

91

Complexity Analysis

The runtime of an algorithm depends on the size of its input. One
co盯lffion approach to capture the runtime dependency is by expressing
asymptotic bounds on the worst-case runtime as a function of the in­
put size. Specifically, the runtime of an algorithm on an input of size n
is O(f(η)) if for sufficiently large n, the runtime is not more than f(n)
times a constant. The big-O notation simply indicates an upper bound; if
也e runtime is proportio丑al to f(叫， the complexity is written as 8(f(η)).

(Note that the big-O notation is widely used where 8 is more appropri­
ate.)

11.7. REVERSING A SINGLY LINKED LIST

11.9 DELETION FROM A SINGLY LINKED LIST

Given a node in a singly linked list, deleting it in constant time appears
impossible because its predecessor's next field has to be updated. Sur­
prisingl予 it can be done with one small caveat-the node to delete cannot
be the last one in the list and it is easy to copy the value part of a 且ode.

Problem 11.9: Let v be a node in a singly linked list. Node υis not the
tail; delete it in 0(1) time.

11.8 CHECKING FOR CYCLICITY

While a linked list is supposed to be a sequence of nodes ending in a null"
it is possible to introduce a cycle in a linked list by making the next field
of an element reference to one of the earlier nodes.

Problem 11.8: Given a reference to the head of a singly linked list, how
would you determine whether this list ends in a null or reaches a cycle
of nodes? (You do not know the length of the list.)

the tail; the tail's next field is a reference to null. (There are many vari­
ants, e.g., in a doubly linked lis仁 each node has a link to its predecessor;
similarl予 a sentinel node or a self-loop can be used in place of null.)

11.7 REVERSING A SINGLY LINKED LIST

Suppose you were given a singly linked list of integers sorted in ascend­
ing order and you need to return a list with the elements sorted in de­
scending order. Suppose memory is scarce but you can reuse nodes in
the originallist.

Problem 11.7: Give a linear-time nonrecursive procedure that reverses
a singly linked list. The procedure should use no more than constant
storage beyond that needed for the list itself.

CHAPTER 11. PROGRAMMING

11.5 INVERT A PERMUTATION

Every 1-10口to mapping is in飞rertible ， i.e., if f is 1-1 onto, then there exists
a unique function.... j-l-such that f-l(f(x)) = x. In yarticula巳 for any
perm时ation II, there exists a unique perm时ation II-I that is the inverse

of II.
Given a permutatio口 represented ~y an array A, you c~ compute its

inverse B by simply assigning B [均]J = i for all values of i

Problem 11.5: Given an array A of ints representing a permutation II,
update A to represent II-1 using 0丑ly constant additional storage.

11 .4 PERMUTING THE ELEMENTS OF AN ARRAY

A permutation of Ie吨th n is a 1-1 onto mapping 1r from {O , 1 ，… 7η-I}
toitself We cm represe时 a permutatio丑四吨 an array II: 则 II[i] =
作(i)·A permutatiORcmbe applied to m array A of ηelements: II(A) is
defined-by II (A问) = A [II[i]J. Applyi吨 a permutation to a given array
is easy if you ha~~ additional storage to write the resulting array.

Problem 11.4: Given an array A of integers and a permutati∞ II， com­
pute II(A) using only constant additional storage.

90

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

11.10 BINARY SEARCH

Binary search, which is the su同ect of a number of problems in Chapter 1,
is a technique for searching for a given key in a sorted array.

Problem 11.10: What is the time complexity of the following让丑plemen­

tation of binary search?

1 I boolean search (array AI int K) {
2 I if (A. size () == 0)
3 I return false;
4 I
5 I if (A. size () == 1)
6 I return (A[O] == K) ;
7 I
8 lint m = A.size()/2;
9 I

10 I return (A[m] == K) ? true
11 I ((A[m] < K) ?
12 I search (A[m+ 1: :A. size ()] I K)
13 I search (A[0: :m], K)
14 I
15

Generally speaking, if an algorithm has a runtime that is a polyno­
mial, i.e., O(nk) for some fixed k, where ηis the size of the input, it is
considered to be efficient; otherwise, it is inefficient. Notable exceptions
exist-for example, the simplex algorithm for linear programming is not
polynomial but works very well in practice; the AKS primality checking
algorithm is polynomial but has a high k.

As an example, searching an unsorted array of integers of length 凡
for a give口 integer， has an asymptotic complexity of 8(η) since in the
worst-case, the given integer may not be present.

Similarly, consider the naIve algorithm for prima丑ty which tries all
numbers from 2 to the square root of the input. What is its complexity?
In the best case, the input is divisible by 2. However in the worst-case,
the input may be a prime, so the algorithm performs -I瓦 iterations. Fur­
thermore, since the number ηrequires only log2 n bits to encode, this
algorithm's complexity is actually expo口ential in the size of the input.

As a rule, algorithms should be designed with the goal of reducing
the worst-case complexity rather than average-case complexity for sev­
eral reasons一(1.) it is very difficult to define meaningful distributions on
the inputs, (2.) pathological inputs are more likely than statistical models
may predict (for example, worst-case input for a naIve implementation
of Quicksort is one where all entries are the same, which is not at all un­
likely), and (3.) malicious users may exploit bad worst-case performance
to create denial-of-service attacks.

9311.11. PROGRAMMING LANGUAGES

It is not uncommon in~on m some companies to quiz the candidates about
their knowledge of computer science directly rather than asking them
to solve probkIRS-In tke rest of this chapteIJ, we cover a number of arm
eas md provide a list of questions that cm help a cmdidate prepare f

ch an interview.The answers to these questions caI1be easi1y fOUI1d
in standard te吟ooks for that field. Hence instead of providi吨 answers
to these quest1ons we poht our readers to textbooks that we cOI1sider a
good reference for that field.

11.11 PROGRAMMING LANGUAGES

Basics

We 丑ke The C Progro771771i?1g Language by kemighm and Ritchie for C?
for Java, Java Precisely by S创oft covers the core language md1ibmiej
succinctly.

-What are the types h Cr JavaF C++r and Per-l?How many bits does
让 take to represent the basic types?

一 丁川V盯阳ha挝t叫d白o flo阳O侃a问 point时tnum宜m丑1阳's 1叫10ωke in II阳O町r巧可m‘3γ严y严r斤?S协P严eci证诅削f直i
howma牛丑ybi让tS aTethereimdouble aMwhatsequencetothebits
appearml

一What is two's-complement notation?
- How would you implement a bit-vector class?
一 Does the check x == x + 1 always return false for integer x?
-mat does a cmuct lookk h memory?What ￡es a C++

object 10卢 like in memory? What does a Java object look like in
memory(

一 wh俨 the differen的伽的创附rpreted and a compiled 1卧
guage(

一What is garbage collection?

- How would you determine if call stack grows up or down relative
to memory addresses?

- Give anex缸丑pIe of a memory leak in Java.
一 Wha挝ti妇st恒ai过1 recωursior口旧1仔? Howcan丑川d让t be removed automatically?
一 Is二 t由hena时tu时 re阳ecωu旧ursh忖V刊ep扣严r吨.

一 Your ma扭I丑la愕ge臼r reads an online article t出ha挝t s臼ay严s i让t i抬s lOx f岛as挝te町r tωO
code in Python than in C十+. He wants you to code exclusively in
Python from now on. What would you say to him?
What does an executable look like as a sequence of bytes?

Libraries

A programmer w吵丰ore吨eg阱u叫由1坦a缸缸创吨呻rl均句'1勾妙1马抄yi问m呻I丑叩1甲pIe臼臼I宜me
a臼s KMP stringm口la挝tching 0创r Dij共kst甘ra'、ss由ho臼rt怡es时tpa挝th c∞ompu时ta挝tio∞n quickly

CHAPTER 11. PROGRAMMING92

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

will not advance very far. Solutions to such problems are well-known
and have high quality, thoroughly tested, and debugged implementa­
tions, often available as open source. Programmers should know and
use these libraries.

一 Give an example of a function which is in the C standard library.
- Give an example of a commonly used function which is 口ot in the

C standard library.
- What library would you use to determine the current date in Java?
- What library would you use in Java if you had to implement a

tinyurl service?
一 How does STL implement sets?
- How does the library code compute trigonometric functions?
一 The strtok(char *剖， char *s2) function in the C standard

library successively returns occurrences of the characters in s2 in
string s 1; it returns null if there are no more occurrences. What
makes this a dangerous function to use in a multithreaded pro­
gram?

11.12 DEBUGGING AND TESTING

Debugging and testing are topics which are not usually the focus of uni­
versity teaching. We highly recommend The Practice of Programm的gby
Kernighan and Pike, which teaches much more than just writing code-it
covers testing, debugging, portabilit予 performance， and design alterna­
ti飞res.

- What was your last bug? What was your hardest bug?
- How would you debug a distributed program?
一 A program works sometimes and fails other times-why?
一 A program works sometimes and fails other times on the exact

same input-why?
- How would you determine where a program spends most of its

time?
- How does JUnit make the process of testing easier?
一 List five ways in which C code can be nonportable. What can you

do to make the code portable?
- Write tests for impleme口tati∞ of an isupper function.
- Should you test private methods? Should you test one line meth-

ods?
- If you f扛1d and fix an error by adding debug code, should you re­

move the debug code afterwards? Should you leave them in with
a conditional compilati∞ flag or with a runtime flag?

- What is a buffer overflow and how can hackers exploit it?
- How can you use Valgrind to solve segfault problems?
- How does Valgrind catch access uninitialized memory?

11.15 OPERATING SYSTEMS

9511.13. BEST PRACTICES

11.13 BEST PRACTICES

Our favorite best practices book is E庐ctive Java by Bloch-it covers many

:2z俨ic臼仰
1, C∞oncurrency予~ and g伊ene臼r丘白ics are just a few examples. Ej如ctive C++ by

Meyer is highly thought of for C++. Des结n Patterηs: Elements ofReusable
Object-Oriented S~丹ztyare by Gamma et al.is a very popular intJoductiOII
to patterns.

一 Give an ?xmple of a pr伪lem you solved where you made good
e of object-oriented programming.

一What is the factory pattern? What is the publish-subscribe model?
一 1vem example of how iIIEMIttance violates mcapsulation-
一What do Java bounded wildcards buy you?
一 Why should you dways override the equals md hash fuI1dior1

methods for Java classes?

11.14 PROGRAMMING LANGUAGE IMPLEMENTATION

we recommeIId progm771771inLanguages hηgmatics by Scott-it covers
ztωyand阳ctice of阿rammir叭耶ages a毗s ver‘阿-to-

一 Givem example ofdanguage which camoth parsedby aI1y com­
puter

-What problems does dyI1amic1inkage solve?What problems does
it introduce?

- What is a functionallan伊age?

一What is a virtual function?
一 How is method dispatch implemented in Java?
一 W阳ha卢t口is a缸肌叫u时1址tom红ma丑1旧a问arba咿 C∞ω011阳e仅耐创ctionα∞I口1削 ho创m叫哥叭气

一Whati归sat吵yp归e-s臼af，缸'elan丑19t伊ta鸣gel?
一 w归川/币币hat i旧时毗a挝at i协is the挝1咀叫ed甜i迁ff阳臼凹盯.它回'en臼nω伽7吧een al侃ran削dap归a缸盯rse‘

一 k4z二工: amn侃m叫P抖Ie 们 la缸吨I

一 Give an丑1e以χamp抖Ie of a Ian丑19♂u泊ag伊ewhichca缸nn丑noωO仗tb悦epa盯rs促ed by a parser.

Modern opemting systems by TaI1eIIbaum is widely used;one of its clams
to 于meis阳Linuxwasd叫oped from the Minix OS developed in an

lier version of this book.

- What is a system call?
- How is a system call different from a library call?

CHAPTER 11. PROGRAMMING94

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

11.16 TOOLS

Building and maintaining programs
There is a paucity of books on programmhg tools;OI1e book we have

used is Essential Open Source Toolset by Zeller and Krinke.

一What version control system do you use?
_ What coverage tool do you use?
_ What build system do you use?
一What documentation system do you use?
一What bug tracking system do you use?
- How is branching加plemented in a version control system?
一 Are deltas inhe branchhg foy a revisiOI1tree stored out forwards

or backwards? What are the benefits of each approach?
一闪lat are 伽 advantages and disadvant阳们versi∞ control

system that locks files?

Shell tools
There are scores, if not hundreds of books ∞ the Unix shell and re­

lated tools. We have enjoyed LINUX 101 Hacks by Natar叫an. It intro­
duces these tools 也roughusehlhacksr such as the use of fiad to fhd
all files that have mt been modified in the past100days and are larger
than 100 megabytes in size, sorting the password file 0口 the third field,
etc.

- Write a regular expressio口 for identifying social security numbers

in a file.
一 Write a command that prints out lines in a text file which contain

the strings foo and bar in any order.
一 Write a commaI1d which replaces every occurrence of a foo f017

lowed by a bar (with possibly some other characters in between)

bywidget.

11.18 SYSTEMS

11.17 COMPUTER ARCHITECTURE

97

- Given a text file with two columns of integers, i.e., two integers
encoded in ASCII per line, write a filter which sorts lines 如 the file
by the second integer.

- How would you take two documents in PDF and create a new doc­
ument which consists of the pages of the two original documents
interleaved in order?

- How would you write a program which checks every hour if a 丑的­
work connection is up?

- How would you write a program which checks the price of a Nikon
D40 DLSR each day on amazon.com?

Professional programmers use many software systems everyday and it is
reasonable to expect that they should have some understanding of how
these systems work.

11.17. COMPUTER ARCHITECTURE

Computer Architecture: A Quantitative Approach and Computer Organization
and Design, The Hardware/Software Inte功ce， both by Patterson and Hen­
nessy, are the definitive works in this field.

- What is pipelining? Describe a 5-stage pipeline.
- What is a multi-issue processor?
- What is the difference between a superscalar and a VLIW proces-

sor? Where is each appropriate?
一What is a multicore machine?
•Wh at is the significance of the privileged bit?
- How is kernel mode different from ru旦旦ing as root?
- What do big-endian and little-endian notations mean?
一 You rewrite some machine code to reduce the number of instruc­

tions to perform a computati∞ and performance drops. Can you
explain this?

一 You benchmark a 3.0 gigahertz Pentium 4 and find it to be notice­
ably slower than a 2.4 gigahertz Pentium Pro-Why?

- You find the same computation on the same operating system with
the same load takes longer on hot days-Why?

- How large and fast are the register file, L1 cache, L2 cache, main
memory, and disk on current machines?

- How many instructions are in-flight in a modem core?
- What is branch prediction?
- Why is prediction based on the program cou时er insufficient?
- What is prefetching? What is a reasonable criterion for prefetching?

CHAPTER 11. PROGRAMMING

- What is a device driver?
一 What is livelock?vmat is deadlock?Give examples of eact1·
_ What is a race? What can you do to prevent races?
-What is a mutex?What are semaphores?How are they imple-

mented?
-Gveexamples ofsystemdlsthatareRotrelatedtohput-01均ut

-Give examples of library fUIIdiom that call a system fumtiOI1all
the time, none of the time, and some of the time.

一 W附hat i挝剧灿t札山i恒S t白:h挝:he ti曰削川e川time 1问a鸣gb怡between t阳:he回叫eωS巧yst阳e匹四em红m丑1 叫call ∞ t阳:he肌e盯C伽让归side an削d

the receipt of the packet OI1the servefOI1a local area network?
-How fast cm you write a gigabyte of data from RAM to disk?

- How does TCP/IP work?

96

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

98 CHAPTER 11. PROGRAMMING

一 Describe how an operating system is implemented. Specifically de­
scribe how Linux垃lplementsprocesses and I/O.

- How does a web browser work? Specifically, describe how auto­
completio丑 (such as in a search engine query box) is implemented.

- How does the Internet work? Specifically describe the roles of the
TCP/IP protocol, routers, and DNS.

- How is a social networking site built? Specifically comment on scal­
abilit予 spam prevention, and resilience to denial-of-service.

Part II

The Interview

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

12.2 ApPROACHING THE PROBLEM

No matter how well prepared you are, there is a good chance that the so­
lution to an interview problem will not occur to you immediately. When
this happens, there are several things you can do.

Clarify the question: This may seem obvious but 让 is amazing how
many interviews go badly because the candidate spends most of the time
trying to solve the wrong problem. If a question seems exceptionally
hard, there is a good chance you have misunderstood the question.

TI的estwayof伽i句ri吨 the question is to state a concrete instance
of the problem. For example! if the question is 'find the卢rst occurrence of
a number greater than k in a sorted array"! you could ask the followi吨 H扩

the input array is [2,20,30] and k is 3, then are you supposed to return 1 (index
of20)?"

Work on small examples: Consider Problem 9.4. This problem may
seem pretty hard at firs t. But if you start working out which doors are
going to be open for up to the fifth door! you will see that 0ηlydoor1 and
door 4 are open. This may suggest to you that the door is open 0ηly if its
index is a perfect square. Once you have this realization, it is relatively
easy to prove the correctness of this assertion. This may not be true for
all the problems. However there is a large class of problems where after
working out the solution for a few small examples! you may see a pattern
emerge.

Spell out the brute-force solution: Problems that are put to you in an
interview tend to have an obvious brute-force solution that has a large
runtime compared to more sophisticated solutions. For example! instead
of trying to work out a dyn缸nic programming solution for a problem
(such as Problem 3.4)! try all the possible configurations. There are sev­
eral advantages to this: (1.) it helps you explore opportunities for opti­
mization and hence reach a better solution! (2.) it gives you an opportu­
nity to demonstrate some problem sol飞ring and coding skills! and (3.) it
establishes that both you and the interviewer are thinking about the same
problem. Be warned that this strategy can sometimes be detrimental if it
takes too long to describe even the brute-force approach and leaves you
with less time to work on the optimal solution.

Think out loud: One of the worst things you can do in an interview is
to freeze up while solving the problem. It is always a good idea to think
out loud while searching for a solution. 0丑 one hand! this increases the
chances of you finding the right solution because it forces you to put
yo

Chapter 12

Strategies For A Great Interview

A typical one hour interview with a single interviewer consists of five
minutes of introductions and questions about the candidate's resum豆­

This is followed by five to fifteen minutes of questioning on basic pro­
grammingco口cepts.

The core of the interview is one or two detailed algorithm design
questions where the candidate is expected to present a detailed solution
O口 a whiteboard or paper. Depending 0口 the interviewer and the ques­
tion, the solution may be required to include syntactically correct code in
a language that the candidate is comfortable with.

The reason for ask让19 such questio且s is that algorithms and associ­
ated data-structures underlie all software. They are often hidden in li­
brary calls. They ca丑 be a small part of a code base dominated by 10
and format conversion. But they are the crucial compone口t in terms of
performance and intricacy.

The most 扛nport缸lt part of interview preparation is to know the ma­
terial and practice solving problems. However the no日technical aspects
of interviewing cannot be underplayed either. There are a number of
things that could go wrong in an interview and it is 扛口portant to have a
strategy to deal with them.

12.1 BEFORE THE INTERVIEW

One of the best ways of preparing for an interview is mock interviews.
Get a friend to ask you questio丑s from this book (or any other source)
and have you solve the problems on a whiteboard or paper. Ask your
friend to take notes and give you detailed feedback, both positive and
negative. Also ask your friend to provide hints from the solution if you
are stuck. This will help you overcome any fear or problem areas well in
advance.

12.2. APPROACHING THE PROBLEM 101

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Search for isomorphic problems: Even if you may not have seen the
exact problem, you may have seen another problem with similar mathe­
matical structure. See if this seems like a good fit for general algorith­
mic techniques, such as, divide-and-conquer, dynamic programming,
greedy, etc. Can you map the problem to a graph? Can you map it to
an objective function and a set of constraints, such as an integer linear
program?

12.3 PRESENTING THE SOLUTION

Once you have a solution, it is important to present it well and do a com­
prehensive job at it. A lot of these things become simpler if you use a
higher levellanguage such as Java. However you should use the lan­
guage with which you are most familiar. In most scenarios，让 is perfectly
fine to write a pseudocode as well. Here are some thoughts that could
help:

Test for corner cases: For a number of problems, your general idea
may work for the majority of the cases but there may be a few obscure
inputs where your algorithm (or code) would fail. For example, you
could write a binary search code that crashes if the 扛lput is an empty
array or you may do arithmetic without considering the possibility of
integer overflow. It is important to check for these things carefully. One
way of doing this is to construct a few test cases 缸ld work out the output
of your algorithm for them. In many cases, the code to handle some
obscure corner cases may be too complicated. In such cases, you should
at least mention to the interviewer that you are aware of the problem and
you could try to address it if they are interested.

Function signature: Several candidates tend to get this wrong 缸ld

getting your function signature wrong reflects badly on you. For ex­
ample, it would be bad if you are writing the code in C language and
your function returns a口 arraybut you fail to return the size of the array
along with the pointer. Another place where function signatures could
be 垃口portant is knowing when to pass parameters by value versus by
reference.

Memory management: If you allocate memory坦 your function, you
must ensure that in every execution path, this memory is de-allocated. In
general, it is best to avoid memory management operations all togethe卫
If you must do this, co日sider use of scoped pointers.

Syntax: In almost all cases, the interviewers are not evaluating you
on the correctness of the sy口tax of your code. 百le editors and compilers
do a great job at helping you get the syntax right. However you cannot
underplay the possibility of an interviewer leaving with the impression
that you got most of the syntax wro日g since you do not have much ex­
perie且ce writing code. Hence once you are done writing your code, you

12.4 KNOW YOUR INTERVIEWERS

103

12.5 GENERAL CONVERSATION

Ofteninterviewers will spend some time asking questions about your
past projects, dissertation, etc. The point of this conversation is:

Can the candidate clearly communicate a complex idea: This is one
of the most important skills for working in an engineering team. If you
have a grand idea to redesign a big system, can you communicate it to
your colleagues and bring them on board? It is best to practice how you
want to present some of your best work in advance. Being precise, clear,
and having concrete examples can go a long way here. For candidates
who have to communicate in a language that is not their first language,
it may be important to speak slowly and perhaps use the whiteboard to
augment their words.

Is the candidate passionate about his work: We always want our
colleagues to be passionate, full of energy, and inspiring to work with.
If you are so passio口ate about your work that your eyes light up while
describing your work, it can go a long way in terms of establishing you
as a great colleague. Hence when you are asked to describe a project
from the past, it is best to pick something that you are passionate about
rather than a project that was complex but did not interest you.

Is there a potential interest match with some project: During a gen­
eral conversation, the interviewer may gauge areas of strengths for a po­
tential project match. If you know the requirements of the job, you may

should make a pass over it to avoid any obvious syntax errors before
claiming you are done.

12.4. KNOW YOUR INTERVIEWERS

If the organization can share some information about the background of
your interviewers, it can help you a great deal. For fresh graduates, it is
also important to think .from the perspective of the interviewers. Hence
we highly recommend reading the next chapter∞interviewingfrom the
perspective of an interviewer.

It is also important to note that once you ace the interview, you will
have an offer and you would have an important decision to make- is
this the organization where you want to work? Interviews are the best
time to collect this information. Based on your interaction with the in­
terviewers, you can get a pretty good idea of their intellect as well as
how pleasa时 the organization could be. Most interviews end with the
interviewers letting the candidates ask questions. You should make the
best use of this time by (1.) getting the information you would need and
(2.) communicating to the interviewer that you are interested i丑 the job.
Prepare a list of questions in advance that both gets you helpful informa­
tion as well as shows your knowledge and interest in the organization.

CHAPTER 12. STRATEGIES FOR A GREAT INTERVIEW102

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

want to steer the conversation in that direction. However in the com­
puting industry, things change so fast that most teams prefer a strong
generalist.

Also, it is a good idea to maintain a homepage with links to your
projects and articles; things that can help interviewers learn more about
you.

12.6 0τ丑ER GRANDFATHERLY ADVICE

Keep a positive spirit: A cheerful optimistic attitude can go a long
way. There is really no point complaining how difficult your journey was
or how you are 口ot a morning perso孔

Grooming: Most software companies have a relaxed dress-code, so
new graduates may wonder if they willlook foolish by overdressing. The
damage done when you are more casual than expected is far more than
the minor embarrassment you may feel being overdressed. Therefore it
is always a good idea to err 0日 the side of caution and dress formally for
your interviews. At the very minimum, be clean and well-groomed.

Keep money and perks out of the interview: Money is a big factor
in any job but it is best left to be discussed with the Human Resources
division after an offer is made; the same is true for vacation time, day
care support, etc.

Be aware of your body language: Think of a friend or coworker who
is slouched all the time or absent-mindedly does things that may offend
others.

104 CHAPTER 12. STRATEGIES FOR A GREAT INTERVIEW

Chapter 13

Conducting An Interview

For someone at the beginning of their career, interviewing can feellike a
huge responsibility. If you hire a bad candidate, it can be very expensive
for the organization, not just because the employee would not be prod山西
tive but more so because the employee would be a drain on the produc­
tivity of everyone else who is trying to train and mentor the employee.
Fi让r‘扫gsom工丑leωone曰e after a bad hiring d白ecis且io∞I丑li恒s extremely p归ai讪工丑lf缸ulandd缸et创r丘i­
m丑len丑ltωal t怡o the morale of both the t怡e臼丑 and the individual. On the other
hand, if you discard good candidates too often, it can be problematic for
a rapidly growing organization, not to mention the moral responsibility
of not crushing someone's dreams and aspirations unnecessarily. Here
are some thoughts that could potentially help you make this process a
little easier.

13.1 OBJECTIVE

The ultimate goal of any interview is to determine if a given candidate
takes up the job and is appropriately trained, what are the chances that
the candidate will be a successful employee of the company. Usually this
means you want incredibly smart people who can get things done. It is
important to design the whole process with this as the central theme. Ide­
all予 your interviews should be designed such that you score a good can­
didate 1.0 and a bad candidate 0.0. A common mistake made by novice
interviewers is to not be decisive. Unless the candidate walks on water
or completely disappoints the interviewer, the novice interviewers try
not to make a decision 缸ld score the candidates somewhere in the mid­
dIe. This essentially means that the interview was a wasted effort. One
way of making this easier for the interviewers is to imagine if this candi­
date replaces someone productive in their te缸工1. If this feels like a good
change, then you should give the candidate a high score, otherwise, a
low score.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

A seCOIldary objective of the interview process might be to tum the
candidate into a good brand ambassador for your organization. Even
if the candidate is not a good 直t for your 0咯ar臼atio民 they may know
others who would be.It is important for the candidate to have m overall
positive experience duriI1g the process-It is fairly obvious that it is a bad
idea to ask a cmdidate a problem md then start checkhg email or hSIllt
the candidate over a mistake they made but you would be surprised how
often this happens in some organizations.

13.2 WHAT TO ASK

One important questio丑 you should ask yourself、 is how much training
time your work mvirOI1meI1t allows.For exampler iI1a st盯tup，让 maybe
very importmt that a I1ew persOI1is productive right from the first week
whereas some orzanizatiom allow a mOIIt21of trainhg timemd yet mm
other 则 of organizations allow for a few months of training and ramp
up time.For exampler h a startupr it would be kmportmt to test the cm­
didate OI1the specific t恒echno
you are working 0丑 whereas in most I吨e orga血ations， the b刨出ing

h do ismtemphasize o川he domain knowledge and test the candidate
on their basic problem solving abilities and fundamentals of computer

SC1e口ceo

Most big organizations have a fai~ly ~tructu:~d inter:~ew proc~ss
where specific iI1terviewers are respomible for probhg specific areas.For
exampleF you may be asked to evaluate tEIe cmdidate OReither thir cod­
hg skillsr algorithm kI1owledgeF critical thinkhgr or the ability to desig1
complex systems. We hope that他 book gives you access to a fa吵
large collectioz1of problems to choose from for eack of the categories.As
yoLappmch the decidmof pickhg om problem from a set of prob-
lems, keep the following in mind:

-No single poht offailure-ifyou are gohgto askjust OI1e questiORr
you should mt pick a problem where the candidate would pass the
hterview if they get orle particular hsight-The best of the cmdi­
dates can miss one simple insight. There should be at least two or
three opportunities for the candidates to redeem themselves. For
exampler the problems h the dymamie programmmg sect1OI1cm
dmost always be solved though(1.)a greedy algorithm that is
fast but suboptimum or (2.) a brute-force algorithm that is slow but
optimum. In such cases, even if the candidate cannot get the key
i4鸣ht， they can still demonstrate some problem solving abilities.

- No unnecessary domain knowledge-it is 丑ot a good idea to quiz
a candidate on advanced graph algorithms if the job does not re­
quire it and the candidate does not claim any special knowledge

of the field. (τ'he exception to this rule is if you want to test the
candidate's response to a high-stress situation.)

- Cover multiple areas-even if you are responsible for testing the
candidate on just algorithms, you could easily pick a problem that
also exposes some aspects of design and coding.

- Possible multiple solutions-if a given problem has multiple good
solutions, the chances of a good candidate coming up with a good
solution increases. It also gives you more freedom as an inter­
viewer to maneuver the interviewee in the direction of one of the
good solutions. Also, a great candidate may finish with one so­
lution soon enough to discuss other approaches and the tradeoffs
involved.

Often new interviewers have an incorrect notion of how tough or'easy
a problem is for a thirty minute or one hour interview. It is usually a
good idea to calibrate the toughness of a problem by asking one of your
colleagues to solve it and see how much difficulty they have with it.

107

13.3 CONDUCTING THE INTERVIEW

Conducting a good interview is like juggling a lot of pieces togethe卫 At

high level, you want to ask yourquestion and evaluate the candidate's
responses. Since so many things can happen in an interview that could
help you make a decision, it is important to take notes. At the same
time, it is important to keep a conversation going with the candidate缸ld

help them out wherever they get stuck. What works best is to have a
series of hints worked out prior to the interview and you provide these
hints progressively as needed. Coming up with the right set of hints m可
require some thinking. You do not want to give away the problem, yet
find a way for the candidate to make progress. There are a few situations
that can throw you off board:

A candidate that gets stuck and shuts up: Some candidates can get
intimidated by the problem or the process and just shut up. Usually, in
such situatio日s， the candidate's performance may not reflect their true
caliber. In such situations, it is important to put the candidate at ease
by mentioning that the problem is tough and a good way of proceeding
would be to think out loud, so you can guide their thinking.

A verbose candidate: The other class of candidates that can render缸1

interview ineffective is the candidates who go on in ta口ge口tial directions
and keep on talking without making progress. Here also it is important
to take control of the conversation and assert that this line of conversation
is not making any progress towards the problem.

An overconfident candidate: It is not uncommon to meet candidates
who weaken their own case by insisting that their wrong answer is cor­
recto In order to give the candidate a fair chance, it is important to demon-

13.3. CONDUCTING THE INTERVIEWCHAPTER 13. CONDUCTING ANINTERVIEW106

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

13 .4 SCORING AND REPORTING

strate to the candidate that they are making a mistake, so they can correct
it. Often the best way of doing this is to construct a test case where the
candidate's solution breaks down.

At the end of an interview, most times the interviewers have a good idea
of how they want to score the candidate. But, in general, it is a good idea
to keep notes 缸ld revisit them before making a final decision. It is often a
good idea to standardize how you score based on things like which hints
you had to give to make progress or how many of your intended ques­
tions was the candidate able to get to. While isolated minor mistakes can
be ignored in most cases, sometimes when you look at all the mistakes
together, a coherent picture of weakness in a certain area may emerge,
such as consistent lack of attention to details or unfamiliarity with the
syntax of a language.

In cases of indecision, we have found that 让 is always better to err
on the side of caution and wait for the next candidate instead of making
a bad hiring decision. 吐le ultimate litmus test is always imagining the
candidate replacing a valuable member of your te缸丑 andwhether or not
that seems like a welcome change.

Part III

Solutions

CHAPTER 13. CONDUCTING ANINTERVIE叭f108

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

111

m= (1+u)/2;
if (A[m] < K) {

1 = m + 1;
} else if (A[m] == K) {

return 宜1;

} else {
u = m-1;

789012345678

-
A

叶
i
1
4
1
4
4
i
1
A

吁
i
1
4

咱
i

return -1;

Solution 1.3: A straightforward way to find an element larger than a
given value k is to look for k via a binary search and then, if k is found,
walk the array forward (linearly) until either the first element larger than
k is encou日tered or the end of the array is reached. If k is not found, a
binary search will end up pointing to either the next largest value after
K in the array, in which case no further action is required or the next
smallest value in which case the next element is the next largest value.

The wo卧case ru时ime of this algorithm is e (η)-the input of all
values matching K , except for the last one (which is greater than K), is
the worst-case.

The solution to this problem is to replace the linear scan with a binary
search in the second part of the algorithm, which leads to the desired
element to be found in O (logη) time.

Solution 1.4: Since the array contains distinct integers and is sorted,
for any i > 0, A[i] 三均- 1] + 1. Therefore B[i] = A[i] - i is also
nondecreasing. It follows that we can do a binary search for a in B to
find an index such that A[i] = i. (We do not need to actually create B, we
can simply use A[i] - i wherever B[i] is referenced.)

Solution 1.5: The key idea here is to simultaneously do a binary search
for the end of the array as well as the key. We try to look for A[2k] in the
k-th step and catch excep柱ons for successive values of k till either we hit
an exception or we hit a number greater than or equal to b. Then we do
a binary search for b between indices 2k - 1 and 2k . The runtime of the
search algorithm is 0 (log 叫. In code:

int BinarySearchlnUnboundedArray(int * A , int b) {
int k = 0;
while (true) {

int c;
try {

c = A[(l « k)
if (c == b) {

return (1 « k)

-1];

吃
E
在

才
i

呵
'
'
'
-
q
u
A
哇'
D
f
O

咛
/
Q
O

Solution 1.1: One of the fastest ways to invert a fast-growi吨 mono­

tone functio口 (such ashe square fmction)is to do a binary search m a
pmcomputed iable ofthe fmctiOR.Since the squam root for the largest
32七it un鸣ned in均er can be represented in 16 b咛， we build an array
of leRgth216such that i-th element h the array isz2.When we waat to

mpute square root for a givenmmber 凡 we look for the largest num­
ber iRthe arrav that is still smaller thmn.Because the S叫quare root i茹S

叫a挝ti如ve均 smal礼Lμit is fa如 to compute it 0丑 the fly than to precompute it.

Iunsigned int sqrLsearch(unsigned int input) { I
int begin = 0;
int end = 65536;
while (begin + 1 < end) {

int 'mid = begin + (end - be f? in) !. 2;
unsigned i~ t mid_sqr = mid * mid;

if (mld_sqr == input) {
return mid;

} else if (mid_sqr > input) {
end = mid;

} else {
begin = mid;

Searching

return begin;

1
2
3
4
5
6
7
8
9
四
口

u
n
u

臼

u
m

Solution 1.2:

public class BinSear牛{
static int search(int [] A , int K) {

in t 1 = 0;
int u = A.length -1;
int m;
while (1 <= U) {

Chapter 1

才
i

句
ι

呵
3
A
t
p
b
f
o

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

112 CHAPTER 1. SEARCHING

9 I } e Is e if (c >= b) {
10 I break;
111
12 I }
13 I catch (exception e)
14 I break;
15 I }
16 I k++;
17 I }
18 I II Now do a binary search between indices 2/\(k-1) and (2/\k)

19 I int begin = 1 « (k -1);
20 lintend = (1 << k) - 1;
21 I while (begin + 1 > end) {
22 I int mid = begin + (end - begin) I 2;
23 I try {
24 I if (A[mid] == b) {
25 I return mid;
26 I } else if (A[mid] < b) {
27 I begin = mid;
28 I } else {
29 I end = mid;
30 I
31 I }
32 I catch (exceptioηe)

33 I end = mid;
34 1
35 I }
36 I I I Nothing matched b
37 I return -1;
38

Solution 1.6: In the first step, we build an array of 216 integers that is
initialized to 0 缸ld for every number in the filet we take its 16 most signif­
icant bit to index into this array and increment that number. Since there
are less than 232 numbers in the filet there is bound to be one number in
the array that is less than 216 . This tells us that there is at least one num­
ber missing among the possible numbers with those upper bits. In the
second pass, we can focus ∞lyon the numbers that match this criterion
and use a bit-vector of size 216 to identify one of the missing numbers.

Solution 1.7: The simplest algorithm is a "loop join气i.e.， walki口g

through all the elements of one array and comparing them to the ele­
ments of the other array. This has O(m· n) time complexity, regardless of
whether the arrays are sorted or unsor把d:

1 I for each unique element in A
2 I for each unique element in B
31 ifA=B
4 I include A in output

113

However since both the arrays are sorted, we can make some OD­

timizations. First, in 中e rigM array}we cm use binary search to fiA
whethey the element exISts rather than scaImhg the entire array:

1 I for each unique element in A
2 I use binary search to find A in B
3 I if found I include A in output

Now our algorithm should be O(η. log2 m). We should choose the
larger set for the izmer loop (i.e-F bimry search)siRce ifn < m therl
mlog(η) »ηlog(m).

百lis is the best solution if one set is much smaller than the other
However it ismot opHmal for cases where the set sizes are similar-because
we aremot using the fact that both arrays are sorted to our advmtage-II1
tkat caseF a linear scm through both the arrays htandem will workbest
as shown in this Python code:

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

U I::.l .t rYLIIl巳 a rIn t e r sec t (n I m
l

a I b):
#construct sorted sets of random numbersof size n ond m
A = []
for i in range (n) :

A. append (random. randint (a I b))
A. sort ()

B = []
for j in range (m) :

B. append (random. randint (a I b))
B. sort ()

return LinearIntersect (AI B)

。
ι
q
u
A
t
F
3

瓦
U

叮
/
民
U
Q
J
n
u

呵
4

呵
4

。
』
呵
'
'
』
叫
/
句
句

4
7
M

句
牛

q
u

def Linea rIntersect (AI B):
output = []
ACounter = 0
BCounter = 0
lastMatch = None
whik AC01mter<len(A)and BC01mter<len(B):

if A[ACounter] == B[BCounter] and A[ACounter] !=
lastl\在atch:

lastMa tch = A[ACounter]
output. append (lastMatch)
ACounter = ACounter + 1
BCounter = BCounter + 1

elif A[ACounter] < B[BCounter]:
ACounter = ACounter + 1

else:
BCounter = BCounter + 1

return output

The runtime for this algorithm is O(m 十 η) .

Solution 1.8: A simple way to approach this problem is to hash each

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

115

1
·

」

71QU,?fnORU,4·,qu
叮
，
"

俨
'
a
L

-m
41­ra

PairSum(ar1 , 4) = (0 , 0)
PairSum(ar1，的= (0 , 1)
PairSum(ar1 , 10) 目 (3 ， 3)
PairSum(ar1 , 13) = (4 , 5)
PairSum(ar1 , 15) = (5 , 6)
PairSum(ar1 , 17) = None

This algorithm runs in 0 (η) time since it makes only a single pass
through the list and the work done inside the loop is constant (assuming
we have a nice hash function that gives us a constant time hash insert
and lookup).

Solution 1.10: Here essentially we need to efficiently represe且ttwomul­

tisets (one for characters in the anonymous letter and 0日e for characters
in the magazine) and see if one is a subset of the other.

The most direct way of doing this would be to build a hash table
NI, where the key is a character and its value is the number of times it
appears in the magazir四. Once this is built, we can scan the anonymous
letter character by character and decrement the corresponding count in
111[. If the count goes to zero, we delete the character from NI. We can
write the anonymous letter with characters in the magazine iff we can go
over the entire anonymous letter and find every character in NI with a
positive count.

If the characters are coded in ASCII, we could do away with NI and
use a 256 entry integer array A, with A[i] bei吨 set to the number of times
the character i appears in the magazine.

One way to improve performance of the approach outlined above
when the magazine is very long is to process the magazine in segments;
in this way, if the letter can be written with a relatively small initial prefix
of the magazine, the whole magazine does not have to be processed. The
segments may be of fixed size or a doubling strategy may be employed.
This does not help the worst-case complexity (since it may口ot be possi­
ble to write the letter with the characters in the magazine and this cannot
be determined without inspecting the entire magazine) but speeds up the
best-case and possibly the average-case.

Solution 1.11: Here essentially each user is associated with a set of at­
tributes 缸ld we need to find users associated with a given set of at­
tributes quickly. A hash table would be a perfect solution here but we
need a hash function over the set of attributes. There are a couple of
good ways of doing this. If the number of attributes is small, then we
can represe丑t the set as a bit...;飞recto乙 where each bit represe口ts a specific
attribute. Once we have this canonical represe丑tation of set, then it is
easy to use any hash function that transforms this bit-vector into a de-

SEARCHING

ord based on its sorted represe口tation (i.e., "logarithm" and "algo­
rithm" would both be hashed as "aghilmo时").币lis ensures that all the
马吨rams of a given word map to the same hash value

CHAPTER1.114

def anagrams (dictionary) :
output = []
map = {}
for each word
for word in dictionary:

sort the letters
sorted word = sortchars (word)
f add-thE Z川d to the list held in a dictionary
under its sorted key
if sorted_word not in map:

map[sorted_word] = [word]
else:

map [sorted_word] . append (word)
for each dictionary key
for k in map.keys():

retu r~ th~ lis t if it has more than one item
if len(map[k]) > 1:

output.append(map[k])
return output

、
、
B
，
，

·
·
唱

·
·
i

、
、B
'
'
'

，
，
，
‘
飞

,GlJR
V
A

唱
吨-
A
E

且

咱

m
o

υ
v
1
·
]

，
，z
‘
、

N
U
V
·

s
f

飞
，

r
ι
t

、
B
J
F

a
s
i

飞

hitn
a
」
，

E
A
V
A
ψ
A

bour--sto-e
Q
u
t
t
&
唱
t
A

管
A

rTAeAU

1
2
3
4
5
6
7
8
9

四
口
口
刊
U
M
巴
u
m
u
u
m口
却
n
n
D
M
t

As缸丑pIe run:

>> anagrams (("algorithm" ，飞od" ， "logari也n" ， "dog" , "snute"))
[[PalgLithIIl' , FlogarithmPLUgor , 'dogP]]

Solution 1止This could be easily done in O(的 time by searching for
allpossiblevalues of i adj suchthat AH] 于 A[j] =K.

we could do significmtly better by stormg the values from the array
iz1a hast1table.Ther1for each mw valuer we check to see if its complep
meI1t iip k minus the value)has alreadybeerIseen and if SOy what is the

二d由eXJ}EH{er陀ei妇saPηyt仕ωE
built-in dictionary object a臼st也he hash table:

def PairSum (arr , K):
h = {}
for i in range (len (arr)) :

complement = K - arr [i]
h [arr[i]] = i
if complement in h:

return h[complement] , i

吨i

呵
4
q
u
A
吐

F
3
4
U
町
/

This gives the following results, "Yhere.t~e re.tur~t; values of the func­
tiomreaet叭川ndices of eleme附 that add up to K:

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

116 CHAPTER 1. SEARCHING

sired hash space.
However if the space of possible attributes is large, then the best way

to represe丑t a set canonically would be to sort the attributes. For this
sorting, any arbitrary ordering of attributes will work. We can represe时

the sorted list of attributes in a string concatenating all the attributes.
Incidentally, if we want to group users based 0口 similar rather than

identical attributes, the problem becomes significantly more difficult. A
common approach is min-hashing. Essentially, we construct a set of k
independent hash 如口ctions (k is chosen based on how similar we want
the sets to be). Then for each set 8 we define

MK(s)=pirh(向) .

If two sets 81 and 82 have similar set of attributes then with high probabil­
ity Mk(81) = Mk(82). Based on this, we map each set of attributes 8 to a
sequence of hashes M 1(8) . . . M k (8). Now the problem has been reduced
to pairing users that have the same hash sequence, which is similar to
the orig让lal problem. Here k can be varied appr叩riately to increase or
decrease the probability of match for a pair of slightly different attribute
sets.

Solution 1.12: The idea here is very similar to hashing. Consider a very
simple hash function F(x) = x mod (n + 1). We can build a bit-vector
of length n 十 1 that is initialized to 0 and for every element in A, we set
bit F(A[i]) to 1. Since there are onlyηelements in the array, there has
to be at least one bit in the vector that is not set. That would give us the
number that is not there in the array.

An even simpler approach is to find the max (or min) element in the
array and return one more (less) than that element. This approach will
not work if the extremal elements are the largest (smallest) values in the
set that the entries are drawn from.

Solution 1.13: Since the energy is only related to the height of the robot,
we can ignore x 缸ld Y co-ordinates. Let's say that the points where the
robot goes in successive order have heights hI,. . . ,hn . Let's assume that
the battery capacity is such that with full battery, the robot can climb up
B meters. Then the robot will run out of battery iff there exist integers
i and j such that i < j and hj 一队 > B. In other words, in order to go
from point i to point j , the robot needs to climb more than B points. So,
we would like to pick B such that for any i < j , we have B ~三 hj - hi'

If we did 丑ot have the constraint that i < j , then we could just com­
pute B as max(h) min(h) but this may be an overestimate: consider the
case when the robot is just going downwards.

We can compute the minimum B in 0 (n) time if we keep the rur四吨

117

min as we do a sweep. In code:

1 'double BatteryCapacity (vector <double> h)
2 I if (h.size() < 2) {
3 I return 0;
4
5
6
7
8
9

10
11
12
13
14 I }
15 I return result;
16

double min = h [0] ;
double result = 0;
for (in t i = 1; i < h. s i z e (); ++ i)

if (h[i] - min> result) {
result = h[i] - min;

咱h
u
-
­

>h
n

一
­

m
n
扎

(mrI

1,3.

‘A

Solution 1.14: Let's first consider just the strict majority case. This prob­
lem has an elegant solution when you make the following observation:
if you take any two distinct elements from the stream and throw them
away, the majority eleme时 remains the majority of the remaini吨 ele­

ments (we assumed there was a majority element to begin with). The rea­
soning goes as follows: let's say the majority element occurred m times
out of ηelements in the stream such that m/n > 1/2. The two distinct
elements that we choose to throw can have at most one of the majority
elements. Hence after discarding them, the ratio of the previously ma­
jority element could be either m/ (η- 2) or (m - 1) / (η- 2). It is easy to
verify that if m/n > 1/2, then m/(η -2»(m-1)/(η- 2) > 1/2.

Now, as we read the stream from beginning to the end, as soon as we
encounter more than one distinct element, we can discard one instance of
each element and what we are left with in the end must be the majority
element.

1 I string FindMajority(stream* s) {
2 I string candidate I next_word;
3 I int count = 0;
4 I while (s一>GetNext(&next_word))
5 I if (count == 0) {
6 I candidate = next_word;
7 I count = 1;
8 I } else if (candidate == next_word)
9 I count++;

10 I } else {
11 I count 一一;

12 I
13 I }
14 I return candidate;
15

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

It may seem the above code is tak吨。(川) time 归ce the inner loop
may take k steps (decrementing count for all k entries) and the loop goes
on for η 出口es. However if you note that each word in the stream can
only be erased once, the川he total time spent erasing everything is 0 (η)

and the rest of the steps inside the loop run in constant time.
The above code provides us with a k - 1 size set of words that is a

superset of the words that occur more thanη/k times. In order to get the
exact set, we need to make another pass over the stream 缸ld count the
number of times each word in the hash table actually occurs so that we
keep only the words which occur more than n/k times.

The code above assumes there is a majority word in the stream; if
no word has a strict majority, it still returns a string but there are no
meaningful伊aranteeson what that st由19wouldbe.

Solution 1.15: This is esse时ially a generalization of Problem 1.14. Here
instead of discarding two distinct words, we discard k distinct words at
any given time 缸ld we are guaranteed that all the words that occurred
more than 1/k times the length of the stream before discarding continue
to have more than 1/k fractio旦 of copies. For implementing this strateg予

we need to keep a hash table of current k candidates. Here is an example
code:

1 I void FindFrequentItems (stream* s , hash_map<string , int >*
word_set , in t k) {

2 I word_set一>clear () ;
3 I stri吨 word;

4 I whi1e(s一>GetNextWord(&word)) {
5 I hash_map<string , int >:: itera tor i = word_set->find (word);
6 I if (i == word set一>end ()) {
7 I if (word_set->size () == k) {
8 I II Hash table is full , decrement all counts , which
9 I II is equivalent to discarding 7c distinct words.

10 I for (hash_map<string , int>::iterator j = word_set一〉

begin () ;
11 I j != word_set->end () ;
12 I ++j) {
13 I 一一(j一>second) ;
14 I if (j 一>second ==0) {
15 I word_set一>erase(j);

16 I
17 I }
18 I } els e {
19 I (*word_set) [word] = 1;
20 I }
21 I } else {
22 I i 一>second++;

23
24
25

return NULL;

119

Solution 1.17: This is similar to Problem 1.16 but you just have to con­
tinue your binary search till the end even if you find the element that
you were looking for and also keep track of the last element that met the
criteria.

Recursion adds the overhead of function calls. The code above is not
literally tail recursive, which means that an optimizing compiler is un­
likely to remove the recursive calls; however there still is a straightfor­
ward iterative solution:

Solution 1.18: This problem requires some creative use of the binary
search idea. Let's say that the two arrays are Al and A2 and say that l of

1 I Node* SearchBST (Node* root , in t key) {
2 I Node* result = NULL;
3 I wh i1e(root!= NULL) {
4 I if (root一>key > key)
5 I result = root;
6 I root = root 一>left;

7 I } else {
8 I root = root->right;
9 I

10 I }

11 I return result;
12

1 INode* SearchBST (Node* root , in t key) {
2 I wh i1e(root != NULL) {
3 I if (root->key == key) {
4 I return root;
5 I } else if (root一>key < key)
6 I root = root 一>left;

7 I } else {
8 I root = root->right;
9

10
11

Solution 1.16: A recursive solution is natural:

1 INode* SearchBST (Node* root , in t key)
2 I if (r 0 0 t == NU且) {
3 I return NULL;
4 I } else if (root一>key == key) {
5 I return root;
6 I } else if (root->key < key) {
7 I return SearchBST (root一>left ， key);
8 I } else {
9 I return SearchBST (root->right , key);

10
11

CHAPTER 1. SEARCHING118

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 1.19: Consider two lines y = 向十bix and y = αj 十 bjx such that
向〉向. The i-th line intersects the line x = °at (0，向) and the j-th line
intersects the line x = °at (0 ， αj)' Similar与 these lines intersect x = 1 at

the k smallest elements of the union come from the first array and l - k
elements come from the second array. If this were indeed true, then we
would see that Al [l - 1] 三 A2[k -l] and A2[l - k] - 1 三 Al [l] (barring
some corner cases where we reach the end of the array).

The other interesti吨。bservationwe can make is that if Al [l - 1] >
A2[k -l] , then we should use at least one more element from the second
array in the k smallest elements. Similarly, if A2 [l - k - 1] > Al [l] , then
we should use at least one more element from the first array. Using these
two 扛lequalities， we can essentially do a binary search on l. Note that
this problem gives you plenty of corner cases to worry about. In code:

1 lint FindOrderStat (const vector <int>& a1 ,
2 I const vector <int>& a2 ,
3 I unsigned int k) {
4 I II Check the validity of input.
5 I assert(a1.size() + a2.size() >= k);
6 I assert (k > 0);
7 I I I Find an index begin <= 1 < end such that a1 [0].. a1 [1-1]
8 I II and a2[O]..a2[k-l-1] are the smallest k numbers.
9 I unsigned in t begin = max(O , k - a2. size 0) ;

10 I unsigned intend = min(a1. size () I k);
11 I while (begin < end) {
12 I unsigned 1 = begin + (end - begin) 12;
13 I I I C-an ωe include a1 [1] in the k smallest numbers?
14 I if ((1 < al. size ())他 (k-1 > 0) 他 (a1[1] < a2[k-1-1]))
15 I begin = 1 + 1;
16 I } e1;e if ((1> 0) 始 (k-1 < a2. size ())他 (a1[1-1] > a2[

k-1])) {
17 I II This is the case where we can discard a[l -l]
18 I II from the set of k smallest numbers.
19 I end = 1;
20 I } else {
21 I I I We found our ansωer since both the inequalities were

false.
22 I begin = 1;
23 I break;
24 I
25 I }
26 I if (begin == 0) {
27 I return a2 [k 一 1];

28 I } else if (begin == k)
29 I return a1 [k-1];
30 I } else {
31 I return max(a1 [begin -1]' a2 [k - begin -1]);
32
33

121

F(σ) = (η- k)· σ 十 Zk·

Using the above expressio且， we can search for the value of k such
that F(Sk) 三 8' 三 F(Sk十1) by performing binary search for k (since the
runtime of this solution is already 8(ηlogn), we can do a linear search
as well for simplicity). Once we have fou工ld the right value of k, we can
compute the value of y by simply solving the equatio口 for F(σ) above.

(1 ，向 + bi) and (1 ， αj + bj). Lines i and j intersect iff

((向〉 αj)&(向 +bi < αj 十句))1((αi <αj)&(向十 bi > αj+ 句)).

In other words, for the lines to intersect, if 向 <αj ， then it must be the
case that (向十队 <αj 十 bj) or vice versa (ignoring the trivial case where
they intersect on one of the boundaries).

Hence if we sort the pairs (αi ， bi) by αi and test that for successive
pairs (向， bi)and(αj ， bj) if 向十句 <αj + bj , we know that they do not
intersect. If we do find a violatio日 of this inequalit予 then we have found
one of the intersecting pairs.

Sorting takes 0 (ηlog n) time and comparing successive pairs takes
O(η) time. Hence this can be done in O(ηlog叫 time.

Solution 1.20: One way to solve this is to sort the intervals by their
lower boundary and see if their upper boundary is also sorted in the
same order. If not, we are sure to find some pair of indices l ,m where
向三 αm and bz 主 bm . This would be the pair we are looking for. If
the upper boundaries are also sorted, then we are guaranteed that 口O

interval is completely contained in another interval. Since this involves
sorting followed by a linear scan川气Te can get tl由 done in O(n logη) time.

Solution 1.21: The key idea here is to sort the endpoints of the lines and
do a sweep from left to right. As we do the sweep, we maintain a list
of lines that intersect the current position as well as the highest line and
its color. In order to quickly lookup the highest line among the set of
intersecting lines, we can keep an ordered binary tree data-structure and
to lookup the lines by the endpoint quickly, we can maintain a hash table.

Solution 1.22: Define F(σ) to be 1二;L1IIli口 (Si ， σ). We are looki吨 for a
value of σsuch that F(σ) = S'. Clearly, F monotonically increases with
σ. Also, since °<二 S' 三 S， the value of σis going to be between °and
maX(Si)' Hence we can perform a binary search like operation for finding
the correct value of σbetween 0 and max(si)'

Assume that the Sl ,… ,Sn are already sorted, i.e., for all i, Si ~二 Si+ 1·

Compute the running sum 句= 1:7=1 Si'
Now, suppose Sk 三 σ 三 Sk十1. Consequently,

CHAPTER 1. SEARCHING120

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

The most expensive operatio口 for this entire solution is sorting the
..s, hence the runtime is O(ηlog n). However if we are given the 与sin

ad+mce andwe aye allowedpreproce 臼ing， then for each value of 8', the
search would just take 0 (logη) time.

Solution 1.23: A solution to this problem is discussed in the context of
finding Hardy-Ramanujan numbers (Problem 6.7).

Solution 1.24: Given two line segments in a two-dimensional plane, we
cantestforhtersectioneasily iMomtmttime-Given n line segmerlts of
apolygORy we can hd if my of the segmts i口tersect in 0 (n2

) time by
simply testing each pai卫 However doing this in 0 (川og n) time requires
a fairly complex algorithm.

COIISider Wo line segI1mts md the two farthest vertical liz1es that
ch hter-sect with both the lhe seFI1eI1ts (one vertical lhe is the left­

most verticalline that still in口时1让t怡ersect怡s with both 1恤i让工1曰es 缸1吐d the other one is
孟e 鸣h挝tmoω创挝叫t). T咀he two lin让ine 吨me时附sw附O∞u吐ωld i凶I丑时1让阳tersect i证f任f t血heir垃TV刊e臼臼r巾t

O创rde臼rir吨 chang萨eSbetweenthe two v?rticallhe?
The kev idea is to use a sweep hner avertkalline that moves from

leftto righithr0吨h each endpoint. We order the polygon vertices (end­
points of line 吨ments) from left to right first by i且可easing the x co­
:rdhateF ttmbyinmaSinghe Uco-ordinate.Nowr magim aver-tical

viIIg from left to right through these 27z eI1dpohts.
For each oositiOI1of this vertical liI1er we keep m ordered list of hter­

secthgline;egmmts The list is so白d by the νco-ordinateof the first
eI1dpoiI1t of tke kmsePIleI1t.As we reach the starthg pohts of the I1W
lineLeg虹mtsyweimdthembydoingabimrymrchforthemAswe
reach the eI1d of a liI1e segmeIItr we remove it from the list.The sorted
list can be maintained using a balanced BST.

WKen my lim segIlent mdsr we test if its vertical order-hg chmged
mmoared to the other lines h the list (which cm be done iacOI1stmt
t垃iidy just eompa出g the nearest two lines). The lin让in丑附1
O旧主d岱er白垃1丐gchang伊ed for some lin丑le s优e驴丑nen时t..

122 CHAPTER 1. SEARCHING

Chapter 2

Sorting

Solution 2.1: In general, Quicksort is considered one of the most effi­
c蛇口t sorting algorithms归ce it has a runtime of e (n log川) and it sorts
in-place (sorted data is not copied to some other buffer). So, for a large
set of random integers, Quicksort would be our choice.

Quicksort has to be implemented carefully-for example, in a
naIve impleme口tation， an array with many duplicate elements leads
to quadratic runtimes (and a high likelihood of stack space being ex­
hausted because of the number of recursive calls)-this can be managed
by putting all keys equal to the pivot in the correct place. Similarly, it is
垃lportant to call the smaller subproblem first-this, in co叫unctio口 with

tail rec旧sion ensures that the stack depth is O(log2η) .
However there are cases where other solutions are more preferable:
一 Small set-for a very small set (for example, 3-4 integers), a simple

impleme口tation such as insertion sort is easier to code, and runs
faster.

一 Almost sorted array-if every element is known to be at most k
places from its finallocation, a min-heap can be used to get an
O(n log2 k) algorithm (Problem 2.11); alternatives are bubble sort
and insertion sort.

- Numbers from a small range, small number of distinct keys­
counting sort, which records for each element, the number of el­
ements less than it. This count can be kept in an array (if the largest
number is comparable in value to the size of the set being sorted)
or a BST, where the keys are the numbers and the values are their
frequencies.

- Many duplicates-we can add the keys to a BST, with linked lists
for elements which have the same key; the sorted result can be de­
rived from an in-order walk of the BST

- Stability is required-most useful sorting algorithms are not stable.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 2.2: V叽le丑 sorting data that c缸mot且t into the RAM of a single
machine, we have to partition the data into smaller blocks that would缸
i川he memory, sort each block individl叫ly， and then combine the blocks.
If a cluster of machines is available, the blocks can be sorted in parallel
or they can be read in sequence∞ as让19le machine and then stored on
the disk.

There are two popular approaches for doing this. If we know the
rough distribution of the data h advmce(e.g-y it is distributed mim
formly), it can be partiti∞ed into conti伊ous subranges of approxi­
m挝ely叩al 员ze in the first pass. This has the advantage也at once伽

individualblocks are sortedrwe cmcombine themjustbycomatemtio孔
Another slightly more expensive approach that does not requi~~.~y

knowledge of distribution is to read the input data in seque口ce till the
memory is full, sort it, write it, and then read the next block till we are
done with the file. This requires us to merge the sorted blocks in the
eI1d like Mergesort.Herer shce we could be poteI1tidly merging a large
number of sorted files, using a min-heap is helpful. Essentially, we keep
the smallest unread entry from each file in the heap, then we extract the
min element from the heap, replace it with the next entry from the same
file , and write out the min value to the output file.

The Unix sort program is very robust; it makes use of the disk when
needed and can combine a set of files into a single sorted file.

Solution 2.3: First, we consider the problem of finding the best player.
Each game el出inates one player and there are 128 players; so, 127
matches are necessary and also sufficient.

To find the second best, we note that the only candidates are the play­
ers who are beaten by the player who is eventually determined to be the
best-everyone else lost to someone who is 口ot the best.

To find the best playe巳 the order in which we organize the matches is
inconsequential-we jl川 pick pairs from the set of candidates and who­
ever 10卢s is removed fro;n the pool of candidates. However if we pro­
ceed in an arbitrary order, we might start with the best playe鸟 who de­
feats 127 other pI句lers and then the players who lost need to play 126
matches amongst themselves to find the second best.

We can do much better by organizing the matches as a binary tree­
we pair off players arbitrarily who play64matches.After these matchesy
we are left with 64caI1didates;we pair them off again arbitrarily缸ld they
play 32 matches. Proceeding in this fashio丑， we organize the 127 matches
needed to find the best pIa

124 CHAPTER 2. SORTING

Mergesort, carefully implemented, can be made stable; another so­
lutidi1is to add the iMex as m iRteger ra他 to the keys to break
ties.

125

7 matches. Therefore we can find the second best player by organizing 6
matches between the 7 players who lost to the best player, for a total of
134 matches.

Solution 2.4: Split the numbers into pairs of two and then group the
higher values of the pairs into one set and the lower values into another
set. Find the min of the lower group and the max of the higher group.

Solution 2.5: Let's start with five time-trials with no cy­
clist being in more than one of these five initial time-trials.
Let the rankings be A1 ,A2 ,A3,A4,A5, B1 ,B2 ,B3 ,B4,B5,
01 ,02 ,03 ,04,05, D1 ,D2 ,D3 ,D4 ,D5, and E1 ,E2 ,E3 ,E4 ,E5,
where the first cyclist is the fastest. Note that we can eliminate
A4,A5 ,B4 ,B5 ,04 ,05 ,D4 ,D5 ,E4 ,E5 at this stage.

Now, we race the winners from each of the initial time-trials. With­
out loss of generality, assume the outcome is A1 ,B1 ,01 ,D1 ,E 1. At this
point, we can eliminate D1 and E1 as well as D2 ,D3 and E2 ,E3. Fur­
thermo!飞 since 01 was third, 02 缸ld 03 cannot be in the top three; Sim四

ilarly, B3 cannot be a contender.
We need to find the best 缸ld the second best from A2 ,A3,B1 ,B2 ,01 ,

which we can determine with one more time-trial, for a total of seven
timeωtrials.

Note that we need time-trials to determine the overall winner, and the
sequence of time-trials to determine the winner is essentially unique-if
some cyclist did not participate in the first five time-trials, he would have
to participate in the sixth one. But then 0日e of the winners of the first five
time-trials would not participate in the sixth time-trial and he might be
the overall winner. The first six time-trials do not determine the second
and the third fastest cyclists, hence a seventh race is needed.

Solution 2.6: Whenever the swap operation for the objects being sorted
is expensive, one of the best things to do is indirect sort, i.e., sort refer­
ences to the objects first and then apply the permutation that was applied
to the references in the end.

In the case of statues, we can assign increasing indices to the statues
from left to right and then sort the pairs of statue height and index. The
indices in the sorted pairs would give us the permutati∞ to apply. While
applying permutation, we would want to perform it in a way that we
move each statue the minimum possible distance. We can achieve this
if each statue is moved exactly to its correct destination exactly once (no
intermediate swaps).

Solution 2.7: The simplest way of doing this would be to define a lexico­
graphic ordering over the rows (where we ignore the contents

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

126 CHAPTER 2. SORTING

number of duplicate rows for each unique row easily in a linear pass.
In case it is expensive to swap the rows (since each row contains large
amounts of data), it might be more efficient to hash the contents of the
row 缸ld sort the hash values instead.

Solution 2.8: Almost all sorting algorithms rely on swapping records.
However this becomes complicated when the record size varies. One
way of dealing with this problem is to allocate for the maximum possible
size for each record-this can be very wasteful if there is a large variation
in the sizes.

Here also indirect sort can be helpful一…keep the records in a com­
pact form in the memory and build another array of po让lters to the
records. Then we just sort the pointers usi吨 the compare function 0丑

the de-referenced pointers and finally write the data by de-referencing
the sorted po垃lters.

Solution 2.9: An efficient way of eliminating duplicates from any set
of records, where a "less-than" operation can be defined, is to sort the
records and then eliminate the duplicates in a single pass over the data.

Sorting can be done in 0 (n log 叫 time; the subsequent elimination of
duplicates takes O(n) time. If the elimination of duplicates is done in­
place, it would be more efficient than writing the unique set in a separate
array since we would achieve better cache performance. Here is the code
that does in-place duplicate removal:

,EaEt、
，
，
，

hLTLFOne唱
·
·
·
&

eTLez·
唱
·
·
·

QU,V
J

、
l

t+
口
+

T·1aft

-F

*
h
u
h
υ

ι
t
ι
t
J
r
L
4

n
σ
o

斗

--nu­
{
飞

e
i
J

Q
U

唱
B
A
r
t
t

』

-
F

e
u
v
'
1

』

JU<aincrrttc·1rJ'uuaa
斗
「

-
r
r

叫

-
z
u

DZ1·t
e
-
-

一
­

LL·'-1A-tA
a
q
i

『
l
1

』

nty·]-
u
z
-
a
I
ι

口

e
r
V
J
-
F

·I-]zra--r·]
-
i
·

唱
i

到
U
M
"
t
B

寸

E
t
s
(

飞

r
+
1

-
J
飞

a
·
]

扪

ι
t
o

」

r
T
A

呻
且

-zr-Ite--oezsrflJr·
唱A

QU吁
i

叫
/
』
呵3
A
ι
τ
F
3
f
O

叮
J
o
o
n
y
n
u1i

Another efficient way is to use hash tables where we store each record
坦to a hash table as the key with no value 缸ld then write out all the keys
in the hash table. Since hash table inserts can be done i妇I丑lO(ο1) time an工卫1

i悔t怡er时a挝tin地g over all t侃h怡e keys also takes only (n) time, this solution scales
much better than the sorting approach. However, in practice, for small
size of inputs, the sorting approach might work faster since it can be done
in-place.

Solution 2.10: While merging k sorted arr可s， we need to repeatedly
pick the smallest element amongst the smallest remaining records from
each array. A m扛l-heap is ideal for maintaining a set of records when

127

we repeatedly insert aIId query for the smallest record (both extract-mh
and imert would take 。(logk)time).Hmcewe caI1do the merge h
O(ηlog k) time, where n is the total number of records i刊的1putL孟
is the code for this:

~ I b叫 G叫叫or川 pair <i叽 inMa(
const pair<int I in t>& b)

3 I if (a. first> b. first) {
4 I return true;

~ I }: ~ ~_~ _. if (a. fi r s t == b. fi r s t 他 a . second > b. second)
b I return true;
7 I } else {
8 I return false;
9

10
11
12
13
14
15
16

叮/
Q
U
Q
J
n
u
-
-巧
/
』n
d
A吨A
F
3
瓦
U
叮
/
民
U
Q
J
门
U
τ
i
叫
/
』q
u
A吐
F
3
f
b

才
i
1
i
τ
i

呵
'
'
』
呵

4

勺
』
勺
』
。
ι

叫
4
9

』
叶
4
9

』
呵
，
，
』
q
u
叫J
q
u
q
u
q
u

叶
3
q
u

void 1\在ergeSortedVectors(
const vector <vector <int > >& sorted_input I

vector <in t >* output) {
//ThE firs t numbEr is thE S7710llESt number rE7710iningund
//tht second numbEr rep ftsen ts array from zuhich i tωαs

taken.
vector <pair <i时 I in t > > min_heap;
//WE KEEponindEX oythtnumbErs rtad from eochorroy­
vector < int>curr?nt-read-index(sorted-input -size ());
fO: ， (~nt i = 0; i ~ ~orted_inp~t.size()/ i++) {

if (sorted一input[i] . size ()). 0) {

min-heap -push-back(make-pair(sorted-input[i][OL i));
}rent-read-iRdex[i]z1;

37
38

make_heap (min_heap. begin () I min_heap. end () I Greater);

while (min_heap. size () > 0) {
pair~int ~ int> min = min_heap [0];
pop-heap (min-heap .begin (), min-heap .eI1d()r Greater);
min_heap. pop_back () ;
output->push_back(min. first);
if (current_read_index [min.白cond] <

sorted_input [min. second]. size ()) {
II There are more inputs to be read. Read the next

num tJ er
II and insert it in the heap.
min flrst=sorted-i叩ut [min 民cond] [curre叭read_index

[min. second]] ;
current_read_index [min. second]++;
min_heap. push_back(min);

}push-heap(miILheap-begin (), min-heap .end (), Greater);

n
y
n
U

吁
i

呵
/
-
n
d
A
哇

344444A

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 2.11: The easiest way of looking at this problem is that we
need to store the numbers in memory till aU the numbers smaller than
this number have arrived. Once those numbers have arrived and have
been written to the output file, we can go ahead 缸ld write this num­
ber. Since we do not know how the numbers are shuffled, it is hard to
tell when all the numbers smaller than a given number have arrived and
have been written to the output. However since we are told that no num­
ber is off by more than one thousand positions from its correctly sorted
position, if more than a thousand numbers greater than a given number
have arrived and all the numbers smaller than the given number that
arrived have been written, we can be sure that there are no more other
smaller numbers that are going to arrive. Hence it is safe to write the
give旦旦umbers.

This essentially gives us the strategy to always keep 1001 numbers
in a min-heap. As soon as we read a new number, we insert the new
number and then extract the min from the heap and write the output.

Solution 2.12: While it takes O(k) time to compute the average of a
window of size k, the successive averages for the sliding window can be
computed inexpensively by maintaining the sum over the sliding win­
dow. When the 飞w矿vin丑ldo飞，w厅v i妇s slid by or口le pos站i让tio∞口乓， the new sum can丑1 be
C∞ompu址t怡edl且ike t白h由i拮缸S缸: sumi忡十1 = S阳uωL川7叫7

r山mi妇I丑19 average can be computed in O(n) time.
Computing the running median is a bit more in飞rolved but the same

idea is applicable there as well. When we slide the window by one posi­
tion, we delete the first element from the list and insert the next element.
τherefore we need to maintain a set in a way that allows us to find the
median easily in the prese丑ce of inserts and deletes. This can be achieved
with a balanced BST (an AVL tree or a red-black tree could do the job).
Both insert and delete are O(log k) operations. Finding the median af­
ter an update amounts to looking for the successor or predecessor of the
existing median depending 0口 whether the update involved an element
that was larger or smaller than the current med出ia缸n. Therefore we can
C∞omput怡e the run江illη1宜四工

Alternately, we could j扣us挝t use an 0创rd由de臼r-咱S挝ta甜tis时tic t仕re倪e which is simply
ab丑划a剖l缸ancαed BST wi让tl缸1 some addi让tio∞I丑lal in口1甘白f如orma甜tio∞n stored at each node.
Specifically, in an order-statistic tree, each node records the number of
nodes in the subtree stored at that node

128 CHAPTER 2. SORTING
129

that are going to 平appen as a direct result of eve由 that have happened

严LZIZ212222注:2EttiU付ftz
aomg any new work.

t〕hhJaJJ:立r;注;工t;;岱t:23;:古?rr22lU2r::工i:口:出口ιz;r口口7Zz;::?巳z出巳J5::芷:2rJ工工江Z工:
2立旦且;2且:Ltιι;11:立;巳1古?:工:;2E:飞平讪ZZ可可;2t:?1可:飞?
queue.For thmappi1catlORagamra miRwheap works most efacieIItly.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 3止 LetP[叫 be true iff there is a stone in the river at x meters.
Let's define F[x] [y] to be a Boolean variable that is true iff it is possible

for the frog to reach x meters from the shore with the last jump being y
meters. We can say that F[O] [y] is true i旺 y = O. Also, F[x] [y] can be
true iff P[x] is true (there is a stone there) and that either F[x - y][y] ,
F[x - y][ν+ 1], or F[x - y][y • 1] is true. Usi吨 DP， we can compute the
values of F[n] [y] for all possible values of y. One interesti吨 thi吨 tonote

here is that while jumping the firstηmeters， the largest jump size could
be atmost0百. Hence we just need to worry about values of y 三 10瓦l·

This gives us a runtime of 0 (η 1. 5). Here is a possible implementation:

131

previous_index [i] = prev_index;
if (max_length < length) {

max_length = length;
longest_sequence_end = i;

assert (output != NULL);
output-> c1 ear () ;
I I Bu il d the rever se of the 1an gest seq u en ce by go i ng

backwards from the end.
while (longest_sequence_end >= 0) {

output->push_back (input [longest_sequence_end]) ;
longest_sequence_end = previous_index [

longest_sequence_end];

II 协x attainable jump size.
int m= sqrt(2 * p.size());
vector <vector <boo!> > f (p. size () + 1);
II The first block can only be reached ω ith jump of
II size 1 and no block can be reached with jump of
II size O.
for (int j = 0; j <=m; j++) {

f[O].push_back(false);

std : : reverse (output->begin (), output->end ()) ;

bool isReachable (const vector <boo1>& p) {
if (p. s i z e () == 0) {

return true;

for (int i = 1; i <p.size(); i++) {
for (int j = 1; j <=m; j++) {

f[i].push_back(false);
if (p川崎 i - j >= 0) {

for (int i = 1; i <p.size(); i++) {
f [i]. push_back(false);

口 true;

、
‘
，
，J
τ
B
E
E
S

-3244Binur--&[]po([
r?A

F?i

、
E
P
B
J
·唱
-
A

123445678901234567890123

咱
i

咱
i
1
4

咱
i

句
i
1
A

咛
i

吁
i

叶
i

咱
i

叫
/
阳
叫4

叫
J』

n
L

f
O

呵
/
民

u

q
d

句
3

叫
3

q
U
A
4
·
-
F「u

q
u
q
u

呵
3

A
叶A
m
3
f
O

叮
/
民

U
Q
J
n
u
-
-

呵
，ι

呵
'
』
勺
』
勺
丰
勺
』
呵
/
屿
呵
/
M
q
u
q
u

呵
J

Usinσthis strategyr fill up a table for 84·If we wmt the sequmce as
e11foreadthaddi柱on to storing the Ie咐h of the 叫uen问 wecan

sto-theihnd卢of挝 las时t伽m
A 曰 l c::< ::\n imnlem工丑len丑lt切at世io∞I丑1 of the idea:

seauence. 上tere IS i:U l 且ILp

ιvoid Ion只estNondecreasingSequence (
ωnst veωr <i仙& inpl札 veωr <int>* output) {

assert (output 1= NULL);
output一>c1ear () ;
if ~(input. size () == 0) {

return;

Solution 3.1: Let Si be the Ie且gth of the longest I1ORdeereashg subse­
σuence of A that ends at Am(specifically}A[i]is heluded h this subse-
queI叫. Then we canw巾 the recurren

lem〈int 〉 10咿由quenceLe呐(叩t 巾() I 1);
Vω r <int> previous一M 以叫(i叩
longestSeque~~eLe~gth [0] = 1;
int~max_iEmgth = 1;
in t longesL-sequence_end = 0;
for (int i=1;i<input-size ();i++){

int length = 1;
lnt nrev index = -1
f~~ (lnt-j = 0; j < i; !:十) {

if '(inp~t[j] <= inp?t[i] 战
longestsequenceLength i }]+1 > length){

leRgth=longestsequeI1ceLeRgth[j]+1;

prev_index = j i

So = max (_!D:~~.，. j Sj 十 1) ， 1)
b \ j:A[j]~二AliJ ，j<i /

h
μ

LL
σ
b

ne--
一
一

咽
'
S
·
J

.,
i

rtLh
ι
Zσ

o

nueTUoiv
户
L

nueUQAeQULEQUe
σ
o

lJn

o
、
自'
E，
咽
，
‘
A

Meta皿algorithm.s

Chapter 3

1
2
3
4
5
6
7
8
9
川
口
口
臼
U
H臼
u
m
V四
"
却
且
2
2

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

133

if (V[prices [i]. width] [prices [i] . length] < prices [i] .
price) {

V[prices [i] . width] [prices [i] . length] = prices [i] .
pnce;

、
E
》
E
J

、
E
‘
s
z}

{{、
‘
，
，
，
，
、
‘
.
，
，
，

]]·1J-FLKA-F

J
I
f
-
-
』
-
1
j

'
z
a
-
-
4
·节
B
J
·
'
g
J

唱
L
D

)K[[­
JI+fLl]-y

十

{
V
K
{
i
[

)j[[]
十

)
+
V
)
V
i

十

-
r
+
+

『
i

i
h
十
]
+
十
+
V

L
I
‘

'
b
b
·

唱
B
J

冒
b
n
x

-
F
O
O
f
t
-
j
1
』
+

hn.

,]-]-JK

M
e
-
-
K
I
-
-
]

『
i
j

4
C
'
Z
A
-
-
i
1
』
咽
且

.
叹

<
i
k
<
i
f
I

M
F
-
…

f
i
-
f
i
1
』

<kvikvi
--fltrit<·];<V;<V

吁
3
4
4
s
·
·
A

·1.

,

1j=1j=

-
i

一-
-
1
J
Z
·
1
J

.,

[][1

1···A=LA1id--YLA1la--J

·
唱B
A
r
i
t
·
'
i
r
a
g
a
-
­

=
J
j
t

『

t
1
1
4
t
r
i
-
-
4

nvinv·­

J
A

，
，
也
·
唱
且
/
'
飞

r
I
L
·

唱
A
/
t

、
r
E
E
L

n(V(V
S
T
·
-
·唱A
r
+
i
r
+

且

n
i

飞

r
·
1
l
i
r
-
-
3
1

·100
J
Z
飞
宜
，

?
A

、
s
J

正

A

、
$
1

O

VAr--jo'
'
且
、

E
f
J

float result = V[width][length];
return result;

8

9

门
U
1
i

呵
/
但q
u
A
峙A
F
3

瓦
U

叮
/
Q
O
Q
J
n
u
-
-

呵
，
，
』
q
u
A
哇

m
D

瓦
U

叮
/
Q
U
Q
J
A
U

丁
i

1111111111222222222233

Solution 3.4: This is a straightforward DP problem. If the input string
S has Ie口gth 凡 we build a table T of Ie吨th n such that T[k] is a Boolean
that tells us if the substring S(0,k) can be broken into a set of valid words.

We can build a hash table of all the valid words such that we can
determine if a stri吨 is a valid word or not in consta时 time. Then T[k]
is true i丘 there exists a j ε [0 ， k - 1] such that T[j] is true and S(j ,k) is a
valid word.
币lis will just tell us if we can break a given string into valid words

but would not give us the words themselves. With a little more book­
keeping, we can achieve that. Essentially, in table T along with the
Boolean value, we can also store the beginning index of the last word
in the string.

If we want all possible decompositions, we can store all possible val­
ues of j that gives us a correct break with each position. However the
number of possible decompositions can be exponential here. For exam­
ple, consider the string 气tsitsitsits...".

Solution 3.5: We need to determine if there is a subset of states whose
EleωralCollege votes add up to 5~8 = 269. This is a version of the 0-1
knapsack problem described in Problem 6.1 and the DP solution to that
problem can be used.

MELι-ALGORITHMS

if (f [i-j][j]) {
f[i][j] = true;

} else if (j >。他 f [i一j][j-l]) {
f[i][j] = true;

} else if (j 十 l<m他 f[i-j][j+l]) {
f[i][j] = true~

CHAPTER3.132

if(f[i][jhz true 始仆仆 1 > P …()) {
//From this point the frog can cross thE
II α single jump.
return true ~

return false;

M
A
E盯m
u
n
m
u
m
M坦
白
丑
掐
指
g
m
m
m
m
ωSolution 3.3止: Si恒I口1C臼ethem丑la缸chi让n曰e we have car丑10∞I丑11坊Y cut a p抖iec臼e ofpa叩pe臼r

i垃h凶I丑时1让t怡川ot机two兀W附旷ωop抖内i坦eces ei恤t仕由阳:he町r飞丁飞V刊阳阳7吧咄e臼臼r‘阳町川O创ri‘tωi

h阳a町ave叫e山
t怡oe仪XPlhOrme.Let V(ZJ)be the maximumvak

32:;二rtidJ::ZJiil二:午12乙::121二tt;二
to 0).

v吁e assert that

V(x ,y) = max

(~以 (V(a， y) + V(x - a,y)) ,
αε [O ， x]

rn.~x， (V(x ,b) 十 V(x ， ν - b)) ,
bε [O ， y]

II1otherwordsr thevalue ofthepaperis themaxofthe costofhew。

在2TZZc22;二Z32;士11已出itJ;2:27;22;二
of V of interest in 0 (α ·b 十 n) time.

\
飞

1
1
1
/

、
、
，
』
，
J

"uuzf
'
t飞
、

U

float computeMaxCost(int width , int length , vector<PaperPrice

> prices) {
vρrt 二l' <vector<float> > V~
iJJ7}nt izO·i<=width;i++){

V }M-bad(;reωr <float >(length + 1 , 0));

ior(iMi=0;i〈严ices. size (); i++) {
if 飞 (p rices[i]·lez1gth<zlength &&prices[i]-width <-

width) {

1

叫
4

巧3
A
哇

"
D
瓦
U
町
/

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

L(M)=ZGEFA}(max(L(27b-1)? 汇 (Bi)))

i=x十1

In other words, we find the right value of x such that if we pack the
first x users in b - 1 servers and the remaining in the last serve乙 themax
load on a given server is minimized.

Using this relationship, we can tabulate the values of L till we get
L(n,m). While computing L(a ,b) when the values of L is tabulated
for alllower values of αand b, we need to find the right value of x to
minimize the load. As we increase x , L(x ,b - 1) in the above expres­
si∞ increases and the term "£二Z十 1 (Bi)) decreases. Hence in order to
find x that minimizes their max, we can do a binary search for x which
can be done in 0 (logα) time. Therefore we can compute the load in
O(mnlog(n)) time

Solution 3.8: Let V (g) be the voltage level assigned to gate g. Let I (g) be
the set of all gates that are i叩uts to g. Let P(g) be the minimum possible
power that can be achieved by a legal assignment of voltages, wherein
we choose a low voltage for gate g. Let Q(g) be the mi由num possible
power that can be achieved when 9 is assigned a high voltage. We can

Solution 3.6: Number the individual elections from 1 to 446. Let
T(α ， b) be the probability that exactly bRepublicans win out of elections
{1 ， 2，… ?α}.

Let Xi be the event that a Republican wins the i-th race. Then
T(α ， b) = Pr("£i<α 几- b). There are two ways in which the firstα

random variables sum up to b: the a-th random variable is 1 and the first
α- 1 variables sum up to b - 1 or the a-th random variable is 0 and the
firstα-1 random variables sum up to b. S让lce these events are exclusive,
the probability T(α ， b) is the sum of the probabilities of these two events.
To be precise,

T(矶的 =T(α- 1,b- 1) .Pα 十 T(α -1 ， b) . (1 - Pα) .

TI的ase cases for the recursion are T(O ,0) = 1 and T(O ,b) = 0, for b > 0.
Therefore T can be computed using D卫 Since bothαand b take values
from °to the number of races and computing T(α ， b) from earlier values
takes constant time, the complexity is quadratic in the number of races.

Solution 3止 Let L(α ， b) be the maximum load on a server when users
with hash hI through hαare assigned to servers 81 through 8b in an op­
timal way so that the max load is min让nized. We observe the following
recurrence:

write the follOWing recurrence relationship for P and Q:

135

Usi吨 these equati?mr yve can tabulate the values of p ad Q for dl
gates and our mswerm gomg to come from the maximum of the values
of P md Q-for the gate at the root of the tree-SiRce we perform om
stant ope…。…pergateFhomdlcomplexityis qqrwhere Gisthe
number of Q:ates

Solution 3.9:We can formulate this DP ha mazmer similar to Solu­
ti023.8.For each RodeF we tabulate k values.Let lV(叭。 be the m;

umber ofb斗的rs needed for the s由tree rooted at node u, if the
first buffer above thm I1ode appears Jor more hops away.The recurreIIce
relationship can be defined by

N(时)工三;mi口 (1 十 N(c， k) ， N(c， m叫十 1 ， k)))
cξ I(叫‘/

P(g) = 1 十三二 Q(γ)

Q(g) = 2+艺 min (P(γ) ， Q(付)

we cm tabulate the value of N for all Rodes fromthe leaf to the root
for all values of l 三 k. Ther口1 N(价γ， k均)， where γi妇s the ro∞O创t， i担s the mi讪nim忖…仇…吨
n阳1

the overall c∞omp抖lex刘it吵yi扫S O(G.k)r where G is the I1umber of gates-

30lutionuo:Let's labeltf盯臼tices of the polygon 1, η凡F 阳
trom an ai由b阳r小yv刊ver阳叫wal必山k阳it鸣 cloα伽wis优e. Letω叫C(p阳1 ，·.. ， P仇叫p肌川kρ)川bet由h
C∞os挝t of t创rian丑19伊ula凶a挝ting the poly陌go∞IR1formed by vertices Pl through p肌k. Let
L(α-b)be th lmgth of the straight lhe drawI1from vertex αto vertex b.

Now:, we kn?w that if the 丑numbe町r of ver盯rt忧t
O臼r les战S岛F the costmzero.Consider m edge (P47P忡1). One of the tria‘

击扭ii;:哇:22:2i:市i言j;引!f叮:1i圳咀击;击吕:i咄i♀击l击:击拮;;击盟::!i咄;:2吉:i占:E;
;凹j古剖z扭监:吉i击部册号引i;扭;拮f咔iE:E旦耻:古:;z江咀业;i叩吉峦挝j2j卅E窑;

CHAPTER 3. META-ALGORITHMS134

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

136 CHAPTER 3. MELιALGORITHMS

we can write the following recurrence relationship:

A(p1 ,'" ， 如) = x:在tLK(
A(p3' … ， Px) 、

十A(px ,' . . ， Pk ， P1ωp且叫1ο) 十 L(ωP1 ， P2叫P2ω2ρ) 十 L(ωP1 ， P品叫Pxω♂ρ) + L(ωP2 ， P品叫Pxω♂ρ)

If we tabulate the cost of tria盯ng兽u过la挝ti讪or口1 of each polygon t白ha挝t is a result of
P抖icαkin口19 subs优equer丑ltpo扛1吐ts 0∞I口1 the or培i妇I丑lal polygon, we would need to do
this for roughly n2polygons.If we have already tabulated the value for
all smaller polygomr it will take us O(n)time for doi吨 so. Hence we
ca口 compute th;minimum cost in O(n3

) time.

Solution 3.11: We focus on the case where all the operands are nonneg­
ative integers and the only operations are· and 十-

Represent the expression 心o 00 V1 °1 … °n-2 υ饥-1 by arrays V =

[υ0 ，..' ， Vη-1] and 00 , . . . ,On-2'
Let MaxHJ]denote the maximum value achievable by some pare开

thesization for the subexpression Vi 0i Vi °i … OJ Vj , where Max[i , j] is just

V[i]
士he key to solving也is problem is to re吨nizethatifopemti。…i is

performedlastr the subexpressiomuo OOU101···otJU4-laRGU忡1 u忡1

-o q U---l must be parenthesized to be maximized hdividually-

I4;且}?卢卢;乌马}马Mr时牛t
i in [0 ， η 一 2刽]， so

Max[07n-1]=max Max[OJ]04Max[i十 1 ， n -1].
4ε [0 ，n-2]

The totalnumber ofrecursive calls is O((2))md each callrequirfs oh)
additiomlcomputatiOI1to combine theresultsrleadingto mO(nd)algo-

rithm
EfiicieI由 computing this 肌

suI让ts be cached. In code:

1 Ipublic class Par阳e丑

2
3
4
5
6
7
8
9

10
11
12
13

int [] V;
char []句;

int [] [] Max;
boolean [][] valid;

public Parens(int [] V, char 口Op) {
this.V = V;
this. Op =句;

137

456789012344567890123456789012345678QJ0123456789012341i1i1···A1

...
‘

1
i
1
i

勺
血
勺
』
呵
，
，
"
呵
，ι

呵
4

呵
'
'
'
-
句
牛
呵
，
，
』
勺
'
』
勺

h
q
u
q
u

呵
3

呵
3

巧
3
q
u

呵
J
q
u
q
u

呵
3
4
4
A

吐

A
吐

A
吐

A
吐

A
吐

A
t
4
4
A

『A
A

哇

"
3
p
h
J
F
3
F
3

户
3
m
D
m
h
d

严3
F
3
"

。

f
O

民
U

瓦
U

民
U

瓦
U

public int maxExpr(int begin , int end) {

if (valid[begin][end]) {
return Max[begin][end];

if (begin == end) {
Max[begin][end] = V[begin];
valid[begin][end] = true;
return V[begin] ;

if (begin + 1 -- end) {
M叫begin] [end] = (Op [begi叫== '+') ?

V[begin] + V[end]
V[begin] * V[e丑d];

valid[begin][end] = true;
return Max[begin] [end];

int max = Integer .MIN_VALUE;
in t candidateMax = 0;
for (int i = begin + 1; i < end; i++) {

int lMax = maxExpr(begin , i);
int rMax = maxExpr(i +1 , end);
if(句[i] ==十，) {

candidateMax = lMax + r孔1ax;

} else {
candidateMax = lMax * rMax;

max = (max < candidateMax) ? candidateMax : max;

Max[begi旦] [end] = max;
valid [begin][end] = true;
return max;

public int maxExpr ()
int N = V.length;
Max = new in t [N] [N] ;
valid = new boolean [N] [N];
return maxExpr(O ,N-l);

public static void main(String [] args) {

int [] vi = {1 , 2 , 3 , 3 , 2 , 1};
char [] 01 = {'+','*','*','+', '+'};

Parens expl = new Parens(址， 01);
System. out. println ("Max..... value.....of.....expression..... is :" + expl.

maxExpr ());
65
66

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

For the more geI1eral casesr we need to keep track-of the mhiII111m
q竹d maximum values as well as the positive andmgat1ve values closest
z二臼OEMIakestheeodemorecomplicatedb时 does not伽咿伽
character and the complexity of the algorithm.

Solution 3.12: We 民heduletutors gmdi137:as soomsthereis arequest
that cannot be handled by the previously assi伊ed tutors, we choose a

new tutor
Mile it is simple tOi均m呻pIe臼钮I红me

, ial t怡o prove t白:ha挝ti让ti妇s opt柱imum，λi. e.， we cannot cover all the requests with

fewer tutors
II1order -to prove the optimality we will defhe the RotiOI1of slack.

Consider a set of requests j1 ,… ,jn such that the requests are ordered
by the time they Reed to be done.Let S(j)aRd E(j)be the starthgand
ending time for request j. Let ti ,… ,t m be the times when w
tutor, ordered by time.

Defimthe t年时he last tutor assigned has available after his last re-
quest is fulfilled as the slack h the schedule.

we clam that greedy scheduling is the optimum scheduling.We cm
prove this ushg inductiOIIover the RUmber of requests;for our hdue-

ωhipr:1口t:旦旦JIZJZZzt口trystEi
i注rLe臼叫-d叫呻可d句句巧yy归川fj凡Faa栩1
q刑ue臼st飞; clearly this is the s时trat怡eg盯yt白ha挝tuses them丑lin丑lim丑lum

;nrl no more slack is possible.
…工keγ"i硝咀mme 也伽a挝tt{tht仕白创hi让臼is s州t恒tat挝ter宜me
τ"lATρ 俨叫>ln TIl可'woηo】w飞vθ this for η = k+laωs follows: cor丑lS目ider the requests Jll' . . ,Jk
;μLJ函二马马江λ4马j; t血thie白i让r start缸盯硝r时M‘t忱t忖叫t柱ime.CωO∞ns回S副e巾at tι .. ，品t阳mar削.

Ched1u1led the tutors to cover these requeStS based OR the greedy strat­
eg肝vλ'.Now吼~ when we add the ne曰ex对tr妃eques时t jk十札1 tωo the list挝t， either it can b快e

二杀vered bv s乱la配cko创ri让tma叮yrequ山i让r妃e a new tutor.
h the;ase the 阳/11 request can be cove时 by the slack, clea句 this

is the optimum solution (if we needed atleast m tutors to cover the first
YBy we cazmot cover the k 十 1 requests with fewer tutors). Also,

C芷工ρ， sir啪i让in丑1叫盯chedu址ωl
;马址Lii丰.a也 W附ec卢10仗th阳a趴盯飞veabe阳 schedule with川阳s that cover all k 十 l

requests and have a bigger slack.
meed to pick m additiOI1altutor for the k +Lth requestr

it must be that the m-th tutor did not have the slack to cover the last
reauest. If there is 缸1otherway to cover the requests with m or less tutorsr
themvecanusethesamesetofMtomtocoverthefirst kr叩ests md get

itztmzrzfC乙:11:r223$7323LZL
must maximize the slack.

138 CHAPTER3. MEnι.ALGORITHMS 139

Solution 3.1η3: Let's say t也ha挝t the time for t出he创t←付-斗t也hcus店st怡om丑le臼主rt怡o be serviced
i坦SCαi. Ther川hewa剖i让tin口吨g♂μt柱ime for t也hecus仗t怡ome町r Ci川耳m气

sum of all the wait times would be

L三二 tej = 2二凡 i

Since we want to minimize the total wait time for all the customers
and CiS must take values from 1 through n, it follows that the customers
who take the smallest time must get served first. Hence we must sort
the customers by their service time and then serve them in the order of
increasing service time.

Solution 3.14: Huffman coding is an optimum solution to this problem
(there could be other optimum codes as well). Huffman coding proceeds
in three steps:

1. Sort symbols in increasing order of probability and create a binary
tree node for each symbol.

2. Create a new node by combining the smallest probability nodes as
children and assigning it the probability of the sum of its children.

3. Remove the children from consideration and add the new node into
the sorted list of nodes to be combined and repeat the entire process
till we have a single rooted binary tree.

0日ce we have the rooted tree, we can assign all the left edges as 0 and
the right edges as 1. All the original symbols would be the leaf nodes in
this tree and the path from root to the leaf node would give us the bit
seque口ce for that symbol.

Now, we need to prove (1.) this encoding is optimum and (2.) find a
fast implementation of this algorithm.

For implementing this idea, we can maintain a min-heap of candidate
nodes that can be combined in any given step. Since each combination
step requires two extract-min and one insert operation that can be done in
o(log n) time, we can find the Huffman codes in 0 (ηlog 叫 time.

We can prove the optimality of Huf缸lan codes inductively. For a sin­
gle code, obviously Huf缸lan codes are optimum. Let's say that for any
probability distributio旦出no口g n symbols, Huffman codes are optimum.
Given this assumption, we will prove it is true for n 十 1. Suppose there
is another encoding that has a smaller expected length of code for some
probability distribution for n + 1 symbols.

For any encoding, we can map the codes to a binary tree by creating
the null string to root and adding a left edge for each 0 and a right edge
for each 1. We can make several observations about this binary tree:

- Each symbol must map to a leaf node; otherwise, our prefix as­
sumptio且 will be violated.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 3.18: If there is some point on the circle that is 口otco日tained in
at least one of the n arcs, then the problem is identical to Problem 3.17. So,

Using a balanced BST, we can implement the search for minimum,
insertion, and deletion in O (1og n) time, yieldi吨 anO(nlog叫 algorithm.

Solution 3.17: A covering set S must contain at least 0日e point x such
that x 三 bmin = min{b i }. Any such point covers the subset of intervals
[αi ， bi]， 向三 bm切 • Of course, bmin itself covers all such intervals and so
there exists a minimum cardinality covering that contains bm阳 and no
other points to its left. Consequently, the following procedure computes
a minimum covering set S:

Solution 3.16: This can be t由ial悖 done in O(的 time if we do a linear
scan for the boxes for each new object to find the first box where it would
直t

In order to speed things up, we can maintain a list of boxes where a
certain capacity is available for the first time. For each box, we keep a
record which contains the remaining box capacity and the box number.
We will maintain a sorted list of boxes, first by box capacity, then by
box number. When we receive a new item, we look for the first record
with capacity greater than or equal to the item's weight. We put it in
the corresponding box, update its capacity, and reinsert it at the correct
position. In order to maintain a sorted list, we can use a balanced binary
tree such that find, delete, and insert are all 0 (log 叫 operations.

1. Sort each operation by the probability of its occurrence.
2. Iterate over all possible binary tree structures with ηleaves. Map

each left edge in the binary tree as a scan down operatio口 and each
right edge as a clock to open sub-menu operatio孔

a) For each leaf, compute the time it takes to reach the node
(number of left edges + c times the number of right edges in
the path to the node).

b) Sort the nodes in the order of time it takes to reach it.
c) Map the actions to the nodes such that the highest probabil­

ity action is mapped to the lowest visit time. Compute the
expected visit time to the nodes.

3. Find the tree structure that has the lowest expected t让工le to visit.
The number of u日ique binary trees with ηleaves is roughly 0 (2η.

141

i in I

1= {1, 2 ,.", n};
s = {};
while (I != {}) {

bmin = min {b [i] I
s = s + {bmin};
I = I 一{ i I a [i] <= bmin

t
i
q

』
句
J
A

且
工
阳3
r
O

叮
/

Solution 3.15:This problem is very similar hstructure to the Huffmm
coding problem above if C Z1·If we represent each click on the sub­

rl11nnρ1"::lti0n … 1j卢nde侃ach刊S町candωownωO叩peratio∞naωsaω0， then t也hep严at也h1

menωE飞;mmu让ζ廷;L1Cm川b悦e repres创
!?;工:工Lωore臼邸ωa缸时cheachmen臼enl丑m川1孔1
St仕tring
suωchι1
户M州thr恤恤工丑1川t饥O川C∞Oωmmeu」P Wi拙t址白hf阳he咀时e bit-s咄t仕ri问丑吨咿g驴sf伽O倪r each actionα∞1 an削d 也均?中口 b讪ui削ldd

tr阳nenu system based 0且 these st血gs， we would achieve the minim
expected time to ir市ra可 γith the menu.

WheRC > litIS SIII11lar-to the case where there is m asymmetnc
cost for a 0 and 与 lin 加 code (formmPIer itmquiresmorepowerto
tmImital仕 0ω). Ther陀e 恒M川丑no\'ω，wnp邮omial恤esωolutio∞I丑川1叫f如or

怡 C脱 Belιωι1hOJr了;斗二 d伽e创sc伽 a缸mωI丑n algo伊orit吐恤t
t缸lme巳:

。/i了 ?7工tT;:1.SZEZF(f.(?LLt功1752U L
otherwordsrHuffmaRCodingisoptimumforTL+1symbols

There 〓ImotbeaI1OIIleafnode thathasless thantwo children (othm
;;wise飞ecand创e the node and bring its child 0∞I丑ne曰el叫u叩pan口1

h挝e丑Cαer扫edωuc臼e the expected code Ie吨th).
-If we sort the bMary tree leaves h order of tkeir path leI18hsr the

hvo longest paths must have the same le口gth (since the parent of
the leaf with the lOI1gest path must have aRother-child)·

-The two IIodes with the lOI1gest paths h the tree must be assigled
to the WO Wmbols with the smallest probability(otherwiserwe cm

一;口ztzztt;221:;223:1:出d replace

z:tJZZZL;331ZZ;212:27:巳飞;1:;22zzt
irmzusthavethe same叫ected code 1叫thas胁 treewh
izetethetwolowestprobabilityI叫es (otherwi凡 we can use协

optimmtmmdreplace itwiththe 0147mL
RTOW OI1sider that the symbols have probabuMS P15二 P2 三… 5二

字叫:;fk叫;;二EZffjyrrzizz;江口JZ
for HuffmaIICodhg.Sor we cm easily see that

MEL生-ALGORITHMS

H(Pl'… ， Pη十1) 工 H(pl，'" ， Pη-1 ， Pn 十 Pn十1) +P饥十 Pn十1·

。(PI ， … ， Pη十 1) = O(pl ,' . . ， Pn-l ， Pn 十 Pn+l) 十 Pn 十 Pn+l·

The way we construct Huf如lan codes we know that

CHAPTER3.140

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

suppose this is not so. Without loss of generality, we may assume that
a minimum cardinality covering set S contains ∞ly right endpoints of
arcs, i.e., "clockwise" right endpoints. There are n such endpoints. If we
choose a given right endpoint and eliminate all the arcs that are covered
by itt the remaining problem is identical to that in Problem 3.17. This
means we can solve the arc-covering problem by n calls to the algorithm
in Solution 3.17/ yielding an O(η2 log n) algorithm.

Solution 3.19: Suppose our algorithm computes the clustering 0 =
{Ob O2尸 • • ,Ok}. Suppose 0 is not optimum, i.e., there is another clus­
tering P = {P1 ,P2 ,. . . ,Pk} which lowers the separation. Since 0 and P
are distinct, there must be some pair of objects 风 b that are assigned to
the same cluster in 0 but different clusters in P-otherwise, either 0 and
P would be identical or some 只 would be empty, which was explicitly
disallowed.

Let u ,v be the last pair of objects th挝 we merged in our algorithm.
Suppose x ,y were the next pair our algorithm would have merged if
we had performed one more iteration, i.e., computed a k 十 1-clustering.

Observe that d(x ,y) is the separation of 0 since x and yare a pair of
closest objeω 口ot in the same cluster.

Now, our algorithm has putαandbin the same cluster, there is some
set of pairs of the form {(α ， 81) ， (81,82),.. . ,(8l- 1 ,8l) , (8l' b)} that our al­
gorithm selected. (It may be that the set is simply {(α， b)} if we direct与

selected d(α ， b).) Since αand bare in different clusters in P/ one of these
pairs, call it 乌 must be in distinct Pi and 乌. Therefore the separatio口 of

P is at most d(吟/ which is no more than d(u川小 Nowd(叽 v) is no more
than d(x ,y)/ which is the separation of O. Therefore the separatio口 of P
is no more than that of 0/ contradicting the choice of P. Therefore 0 has
themaχimumseparatio口 of all k-elusterings.

Solution 3.20: We compute the optimum invitation list by iteratively re­
moving people who cannot meet Leona/s constraints until there is no one
left to remove一…-the remaining set is the unique maximum set of people
that Leona can in飞rite.

Specifically, we iteratively remove anyone who has fewer than six
friends in the current set or anyone who has fewer than six people they
do not know in the current set. The process must converge since we start
with a finite number of people and remove at least one person in each
iteratio孔 The remaining set satisfies Leona's constraints by construction.

It remains to show that the remaining set is maximum. In fact, we
showsome

142 CHAPTER 3. MELιALGORITHMS

143

in which the people were removed.
The first pe斗。口 Pl femovedw as T陀阳ren臼钮I宜mo

fewer than丑1 six fri口‘'len卫1d出s in the en丑1t旧l江叮re set or the r丑1飞urnη卫1一be盯r of people P
1

did

;尘2;且尘:z:U::;:J芷;过ttti泣:ζz;二;:2::且乌」2:立;??!?严讪eιω10问O∞叫口吨gtωo an叫丑叮y口阿S促e叫a挝t
Inductively，与sume the f白irst i 一 1 perso丑ns

to ar丑1y set that sat杠isf扛ies the cor丑1straints

Consider 1亏/ the i-th perso e. It must be that either fewer

52521133iFFF叫:54122:丘
e 't-th perso日 removedcannot belong to a

maximum set and induction goes through.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 4

Algorithm.s on Graphs

Solution 4.1: Model the maze as an undirected graph. Each vertex cor­
responds to a white pixel. We will 让ldex the vertices based on the co­
ordinates of the corresponding pixel; so, vertex 叫 ，j corresponds to the
matrix entry (i, j). Edges model a句ace丑t pixels; 吼叫，j is connected to
vertices Vi+1 ,j , 叫，j+1 ， Vi-1 ,j , and Vi ,j-1 , assuming these vertices exist­
vertex Va ,b does 口ot exist if the corresponding pixel is black or the co­
ordinates (α? 的 lie outside the image.

Now, run a DFS starting from the vertex corresponding to the en­
trance. If at some po扛lt， we discover the exit vertex in the DFS, then
there exists a path from the entrance to the exit. If we implement recur­
sive DFS then the path would consist of all the vertices in the call stack
corresponding to previous recursive calls to the DFS routine.
古lis problem can also be solved using BFS from the entrance vertex

on the same graph model. The BFS tree has the property that the com­
puted path will be a shortest path from the entrance. However BFS is
more difficult to impleme时 than DFS since in DFS, the compiler implic­
itly handles the DFS stack, whereas in BFS, the queue has to be explicitly
coded up. Since the problem did not call for a shortest path, it is better to
use DFS.

Solution 4.2: If you traverse the binary tree in BFS order, then you are
guaranteed to hit all the nodes at the same depth consecutively. So, you
ca丑 build the linked list of all the nodes as you discover them in BFS
order. While traversing the tree, we also need to know when we move
from nodes of depth k to nodes of depth k十 1. This can be easily achieved
by keeping track of the depth when inserting nodes in the queue.

Solution 4.3: First, we consider the problem of checking if G is 2::1­

connected. If G' = (V,E 一{(u,v)}) is connected, it must be that a path

145

exists uetween U mdu.This is possible iff U mdulie 0日 a cycle in G.
Thus G is 2 ::1-con丑ected iff there exists a cycle 扛lG.

A We cmchec二 for the existence of a cycle in G by running DFS ∞ G

FZEES;222iZ 芦;乙:二ttt旦出口2
二 γ- -………·

The complexity of DFS is (|VH|El);however h the case described
abover the algorithm rms h OOV|)time.This is because m undimeted
gmppwithmcyclesmhaveatmost iV|-1edges
川ow， γe consider the problem of checki吨 if G is 2'11-connected

Clearly}G MotF-cmmeted iffthere创sts an edge e such that G' =
(V， E 一 {e}) is d肌0日nected. The latter condition holds iff there is no
cycle including edge e.

We can find an edge (叽 υ) that is not on a cycle with DFS. Without
loss of ge?erality>assume u is discovered first- Observe t白h旧耐a挝tt出h飞ere阳et主 V 咀d1
of (队u叽叩川7川J冽tυ吟j少)问dis眈S配conne仅ct怡s G i证f旺f 侃re are no back-edges b伽m u OJSdz
cendants to u or u's ancestors.

Define l(υ) to be the mit由工lum of the discovery time d(υ) of υand
d俨) forωs叫 that (t ,w) is a b础-edge frot叫 where t is a descendant
or v.

We claim l(v) < d(吟出 there is a back-edge betweenυor one of v's
desceMmts to U or om of ds ancestoys-If l(υ) < d(υ) ， then there i
path from Uthrough ORe of its descmdants to m aIrestor of tYF i e-r tj lie
omcycle Ifb)?d(吟怕它is no way川的 fror川 backtoujmCe
removal of (u ,v) d肌onnects u andυ.

Now, we show how to compute l(υ) efficiently: once we have pro­
ed all of v's children, then 刷工 min (d(吟 miIlzdildof U J(z)] This

co!工lputatio日 does ∞t add to the asymptotic complexity of DF§S
1tmmst a comtaI1t additional work per edger Sωo we can check 2汩'11­
or口1I口le仅ct怡edt丑less in lin丑lea盯r-吐-

Solution 4.4:Assumhg the pim are mumbered fyom Oto p-L create m
directed graph CO叼 vertices Va , . . . ，与 1· Add an edge b伽een 叫

to 巧'if phs t md3are connected by a wire.
Assume for simplicity, G is connected; if not, the con工lected compo幽

nerlts cm be amlyzed hdepmdeIItly.
Run BFS 叩 G starthgwiithυa. Assignυa arbitrarily to lie 0且 the left

half.AIlvertes at m odd d1stmce from υa are assigned to the right half.
When performing BFS on m uz1directed graphy all mwly discovered

edges will either be from vertices which are at a distance d from mto
undiscovered v创ces (which will 出en be at a dis阳ce d 十 1fr mUJ
orfromveyti?eswhich are at a di时mce dtoverticeswhichare also at:
distance d.Fzstr assume we I1ever encOURter m edge from a distmce k
vertex to a distarIce k vertex.IIIthis caser each wire is from a distance

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 4.6: Let v be any vertex in G. Consider an Euler tour T of G.
Each time the tour enters 切让 must exit v by a different edge. Further­
more, each edge must be entered exactly once and exited exactly once.
Hence we can put incoming edges and outgoing edges in a 1-1 corre­
spondence, so the in-degree and out-degree of v must be equal.

Conversely, let the in-degree and out-degree of every vertex v in G be
equal. Construct an Euler tour as follows: start with an arbitrary vertex.
Use DFS to explore from this vertex until a simple cycle is found. Such a
cycle must exist since we can never get trapped in a vertex-if we entered
a newly discovered vertex, we can always exit it because of the constraint
that in-degree equals out-degree.

Continue do让19 this till all the edges have been partitioned into dis­
joint simple cycles. Now, merge these cycles as follows: start with any
cycle. For 缸1y vertex on the current cycle, find a cycle that it is in, which
is not the current cycle, and add a detour to this new cycle. Iteratively
add cycles to the current cycle.

We claim that all di司oint cycles must be merged by this process. If

k vertex to a distance k 十 1 vertex, so all wires are between the left and
right halves.

If any edge is from a distance k vertex to a distance k vertex, we
stop-the pins can丑ot be partitioned into left and right halves as desired.
The reason is as follows: let u and υbe such vertices. Consider the first
common ancestor αin the BFS search of u and v (such an ancestor must
exist since the search started at va). The paths Pa ,u and Pa ,v in the BFS
tree from αto u and v are of equallength; therefore the cycle formed by
going from α to 马 then through the edge (仙u叽叩?川， vυ吟j

u viapaα叩叩?卢川v has a扭丑 odd leI口19t白h飞. The vertices in an odd Ie口gth cycle cannot
be partitioned into two sets such that all edges are between the sets.

Solution 4.5: It is natural to model the network as a graph: vertices
correspond to individuals and an edge exists from A to B if B is a contact
ofA.

For a工1 individual X, we can compute the set of X's co口tacts by run­
ning graph search (DFS or BFS) from x. Running graph search for each
individualleads to a O(IVI· (IVI + lEI)) algorithm for transitive closure.

Another approach which has complexity O(IVI 3
) but which may be

more efficient for dense graphs is to run an all-pairs shortest path algo­
rithm with edge weights of 1. If there is a path from u to v, the short­
est path distance from u to v will be finite; otherwise, it will be ∞. We
can further improve the shortest path calculation by simply recordi口g

whether there is a path from u to v or not; in this way, we need a Boolean
matrix rather than an integer matrix encoding the distances between the
vertices.

146 CHAPTER 4. ALGORITHMS ON GRAPHS
147

且OtF tkere must be aIIedge (PFq)ma simple cycle S that iSROt h the
ycle C our process has conv?rged tor where p appears iI1C (such m

edge exists because tke graph ls comected)·We cm mt

sttztzzuzzttjrdfi注:
lso hnearmtimey so the algorithm isheaFthe- 吕

sol-tion43:Modelthe FSM as a g〈叩h-each state s corresponds to a
distinct vertex vs . τT1e edge set cOIUISts of precisely those edges which
omspoM to potential tramitions betweeI1states;speci且cally， (vs ， 问)ε
Ei白T(s， i) = t. Wew川er叫at…

阳JdY飞O;汇:芷:工口2;骂!号挝;达边在忠岛;:;C;2= 芷C;r1可z飞22:ι工;:;::rr四τ ;注注
!rT?γ叫讪h削ich且U比1川1 is妇s the 归k of们fμt由his DAG) ma叮yt甘主ran
t is in an丑1d or口nc汇C臼ei让tis ou时1址t， i扰t will I丑10仗t return. Conversely, all states within

the shk sccs caI1retum to themselvesr so the states h the shk SCCS
e precisely the Ronephemeral states;the compleme且t of this set is the

desired set of ephemeral states.

me SCC DAG of a graph cm be computed h linear-time kom tke
graph model and the graph itself cm be cORStmetedh lhearmtime from
the FSM, so the whole computation is linear.

Solution 4.8:We cm compute the diameter by rumhg BFS from each
vertex aM recording the largest shortest p时h distance. This has 0 (巳IV川I·
(IV川l 十 lEI川)沙) = O(引IV川1 2) C∞O血P抖Ie臼仪x尬〈

;注:二;:!击击引2击拮;注:茫i?::守T工r町C剖町:;罚巳吼町飞YJz峦12;咒出叫:立古:2;口口口?兀汇:z芷::;
e s· ?es rooted at 巾 children are T1 • 7巧与 T

m
. Let

d仇1 ， d也2 ，·..， d句m be 血阳e川1aI口me

Letλbea剖long创pa由午T. Eit白he盯r均asses t由hr甘1rOlα1
i让tdoes丑O创t pass through γ飞， 1扰tm丑lU洒S仗t be entirely wi垃thin口lone of the m subh二二.…- 一 S

r ;汇;工:;口2巳口:::出芷泣;;盯1节吭!士t:口拮出出:2芷出:5立:z:江江工川::;ι;工= ?:;二;r口口r口川fztU可;辽:;U;L斗山山i4血ιι22飞U?」iιι〕dd卢卢叫.i二4i二4二斗i
sub切tr陀ee臼s t由ha挝t are farth?st from T-The distmce from T to the vertex h Z
thatis farthest from itl?simply A=仇+ 1. The 10吨es时tIe吨t白hpa挝thinT

is节;z:咋t立t;工立::;;击?古:z:立:2zS:工立:2:1iιf己己巳;:乞U7飞liU叫i44Jfι飞写;;且;;丘飞ZO寸J2?!烹T?3艺穹?:fr?Tt f九
an丑nd们the 1趾a缸盯r咿‘

por时叫tiOI叫 t怡O the S1ze of the treer i.e-r OOVO- omplexity is prom

Solution 4·9:Assume thehputs to the I1etwork stabilize at time 0.we
are tryhg to bOUI1d wheRthe prh1ary outputs stabilize.

Suppose gate g has a delay D(g).Itwill staUilize atI10
time巾 all its

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

each gate has stabilized by processing gates in topological order, starting
from the primary扛lputs-foreach gate, we can bound when it stabilizes
since we have already bounded when its inputs have stabilized. Topo­
logical ordering for a graph can be computed in 0 (η 十 m) time, where n
and m are the number of vertices and edges in the graph.

The value we compute is an upper bound and may not be tight be­
cause of logical relationships between signals-for example, if one of the
inputs to an AND gate is 0, then the output of the AND gate will be
independent of the changes at its other inputs.

Solution 4.10: Let A and B be n-dimension real vectors; write A < B if
A[i) < B[i) for each i. The < relation is transitive.

Let (X l, X2 ,… ,X20) be the heights of the p抖la叮yer白s in Team X an口1

(肌U仇bYν2,· .…川.川， Y仇州νω阳削2囚纠Oω) be the heights of the players in Team Y. The key
obser飞ration is that Team X can be placed in front of Team Y i任

50RT(Xl ,… ,X20) < 50RT(Yl ,… ,Y20).

Now, we define a DAG G with vertices corresponding to the teams as
follows: there is an edge from vertex X to Y iff 50盯(X) < 50RT(Y).

Every sequence of teams where the successive teams can be placed in
front of each other corresponds to a path in G. To find the longest such
sequence, we simply need to find the longest path in the DAG G. We
can do this, for example, by topologically ordering the vertices in G; the
longest path terminating at vertex v is the maximum of the longest paths
terminating at v's fanins concatenated with υitself.

The topological ordering computation is O(IVI + lEI) and dominates
the computation time.

Solution 4.11: The most obvious approach is to start with an arbitrary
two-coloring. If it is diverse, we are done.

At this poinιa natural approach would be to look for a nondiverse
vertex v and flipping v's color but this can result in some of v's neighbors
becoming nondiverse.

To prove that this approach works, we look at diverse edges-edges
between vertices of different colors. We claim that a coloring that maxi­
mizes the number of diverse edges is also diverse.

If not, suppose x is not diverse. Without loss of generality, suppose
x is white. Then by changing x's color to black, the number of diverse
edges strictly increases (since x had more white neighbors than black
neighbors) .

Therefore a coloring which maximizes the number of diverse edges
yields a diverse graph. Such a coloring must exist: because the graph is
finite, there are 0口ly a finite number of colorings. We can construct a col­
oring by starting with an arbitra

148 CHAPTER 4. ALGORITHMS ON GRAPHS
149

Solution 4.12: Usuall悖yD臼叫i习jkst甘r‘?可?卢'ssho臼ort时t怡es挝tpa挝thalgoω创rit白hm宜n uses scalar va挝1­-
创Oωre叫dg萨el吨t由h.How阳e飞阳 1让tcan丑川le臼邸a臼S均b悦emodif证fi拴ed tωO 阳 casew咄h怡eree

edge weight is a vector if addition an口ld comparison can be defined over the
vectors. In this c臼as盹e鸟， if the e叫dg伊ec∞os挝t i扫S 乌 we say the length of the ed内吧e
:出;￡;V;;吕J且:;r:「e :芷rzrtOr寸{飞γ;?f7Jl均). wi悦ed创efine a叫d刷dd仙d出itioαI叫 U快问e叫咔j如阳us瞅1店脱S挝kωtcωC∞叫O臼om宜m口npo

I丑nc妃Cαe It we sum up the edge len丑gt由hs over a path, we
esse口tial与 get the total co卢 and the 于umber of edges in the path. The

mpare flIIICtimcm bemst the lexlcographic(first by the total costr
thm 』y the number of edges)·With thisr we cm ylm Dijkstrays shortest
patAalgorithm md fiI1d the shortest path that requires the least I1umber­
of edges.

?OM
torming a BF囚S-t吵ypec∞omηlpU时1坟ta挝tiOI丑1 starting a挝t u.

Co工卫1回回S剖ider the set of 飞vertices Sk一1such that for any vertex α ε S俨k-ll the
址由山1旧O臼rt创 di

t由ha挝tthe s由ho创rt祀es时td创IS挝tan丑lCαebe吐twe臼eI丑luandυi扫s k. If we know the number of

zttiz;242UZZUdztt
for all verticesαεSK-1that also have m edge tou.This is becau
each distinct path from u to αalso gives us a distinct path from u toυby
simply adding出e edge fromαtoY to the path

BFS runs in linear-问ea叫 assumingwe store the number of 由ort­
es7 a!h from intem ed1ate vertic吨 the c∞omp归川u时tati
I丑lOde 1臼s proportional to the I口numbe凹r of its outgoing edges. Hence the
complete algorithm runs in linear-time

Solution 414:TKis is m Np-complete problem md hmce tker JnnA

Z2232口121232Litzrt坦白:rt
approximate theprobabilitiesr thmthis canbe solved dkien啡。

It is mtIIral to solve this problem ushg dyI飞缸nic programming-we
iteratively compukthe matrix lifthJ)which is the shortest path dis­
:rzzvert1ces Sm叫d们t叫叫
e仪xa缸ctl悖y k.mce is at least p and themmber of edges h the path is

Given M;(8 ,t) , we can compute 1'\11;+1(8 ,t) usi吨 the recurrence

M;+1(8 ,t) = mi丑pfuε220)(MKSJ)lidJ/pr(uj))·

mere are m infinite mmber of values for pmy real mmber h [071i­
In reality, there are 0丑l与y a fin丑时1让i让te I丑lur

:d缸缸e臼臼主r‘ t仕由hos优e叩叩叩P严严r‘O伪ba均削bi!丑出l且itie臼s. Howe飞叩he nun
expo丑ent世ia址1 ar丑ld each pa挝th can have a d出is挝tin丑lC仗t probability, so it is

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

I10t realistic to consider the possible set of values for p.KISteadr we cm
恒ke the appro础 of binning: we compute M; for a range of values for

p, e.g., p = l~O' n = 0 to 100

Solution45:LetFsmodelthemap as a gmphG=(KE)suchthateach
[is represe时ed by vertex Vi 巴 V and an edge (v， Vj) ε E exists iff

there is away to go fromroom t to roomj.Let ke)be the length of the
orridor represented by the edge e.

The key idea here is to assig1each room m expected time to the trea-
sure room when we follow the opt让丑al strategy. Let's say for room i, the
expected time to the treasure room is t(i)·Then for a mmpedal room
4 二 we would always pick the next room to be the OI1e that gives us the
small创 expected恤e to the treasure room. Hence for阳

t叫仰削(i价i) 工 mωi恒I丑~p(们J叫((i队ω， j)) 十 t叫(ωωjρ))
j:(ω)εE\/

On the other handy for the special roomsr the expected tkm is gohg tobe
仕1e average of the expected times through all the outgohg edges.Hence

for special room i

t(i) =叫川EE(l((i， j)) 十 t(j))

Also , if the treasure roomis vertex sr thent(s)=0.Usingthese relatiO口­
sl均ir we can compute t(Ofor each vertex i by hitializi吨 t(i) = ∞ for
all nodes忡 8 and t(8) = O. Then we apply the relaxati∞ for each node
based on one of the Wo above equations.Since this graph is a DAGy af­
ter IVI steps of relaxatio口， we would reach a fixed point. This algorithm
would have a rur由ne of O(IEI . IV\) since each relaxation phase t切ak阳e臼S

[词再Lti工宜me
t怡op严ologi庐ical sωor址t of the graph b均Y st恒ar时ti坦I丑19 a挝t 丑∞od出e 8乌， and then computing
t(i) for node i in topological order.

Once we have all the values of t computed, if we are in any room
where we have to make a choice, we choose the corridor that minimizes
the expected t让ne to the treasure room.

Solution 4.16: Consider a directed graph G = (V,E) , where the vertices
respond to the cities. Each pair of ci恼 isconnectedbymedge-
Every plan corresponds to a cy出 intl时rapha叫 vice versa. S

medtofiad acyclewhichmaximizes the rat10 ofprofltfor alljobs OMhe
cycle to the cost of perforrr由g the jobs 0川he cycle.

Let ρmaxbe the maximum ratio achevable-We cm fhd pmaxby 伊ess­
ing a ratio ρand seeing whether it is too large or too small.

Let pbe aay pOSHive realIIUmber-Give each edge e =(tJ)aweight
of p·c(e)-p(j), whre c(e)is the cost of taki吨 edge e and p(j) is the

150 CHAPTER 4. ALGORITHMS ON GRAPHS

pro且t of visiting node j.
If the graph has a negative cycle with 也is weight function, we claim

that ρ < Pmax·
Let C be such a cycle. Then we know that pc(C) - p(C) < 0, where we

have extended c and p to seque口ces of edges in the natural way. There­
fore for cycle C, we have p(C) / c叫(C) > ρ， i.e., p < pma肌X

Cor丑1飞versely予~ i迁f all the cycles i扛工1 the graph have a posi让ti忖ve weight, it
must be thatρ 〉 ρmax' Since ifρmaxf二 p， let C be a cycle whose pro自t­

to-cost ratio is pm阶 Then p(C) / c(C) = Pmax 三 ρwhich implies p(C) 一

ρc(C) 三 0， contradicting the absence of 口0丑pos让ive weight cycles.
There is a straightforward algorithm for computing the presence of

negative weight cycles which runs in O(IVI . IE\) time. We can perform
binary search to findρmaχwith 0 as a lower bound and maxeEE p(e) / c(e).
The search can be terminated when we have determinedρ'maxto a speci­
fied tolerance of 已

Clearly, it is not advantageous to make any move unless the pro缸­

to-cost ratio is greater than one. We can bound the maximum possible
profit-to-cost ratio by finding the edge that maximizes the ratio of pro自t

of visiting its destination to the cost of traversing the edge. Suppose this
cost is R , then we need to perform the search between 1.0 and R for the
optimum ratio. In order to narrow down the search to an interval of
size ξ， we would need (log(R - 1) - log(ε))/ log 2 steps. Since each step
involves finding a negative cycle, it can be done in 0 (IV川剧) time using
the Bellman-Ford algorithm.

Solution 4.17: The straightforward solution would be to compute the
shortest path from A to B for each proposal.

Note that we cannot add all the proposals at once; otherwise, we may
end up with a shortest path which uses multiple proposals.

Instead we use an all-pairs shortest path algorithm on the original
graph to get a matrix S(u ,v) of shortest path distances for each pair of
vertices. Each proposal p is a pair of cities x ,y. The best we can do by
using proposal p is min (S(A,B) ,S(A,x) +A(y,B)). This computation is
constant time, so we can evaluate all the proposals in time proportional
to the number of proposals after we have computed the shortest path for
each pair. All-pairs shortest path can be computed in O(IVI . IEllog IV\)
time by multiple calls to D你stra's algorithm or in O(IVI 3) time using the
Floyd斗叩arshall algorithm.

Solution 4.18: This is a classical problem and is solved using a "proposal
algorithm".

Each student who does not have an adviser "proposes" to the most­
preferred professor to whom he has not yet proposed.

Each professor then considers all the students who have proposed to

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

h恤 aI1d tells the om he most prefersF"I accept y01111 and HnoH to tke rest.
Thε4rofessor is then provisiOI1ally matched to a studeIIt.

4ιeadω1肌qu刨roun叫d， eaωu毗d巾ωe臼en川1

f可节;刃古览;=:2;J;r:;工;:;:立;:立;:;;江132:立J:zz;立::工:;口:江:::旦:芷:立?:立:立i骂5τ:2;fl2芷;
?严r伽Sω阳…O创ωr川omagaimplieswitMe "ac叫"时 rejects the r创

This may mem that professors who have already accepted a student
cm utrade-upFF md stdmts who have already been accepted by a prom

fessor can be "jilted".
This algorithm has two key properties:
-It cmv吨es to a state where everyone is pded Everyom gets

acce叫ted at some po让1t.ozue a professor accepts a studeaty he al­
way:hasastudmt Therecamothapdemor时 a student both
unpaired since the st毗ntml灿aveproposedM1atprofessor?:

r 一 n()int {sin肉e a student will eventually propose to everyone, 1Ii

2立:二二:础;z川;))md仙bei问n吨gun叫I口npa甲P归air陀叫e

一 TZZ;需;;二;也过拍出:21::;zfc2732
Completionofthe algori吐吼itisMpombleforpothRiemammu
Gauss to prefer each other over their CUI-reIIt paziz19·If Riem缸m

nrefers Gauss tωo hi恒s cu应ure
E怡目e二f叫e础edh恼i恒s curre叩of恼恼eω创S臼sor 肌aωuωω1应脱S臼sa叫CαωCαep网怡削dR阻阳e臼I口ma

:口2O哎:2i?，芷 :立口口?立汇::;工:旦:=立:汇zt宫出口:2立;2;:Z::旦:二i工让t:立: 2z:F1A芷:;且;:z江::工::; :汇:工工:
4可训Ot l4ιi
his prop。此 he was alre均 paired with someor的e preferred to

Riem缸In.

Solution 4.19:We defim a weighted directed graph q=(KV × V盯)，
wh叫C∞叩O臼创rηrres臼叫叩po∞创ndωS
巳= (队u叽L ，川J冽v吟)心) is the amount of commodity v we can bUy W

cot::U挝 ana的白it咿 e饥X刘归i恒S叫t
weights multiply out to more than 1L.

Create a ~ew graph G' 工 (V， E) with weight function w' (e)
一 logω (e). Since logαb = logα 十 logbF there is a cycle h G whose edge
weights multiply out to more thaI11iff there is a cycle h Gfwhose edge

wei需;2323tzzzZL飞制ive weight cycles in川W阳ei咐ig供h比1让t

3加:市柑rP南计r!了?e卢节?1i
trage.

Solution 4.20: First, note that the number of packets at 让lpUt i is the

152
CHAPTER 4. ALGORITHMS ON GRAPHS

153

sum of the elements in row i and the number of packets destined through
output j is the sum of all the elements in column j.

Let the maximum row sum be R-then it will take at least R cycles
to transfer the packets from an input corresponding to R. Similarly, if 0
is the maximum column sum, it will take at least 0 cycles to transfer the
packets to an output corresponding to 0 , i. e. ， β= max(R ,0) is a lower
bou口do日 the number of cycles.

We claim (3 is actually a tight bound. To do this, we first prove that
we can create a matrix A* ~三 A such that every row and column of A*
sums up to (3.

The proof is by construction-starting with A, find a row and a col­
umn whose sums are less thanβand increment that element by 1. Each
successive matrix is larger than its predecessor and the process must con­
verge to a matrix whose rows and columns all sum up to (3.

Now, consider a bipart让e hypergraph on vertices {(L ,0) ,… ,(L ， η­

1) ， (R ， O) 尸..， (R ， η- I)}, where we have A*[i ,j] edges between vertex
(L ,i) and (R,j). Since the row and column sums are all (3, it follows that
the degrees of all vertices is (3.
古lis graph has a perfect matching-吐lis follows from the theorem

that a β-regular bipartite graph has a perfect matching which in turn fol­
lows from Birkhoff's characterizatio日 of bipartite graphs, namely a per­
fect matching exists i旺 every subset of size k has at least k neighbors.

A pe町rfect matching is a pe臼rmu吐ta挝tion from i妇I丑lpUtS to outputs-by
choosing these assigr主n田lID宜m工丑1曰er丑lt怡sanηldp严erfoω主Y红‘τ'm

we can reduce the r口lum宜m工口lbe臼r of packets t怡ot甘r‘郁'an盯I丑lS白fer from A* by n and the
resulting matrix has rows and columns summing to exactly (3 - 1. In this
way, we can construct a schedule which transfers all the packets in A* in
(3 cycles. Since A* ~三 A， this schedule will also transfer all the packets in
A in (3 cycles.

Solution 4.21: If the transmitter and receiver decide on a restricted set
of pairs of symbols rather than just symbols, they can do better than 1 bit
per symbol transmitted.

The insight is that a pair like (A ,O) and (B ,E) cannot be mistaken
for each other since 0 and E cannot conflict.

A formal way of finding the largest set of pairs of symbols which
cannot be mistaken for each other is to create a conflict graph∞ the 25
pairs {(A ,A) 尸. . , (E ,E)}-put an edge between (U1 ,U2) and (υ1 ， V2) i直

(U1 ， V1) εII and (U2 ， 归)εII.

Now, we want to find a maximum independent set in this graph­
i.e., the largest subset of vertices, not two of which are connected by an
edge.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

S 工 {(Jt，Jt)， (13 ,(7), ((7，~)， (l), 13) , (~，l))}.

There are a number of such sets of cardinality 5-e.g.,

Therefore we can send log2 5bits with every two symbols which amounts
to roughly 1.16 bits per symbol transmitted.

Solution 4.22: In Solution 4.10, we showed how to model the problem
using a DAG, with each vertex corresponding to a playe卫 Problem 4.22
is asking for a minimum cardinality set of vertex di司oint paths in this
DAG such that each vertex appears on some path.

Tl由 problem can be reduced to a flow problem: let G = (V，~) be a
DAG. Cor时ruct a flow problem F as follows: define G = (V' ,~') from
G = (V，~) by creating a left vertex Vz and a right vertex Vr for each vertex
V E V.

Add a new source vertex s, add edges from s to each left vertex, and
add a sink 飞rertex t with edges from each right vertex to t.

Add edges (vz ， 的 for each V ε V. For each edge (u ,v) ε~， add an
edge (v川LZ)'

Assign a lower bound and upper bound of 1 for each edge of the form
(VZ 川)r); all other edges have a lower bound of 0 and upper bound of ∞.

By construction, the minimum feasible flow for F defines a minimum
cardinality set of vertex disjoint paths.

Solution 4.23:亚le problem can directly be mapped into the weighted
bipartite matching problem: bidders and celebrities constitute the left
and right vertices; an edge exists from b to c iff b has offered money to
dance with c and 仕le weight of an edge is the amount offered for the
dance. It can be solved using specialized algorithms, network flows, or
linear programming.

If the requirement that bidders and celebrities be distinct is dropped,
the problem becomes a weighted matching problem in a general graph
which is still solvable in polynomial time.

Solution 4.24: Let ¢ be a CNF expression of ηvariables Xo ,… ,Xn-l and
m clauses in which each clause contains no more than two variables.

Assume without loss of generality that each clause in ¢ contains ex­
actly two distinct variables since singleton clauses force the value of the
corresponding variable for a satisfying assignment.

Construct the directed graph G rjJ on 2n vertices indexed by
Xo ， … 7 向一1 ， Xo气…?队-I' . For each clause li 十 lj ， add an edge from
l/ to lj 缸ld l/ to li, where xi" is interpreted as Xi.

Claim: ¢ is satisfiable i旺 for each 今 there does not exist a path from V Xi

to吃 and a path from V~i to V Xi •

Proof If an edge exists from V Xi to V Xj , it means that whenever Xi

155

is true, then Xj mu时 be true in a satisfying assig口时nt for ¢. Similar

ttzuzzizzurtzt:113
阳UfJ41s tmm a则句吨assIgn日lent for ¢，白阳en口盯飞Sωomu耐1

l\JOW吼F川C∞onside臼rtlωCCG? Of G￠ IHf fhOr SOmme创tι们川F川川tυ勺J与Xi and υ吟: ar陀e 4ι阳O创t白hin口川t由he
:骂;z2:可:E;

CCF ththh1咀e盯悦r陀阳e盯cannot e忖e仪创叫X汩XIS阻时S挝t a s叫S臼创叫a挝t均19 a吨nme口时削tf叫 Cωon盯versel}号i， υzf aM t44are 』01h h the same SCCr we will prove that a

ilE曰::2531击咄咄出iii
Start with m y source SCC h the SCC DAG which contains 们仙1 月;:m r1号does r丑no旧O仗t have a叩pa拍t桂白h川tωOV付lν (阳S凯阳uch a川飞ver创r时te仪xmu瞅1店S挝t 创S挝优t; 0仙t吐由hel阳ρ向…T

υ叫叶Lν4r would be h the same SCC) Set k to true m d Upda恒alllm卢;SS181mentsr including setting kf to false. I狂te臼r‘在吐a挝ti扣飞v尼ely perform t由hi垣s com-

:口:巳;t;;z::二L且i1;2古z口:二巳J」:zE巳:立:;且二尘2tf=; ::;:骂$:立:丘;zz:;fl\立:2:?frf?!F平Cdkin the same SCC an丑ld we are on丑11抄yredu山Chg the SCC DAG.LZ 叫 L

Each clause will be satisfied after this is completed since each clause

jjZHUZEAEUzrz;二222:ti
2172Ltfi:。

Let ￠ be a set of 叩ality and in叩a均 C∞O叫I7...7Zn-I-.Create m mdirected graph GφO丑 vertices
Xo ， 二. ,Xn -1; for each equal即向 = Xj , add the edge (Xi ,X

,i)

;芫zE俨γ严2口立叩2口:芷出z巳口:2可:己z町盯:E2rr?古r叮:t?士:?±t巳叮:
Ther时ore if证ff阳O创r some inequalit了 Xp 乒乓 vertices xp and xq lie in thee SCC, the set of constrai附¢ is not叫ified

p

COIlversely;let.there be k CORRected compoI1eI1ts Co ·CZ 二 As
;:EJtzttlC512?ι:222::f::1:tZEJOL
di旺ereI1t SCCsy all iIIequality cOI1strahts are satisfied too.

J

一一

CHAPTER 4. ALGORITHMS ON GRAPHS154

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 5

AlgorithIns on Strings

Solution 5.1: There are several interesting algorithms for substring
search that run in linear-time such as Knuth-Marris-Pratt, Boyer-Moore,
and Rabin-Karp algorithm. However in practice, for most applications,
substring search runs faster than that. We have found Boyer-Moore al­
gorithm to be the fastest in our experience.

The Boyer-Moore algorithm works by trying to match characters of 8
in T at a cer如in offset in the reverse order (last character of 8 matched
first). Ifwe can match all the characters in 8 , then we have found a match;
otherwise, we stop at the first mismatch. The key idea behind the Boyer­
Moore algorithm is to be able to skip as many offsets as possible when
we are done matching characters at a given offset. We do this by building
two tables-good suffix shift table and a bad character shift table.

For a given character, the bad character shift table gives us the dis­
tance of the last occurrence of that character in 8 to the rightmost string.
If the character does not occur in 8 , then the entry in the table is of Ie口gth

8. Hence when we find a character in T that does not match for the
current offset, we know how much we must move forward so that this
character can match for the first time.

The good suffix shift table is a little more complex. Conceptual1予 for

a given suffix X of 8 , it tells us what is the shortest suffix Y of 8 that
is longer th缸lX 缸ld has X as suffix. In practice, what we store is how
far can we move safely, give且也时 we have matched up to le叼th(X)

characters but did not match the next character.

Solution 5.2: The most naIve way of finding whether a string 8 is a
substring of another string T would be to test character by character at
every offset in T , if we f红ld a match for A. However this would take
O(m . n) time, where m is the length of A and n is the Ie吨th ofT. We
can do better than that. If at a certain offset we match a set of characters

157

in A to that of T but they do 口at match all the characters in A since A has
all unique characters, the characters in T that matched A will not match
A at my other offset.Efmce we caI1skip a few offsets.This esseI1tidly

eans that for every character in T , we compare it with a character i
A at most once. This willlead to a lin口lea盯r-吐-
ru江nsin口 O(仰η+ m) time.

Solution 5.3:This is a special case of applyhg a permutatiORwith
C.om1mt additioml storage(cf.Problem 114)except that the Pe臼rmut怡a巾

:???1ωIOn∞口 1臼s a川…ro叫∞ 川e ca臼脱S优e 叫a阳

c, i 十c， 2刽i+c，... , (m·i+c) mod n) for differentval~es of cfrom 1 thro吨h

IIIber of cycles.SOy esseRtidly all other cycles are a shiftedversiOR
of the first cycle-For examplerconsider the case where η= 6 and i = 2.
we get (1 ,3,5) and (2 ,4,6). Once we have identified the difference be­
tweeIIthe lowest md the seCOI1d lowest demeI1t h any cycler we how
the number of cycles there are and their startiRg pohts.

Solution 5.4: The key idea here is that if string A is a rotation of another
string B , then A must be a substring of B . B. For ex缸丑pIe， sinceαγcis

a rotatio日 of c旷， it is a substri吨 of cαrcαγ. Since substring test can be
d巾Oαne i妇丑n lin扛in丑nea

for r‘O仗ta挝甜t咀io∞主丑1 in linea盯r-时'-吨-tim丑leo

Solution 5.5: We are 且at providing explicit solution to this problem here
since there are no algorithmic ideas in飞Tolved. Most times when this kind
of a question is asked, you need to keep a few things in mind:
一 f升俨飞勺single pass ave盯rtl盯t甘r血i

一 1出阳阳fω阳Oαu can build pr陀ef缸i以χ tables to match 土扭E卫ldωex.ht比tm叫nl an口ld

~efault .ht:n1 in a~vance to speed up the process.
- You may not know if you need to add the p;otocol part or 卫at until

you have reached the eI1d of the Aost part.Hmce it may be a good
idea to leave some space for addhg kttp://at the beghRing of
the buffer.

Solution 5.6: This problem ca口 be reduced to finding the longest com­
mORSUbsequeme betweeI1the hput striIIg aI1d its reverse.We have al­
ready shown how this can be done efficier让ly in Problem 3.1.

Solution 53:Th!s?mbe emdentIy solved uy dyRamie programmg
LetC(α)bethe mmII111m wasted space for arr-aI1ghg the last αwords. If
we have all the values for C(i) tabulated for i <α， we can compute C(α)
by finding the number of words we can 且t in the first line that minimizes
C(α) .

Solution 5.8: This is another interesting application of dynamic pro­
grammmg.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

158 CHAPTER 5. ALGORITHMS ON STRINGS

Let S(i, j) represent the substring of string S that contains all the char­
acters of S from index i to j -1 (inclusive). Let the edit distance between
tl时wo strings A and B be represented by E(A,B). Let's say thatαandb
are, respectivel予 the length of stri口gs A and B. We now make two claims:

- If A[α- 1] = B[b - 1] (i.e., the last two characters of the strings
match), the旦 E(A， B) = E(A(O ， α -1) ， B(O,b-l)). This is obviously
true since any set of transformation that turns A into B can turn
A(O， α 一 1) into B(O,b - 1) and vice versa.

一If A[α-1] 并 B [b - 1] (i.e., the last two characters of t缸he s白t甘r血i

notma挝tch均)， then

E(A,B) = ill叫E(A(O ， α- 1) ,B) ,E(A,B(价一叫 +1

We can see this to be true by observing that if there is a smaller
sequence of e飞Tents that leads to the transformation of A into B ,
there must be a step where the last character of the string becomes
the same as the last character of B. This could happen either by
inserting a new character at the end or deleting the last character.
We can reorder the sequence such that this operation happens at
the end. The length of the seque丑ce would remain the same and
we would still end up with B in the end. In case this operation
was "delete'二 then by deleting this operatio且， we get a sequence
of operations that turn A(O， α- 1) into B. If this operati∞ wasan

"insert", then by dropping this operation, we would have a set of
transformations that tum A into B (0 ,b- 1). In either case, it would
be a contradiction if there was a sequence of operations that turned

AintoBwhi仙sm巾阳m叫E(A(O， a-I) ,B) ,E(A,B(O,b一

叫 +1
We can use the above results to tabulate the values of

E(A(O ,k) ,B(O,Z)) for all values of k < αand Z < b in O(α . b) time
till we get the value of E(A,B).

Solution 5.9: The key to solving this problem is using recursion effec­
ti飞rely.

If the re♂lIar expressio口 r starts with "', then s must match the re­
mainder of r; otherwise, s must match r at some pos让ion.

Call the function that checks whether a string S matches r from
the beginning matchHere. This function has to check several cases­
(1.) Ie旦gth-O regular expressions which match everything, (2.) a regular
expression starting with a *match, (3.) the regular expressio丑$， and (4.) a
re驴lIar expression starting with an alphanumeric character or dot.

Of these, (1.) and (3.) are base cases, (4.) is a check followed by a call
to matchHere, and (3.) requires a new matchStar function.

ι13222223;旦出口;2222:;22
suffix matches the remainder of the regular expression.

; I 川lie class R协p {

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

s t a ti C boolean match (String LStrug s)
if (r . charAt (0) == ' t\ ') '{

}return matchHere(r.substriRg(1)F S);

int i = 0;
do {

if (matchHere (r , s. substring (i)))
return true;

} while (i ++ < s. length ());

return false;

s t a ti C boolean matchHere(String LString s){
if (r .length () == 0) {

return true;

8901423456789
句
4

勺
h
q
u
句
3

呵
J
q
u

呵
J
q
u
q
u
q
J
q
u

呵
J

if((r.length()>=2)&&r.charAt(1)=='*'){
}rn matchStar(r.charAt(0) , r-511bstring(2) , s);

if (r. charAt (0) == '$' && r .length () == 1) {
}rn S ·length ()==0;

if (s.length() > 0 && (r.charAt(O) ==仁， I I r.charAt(O)
== s. charAt(O))) {

}return matchHere(r.substriI1g(1) , S ·substrMg(1));

return f als e ;

n
U

吁
i

内
，4

444

st?tic bookan matchStar(char c , String LString s){
int i = 0;
do {

if (matchHere (r , s. substring (i))) {
return true;

} whH~ (i < s.length() && (s.charAt(i++) == c II c ==
,)) ;

return false;

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

161

Solution 6.3: A natural approach to this problem is to build the assign­
ment one warehouse at a time. We can pick the first warehouse to be the
city for which the cost is minimized-this takes 8(η2) time since we try
each city one at a time and check its distance to every other city.

Let's say we have selected the first i-I warehouses {Cl' C2 , . . . ,Ci-l}

and are trying to choose the i-th warehouse. A reasonable choice for Ci
is the one that is the farthest from the i-I warehouses already chosen.
This can also be computed in O(η2) time.

Let the maximum distance from 缸ly remaining cities to a warehouse
be dm . Then the cost of this assignment is dm . Let e be a city that has this
distance to the warehouses. In addition, the m warehouse cities are all
at least dm apart; otherwise, we would have chosen e and 且ot Cm at the
m-th selection.

At least two of these m 十 1 cities have to have the same closest ware­
house in an optimum assignment. Let p ,q be two such cities andωbe
the warehouse they are closest to. Since d(p ,q) 三 d(ω ， p) 十 d(ω ， q) ， 让 fol­

lows that one of d(ω ， p) or d(ω ， q) is not less than dm /2. Hence the cost
of this optimum assignment is at least dm /2 , so our greedy heuristic pro­
duced an assignme时 that is within a factor of two of the optimum cost
assignment.

Note that the initial selection of a warehouse is immaterial for the
ar♂lment to work but heuristically, it is better to choose a central city as
a starting point.

Solution 6.4: It is natural to try and solve 也is problem by divide码and­

conquer, e.g., determine the minimum number of multiplications for
each- of x k and x 30/ k , for different values of k. The problem is that the
subproblems are not independent-we cannot just add the minimum
number of multiplications for computing x 5 and x6 since both may use

3Z

Instead we resort to branch-and-bound: we maintain a set of partial
solutions which we try to extend to the final solution. The key to effi­
ciency is pruning out partial solutions efficiently.

In our context, a partial solu柱on is a list of expo丑ents that we have
already computed. Note that in a minimum solution, we will never have
an element repeated in the list. In addition, it suffices to consider partial
solutions in which the expo且ents occur in increasing order since if k > j
and x k occurs before x j in the chain, then x k could not be used in the
derivatio日 of x j • Hence we lose nothing by advancing the position of x k .

Here is code that solves the problem:

I import java. 11 til. LinkedList;
public class MinExp {

public static void main(String [] args){

吁
i

呵
/
-
q
u
A
t
F
3

Chapter 6

Intractability

Solution 6止 The 。-1kmpsackproblem is m Np-complete proble中­
However the dynamic progra红白由19 solution to the problem

叫:72?盯;22:ι12?ZZZ;313曰:SJBis
than or equal toω. We can use the recurrence

A(ω) = max (A(ω-l)， m俨(A(ω 一叫)十叫)).

For ω 三 0，、 t A[uj]=0.Computing AM given A[ilr for all i <ωF

附sO仰(7仙?η忡Z

t垃丑e.

如灿lutionω6ιω.2尘: Ag伊ood wa叮y内f
lat挝ted p叮ro伪blem t白ha挝tCamnbe solvedexactlyefacie叫予 Theminim
njINEee(MST)p毗lem has an effi侃lt alg创:hm and it yields a w产Y
of另siti咿ach city exac仰wice-start at any city Cand p严e臼臼erf阳'f
order walk in丑1the hM4ST with Cas the root.This traversd leads to a path h

hich each edge is visited exactly twice.
ιat州

tωothe s挝tar时ti恒工丑19 city, the rem丑1旧ain口li恒ng set of edges c∞or丑lSti柱it切ut怡eat忧re臼e. Therefore
the cost of any travelhg salesmm problem is at least as great as the cost

of thtM町flmakeuse制le fact that the distances b伽m伽S叫sfieωS

卢tri二mi卢1边6庐二山he吨qu叫1
g旷扩r俨‘4……A………ea、ter t阳h恤an t阳heMS盯T. W附hen丑 W附ep阿町erform ∞ωr 1中斗干1叫

址::1:13::::234213731tcrtLto U

Efeme we have a tour costhg at mosthvice the cost of the MST WHet1
itself was an upper bou口d∞ the cost of the tyawliI1g salesman probl

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

162

f
0
7
'
'
民
U
Q
J

n
U

吨
i

呵
4

τ
i

吁
i
1
i

臼
M
M臼
v
m
σ四
四
m
m
μ
2
2
M
A
E
M
g
m
m
u

CHAPTER 6. INTRACTABILITY

int target = new Integer(args[O]);

LinkedList <Integer> initEntry = new LinkedList <Integer >()

initEntry .add(l);

LinkedList <LinkedList <Integer» partials = new LinkedList
<LinkedList <Integer> >0 ;

partials. add(initEntry) ;

LinkedList <Integer> shortestDerivation = null;

int shortestSoFar = Integer .MA)CVALUE;

n
u
q
i
巧
/
阳
巧
3
A
哇

'
h
u
f
0月
/

q
u
q
d
q
d
q
u
q
M
q
u
巧
3
q
u

w吃24dz;二;::;二iTZ(;HiltPMtials removeFirst();
for (IRteger i:apartial){

f~r(--Integer j: aPartial) {
Inte 区 er sum. = 1 + J;
if (s回丑> target) {

continue;
else if (SUI口口= target) {
i f(shortestSOFar>ap artial-size ()){

hortestSOFarzap artia1.size();/
shortestDeri飞ration = new LinkedList <Integer >,

aPartial);
shortestDerivation. add(s出口) ;

continue;
lse {
if (aP artial . indexOf (s山丑) == -1

&&(aP artial.size (O) < ShOrtestSOFar)
&铀企 i Sm > adPaIr叫‘

+t> n ,;: ;nn = new Lin丑lkedList <LinkedList <Integer> extensIOn = m:vv
Integer >(aPartial);

extension. add (SUI口) ;
partials. add (extension) ;

8901234533444444

Svstem. out. println ("Aμshortest......deriviation:" +
J shortestDerivation.toString());

46
47

The code ms h a fmtiomof a seCOM.It?epirts
(Xl τ2. x 3 . x5 τ10 ， x 15 ,x 30). I到 ally7387paftialsolutions are ex G

:￥rh…二卢卢r卢-

2宫?:尽二工骂:2芷2古:吉?咒?r;♂:巳弘y:巳T:?1;口出:旦}芷工Lu3;且L且;Iτ口;旦?2::岑;:22芷也:=芷旦::=:;)jtτ

163

addition, we could keep out duplicate partial solutions. The code could
avoid considering all pairs i, j and focus on pairs that just involve the last
element since other pairs will have been considered previously. More so­
phisticated bounding can be applied: a chain like (x ,x 2 ,x 3 ,x 6 ,X 7) will
require at least three more multiplications (since r孚 l = 3) and so this
chain can be safely pruned. When selecting a partial solution to co时inue

searching from, we could choose one that is promising, e.g., the shortest
solution-this might lead to better solutions faster and therefore more
bounding on other search paths.

For hand calculations, these techniques are important but they are
trickier to code and our original code solves the given problem reason­
ably quickly.

Solution 6.5: A reasonable way to proceed is to use branch-and-bour叫:

we choose a variable v/ see if there is a satisfying assignment whenυ=0
and if not, we try v = 1. If there is no satisfying assignment for v = 0 and
for v = 1/ the expressio口 h 口ot satisfiable.

0日ce we choose a variable and set its value, the expressio口

simplifies-we need to remove clauses where v appears if we set υ 工 l

and remove clauses where υI appears when we set v = O. In addition, if
we get to a unit clause一one where a single literal appears, we know that
in any satisfying assignment for the current expressio凡 that literal must
be set to true; this rule leads to additional simplification. Conversely, if
all the clauses are true, we do not need to proceed further-every assign­
ment to the remaining variables makes the expression true.

There are various choices for selecting variables. One natural choice
is to pick the variable which appears the most times in clauses with two
literals since it leads to the most unit clauses on simplification. Another
choice is to pick the variable which is the most binate-i.e., it appears the
most times in negated and nonnegated forms.

Solution 6.6: We are given a set of N unit duration lectures and JYI class­
rooms. The lectures can be held simultaneously as long as no two lec­
tures need to happen in 也e same classroom at the same time 缸ld all the
precede口ce constraints are met.

The problem of scheduling these lectures so as to minimize the time
take口 to completion is known to be NP-complete.
在lis problem is naturally modeled using graphs. We modellectures

as vertices, with an edge from vertex u to vertex υif u is a prerequisite
for v. Clearly, the graph must be acyclic for the precedence constraints to
be satisfied.

If there is just one lecture room, we can simply hold the lectures in
topological order and complete the N lectures in N time (assuming each
lecture is of unit duration).

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

164 CHAPTER 6. INTRACTABILITY
165

We can develop heuristics by observing the following: at any time,
there is a set of lectures whose precede口ce constraints have been satisfied.
If this set is smaller than M , we can schedule all of them; otherwise, we
need to select a subset to schedule.

The subset selection can be based 0口 severalmetrics:
- Rank order lectures based on the length of the longest dependency

chain that they are at the start of.
- Rank order lectures based 0口 the number of lectures that they are

immediate prerequisites for.
- Rank order lectures based on the total number of lectures that they

are direct or indirect prerequisites for.
We can also use combinations of these criteria to order the lectures that
are currently schedulable.

For example, for each vertex, we define its criticality to be the length
of a lo口gest path from it to a sink. We schedule lectures by processing
vertices in topological order. At any po让lt in our algorithm, we have a
set of candidate lectures-these are the lectures whose prerequisites have
already been scheduled.

If the candidate set is less than size lvI, we schedule all the lectures;
otherwise, we choose the lvI most criticallectures缸ld schedule those­
the idea is that they should be scheduled sooner since they are at the start
of longer dependency chains.

The criterion is heuristic and may not lead to optimum schedules­
this is to be expected since the problem is NP-complete. Other heuristics
may be employed, e.g., we may use the number of lectures that depend
on lecture L as the criticality of lecture L or some combination of the
criterion.

Solution 6.7: This problem is very similar to another very popular prob­
lem that is asked in interviews. You are given 缸1η × ηmatrix in which
both rows and columns are sorted in ascending order and you are sup­
posed to find a given number in the matrix.

In this case, we are essentially looking for an implicit matrix A such
that A(i, j) = 沪十 j3. In our case, the matrix will have n1/3 rows and
columns. There are several algorithms for searching for a number in such
a matrix that are linear in the number of rows.

One approach is to start by comparing x to A饥， 1. If x = An ,l , stop.
Otherwise, there are two cases:

- x > An ,l , in which case x is greater than all elements in Column 1.
- x < An ,l , in which case x is less than all elements in Row n.

In either case, we have a matrix with ηfewer elements to search. In each
iteration, we remove a row or a column, which means we inspect 2η-1
elements.

~ I bo?l. IsSumOfc由es(int n) {
~ I ~n~ 中= ceil (pow(n , 1/3));
~ I 川 i =m; int j = 0;
~ I while (j < m 他 i >= 0)
:J I ~t; t.~ = hi*i +j*j*j;
6 I if (k ==丑) {
7 I return true;
8 I } else if (k < n) {
';J I ++J;

10 I } else
111 一-i;

12
13
14

For a tight lower bound, let x be any input. Define A to be:

x-I
z 十 1

x-I
Z 十 1

Z • I
Z 十 1

x-I

whre ailentri?s not showI1are OWe claim that my algorithm that
solves the matnx search problem will have to compare Z with each of
the h-l elements showI1(i.e-F the diagonal demeI1ts md the elemmts
i红mediatevbelowttml).callthese elemmts the A edleme阴n

Cωom呻pa叫rill叫‘1咀'ill口ill口19 x with other出nents does附 el丑limi扛垃I红I

elem工丑leI丑lt怡S. suppose an algorithm did ROt compare Z with OIIe of the A
elements. 古le且 we could make that demeI1t Z (iI1stead of Z-lor z+l飞
and the al句go创ri出‘t让恤i让t出hmw附ouω1过刷ld be吐伽}

I丑19 result. Therefore at least 2η- 1 compares are necessary which
means tht the algorithm we desigled is optimum-
-Note that for this problemF if thehput rlumber isnr the size of th
input is log η bits. S蚀i扛in丑阳1

algorithm in the size of the inpu时t.

Solution 6.8: Often interview questio日s areopen吃丑dedwith no definite
good SOIlItiOII-all you cm do is provide some good hellristies and code
it well. For the Collatz hypo出esis， the general idea is to start with each
numbermd iterate till you reach OIIe.Here are some of the ideas that
you can try to accelerate the check:

1.Reuse computatiORby storhg all the I1umbers you have already
proven to converge tou that way}as soOI1as you reach such a I111II1"

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 7

Parallel Computing

INTRACTABILITY

ber, you can assume it would reach 1.
2. In order to save hash table space, you can keep only odd numbers

in the hash table.
3. If you have tested every number up to k, you can stop the chain as

soon as you reach a number that is less than or equal to k. Also,
you do not need to store the numbers below k in the hash table, so
you can keep deleting these numbers from the hash table as you
progress.

4. If multiplication and division are expensive, use bit shifting and
addition.

5. Since the numbers in a sequence may grow beyond 32 bits, you
should use 64 bit longs and keep testing for overflow.

CHAPTER6.166

Solution 7.1: The naIve solution would be:

publk class SIimplements servlet{
SUIng wLast=null:1
String [] c1osestToLastWord = null;

才
i

叫
4
q
M
A

哇

'
3

川1;?i?S叫叫S叫e问uest 吨 Ser巾Response

r出e均ort;:22rc:2;;?omR叩臼t(req) ;

};?;;dfII1础esponse (resp , ωes山L叫句。咱;

wLast = w;

}closestTOLastWordzclosestIRDictionary(W);

678901234

-
A
1
4
1
4
1
A

吁
i

21iS SOIlltiOI1has a race cor1ditiOR-Thread A might have writteI1
WLast md thenThread B reads wLast arld closestTOLastword be"
fore Thread A has a chmce to update closestTOLastkford-The ail
!o closestTOLastword could take q伊ui说t怡e I与O丑go臼rb快ev刊e叫吵 f臼缸出aE臼S吨弓
mgo丑川t白he Ie二牛I吨t白h of c仇ke CkWOr d Hence it ls qlut possible tkat betweeI1

2:;:;吕立;;:;;工?m ofTfmdAJfmd B:eadsMWLast扭d
A 由m牛S跄 S切olu址tzed; h 出IS case, only叩hread c∞叫O叫u叫1址创ld be e凹execu叫〈但仪阳叫叫e仅m阳叫Cαωωu时1址tikhJI丑1

1J:::::Z:;汇:t:;工;t:立:2W附n时1此巾削t怡et怡O巾st a扭ndωS叫.山剖叫Wo阳Tor叫d. This
a time.e• ody ORe servlet thread cm be executing at

;::Ei蛇出:;1222tZZZJUZZE

Solution 6.9: The brute-force solution is to consider all pairs of points:
吐吐s yields an 0 (的 algorithm.

A reasonable approach is to split the points into two equal-sized sets
using a line x = P parallel to the Y-axis. Such a line can be found by
computing the median of the values for the x co-ordinates-this calcu­
lation can be performed using randomization in a manner analogous to
Quicksort.

We can then compute the closest pair of points recursively on the two
sets; let the closest pair of points on the left of P be dz apart 缸ld the closest
pair of points to the right of P be dr apart. Let d = min(dz ,dr).

Now, all we need to look at is points which are in the band [P ­
d,P + d]. In degenerate situations, all points may be within this band.
So，证 we compare all the pairs, the complexity becomes quadratic again.
However we can sort the points in the band on their yeo-ordinates缸ld

scan the sorted list, looking for points d or less distance from the po扛lt

be让19 processed.
Intuitively, there cannot be a large number of such po扛ltS since oth­

erwise，仕le closest pair in the left and right partitions would have to be
less than d apart. ηlis intuition can be analytically just证ied-Sh缸丑os

and Hoey's famous 1975 paper "Closest-point problems" shows that no
more than 6 points can be within d distance of any point which leads to
an 0 (n log n) algorithm-the time is dominated by the need to sort.

The recursion can be sped up by switching to brute-force when a
small number of points remain.

Solution 6.10: Here are a couple of simple heuristics that you can use to
speed up primality tests:

1. It is suf直dent to test for factoriz挝ionup to rV百1-
2. You can limit yourself to prime numbers only. You may not know

all the prime numbers between 2 and vn, however you can use the
fact that all prime numbers other也an 2 and 3 are of the form 6k十 l

or 侃一 1. This would speed up your computation by a factor of 3.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 7.3: Our strategy is to launch a thread T per Requestor ob­
ject. Thread T in turn launches another thread, S , which calls execute
and ProcessRespo丑se. The call to execute in S is wrapped in a try­
catch InterruptedException loop; if execute completes successfully,
ProcessResponse is called on the result.

After launching S , T sleeps for the timeout interval-when it wakes
up, it interrupts S. If S has completed, nothing happens; otherwise, the
try-catch InterruptedExceptio丑 calls error.

Code for this is given below:

The problem with this approach is that we do not control the num­
ber of threads launched. A thread consumes a nontrivial amount of re­
sources by itself-there is the overhead of starting and ending down the
thread and the resources used by the thread. For a lightly-loaded serve乙

this may not be an issue but under load, it can result in exceptions that
are challenging, if not impossible, to handle.

The right trade-off is to use a thread pool. As the name implies, this is a
collection of threads, the size of which is bounded. Java provides thread
pools through the Executor framework.

169

public static void main(String [] args) throws IOException {
ServerSocket socket = new ServerSocket (80) ;
while (true) {

final Socket connection = socket. accept () ;
Runnable task = new Runnable () {

public void run () {
handleRequest (connection) ;

public String execute (String req I long delay) {
try {

Thread. sleep (delay) ;
} catch (InterruptedException e) {

public String error (String req) {
return "response:" + req + ":"十 "τE伍以JUT" ;

class TaskExecutionWebServer {
private static final int NIl亚EA.ffi = 100;
private static final Executor exec

= Executors. newFixedτhreadPool(NIl亚EA.ffi) ;

class Requestor {
public String execute (String req) {

return "response:" + req;

.,、
‘
，
，f

τ
K

C
口

aι
T
L

，
，
E
‘
、

eι
t

'
ι

EL
户
、

exeFL

It'e

-FX、
s
J
O
L

、
E
B
E
J}

)

1
i

呵
4
q
u
A

吐

F
3
A
U

同
/
民

U
Q
J
n
u
τ
i

-
A

咱
i

123456789012345678

1
4

吁
i
1
4
1
4
1
A
1
&

唯
E
A
1
A
4
i

Solution 7.2:The first attempt to solve this problem might be to have
maialaunch a new thread per request rather thmprocess the request

itself:

h the above codey multiple servlets can be h their call to
ClosestIEDictioaazy which is good because the callmay take a lOI1g
time. Because we lock 0日 thisr the read-assigIIment OR a hit and

ass?meI1t on completiOI1are atomic.Note that we have
ri:♂LSZLM叫ord when assi严g to 主e叫t 归ce 0阳­
wiser closestTOLastword might chmge before we encode it into the

response.

PARALLELCOMPUTING

class ThreadperTaskvvebServer{
public s tati c void main(Stringuargs)throws IOExceptIOI1

ι I S…凸巾O
while (true) {

final Socket cOI1nection=socket.accept();
RunRable task =new Runnable(){

public void rmO{. 、
handleRequest (connectlon)

public void service (ServletRequest req I ServletResponse

esp) {
String w=extractFromRequest(req);
String result = null;
synchronized(this){

if (w.equals(wLast)) {
r~'~~l(= cl'osestToLastWord. clone () ;

iLf(仙closes巾Las时t州r叫d == null) {
result =closestInDictionary(i);
synchronized (this) {

c1 osestlnDictionary = result;
wLast = w;

LICoωltoResponse(叫，…lt) ;

public class S2 implements Servlet {
String wLast = null;
s~;i~g [] closestToLastWord = null;

CHAPTER7.

;ew Thrmd(tMK)start();

3
4
5
6
7
8
9

四
口

u
n
u

1
2

6
7
8
9
四
川μ
u
n
u
臼
u
m
U
U凹
m
n
n

168

吃
i

呵
，
，
』
呵
3
4

品
F
D

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

170 CHAPTER 7. PARALLEL COMPUTING

呵
4
q
U
A

哇

'
b
f
o

巾
'
'
民U
Q
J
n
u
-
-
A
叫
/
M
q
u
A
t
F
3
f
O

叮
J

民
U
Q
J
n
u
-
-
7
"

叫
3
A

吐

F
D

瓦
U

呵
，
，
民U
Q
J
n
u
-
-
&

呵
'
』
巧3
A

哇

'
3

瓦
U

宁
'
只

U
Q
J
n
u

节
i
呵
，
，h
q
M
A
t

1111111122222222223333333333444444444455555
return error (req) ;

return execute (req);

public void ProcessResponse (String response) {
System. out. println ("ProcessResponse:" 十 response) ;
return;

public class AsyncThread {
public static final long τB伍OUT = 500L;
public s ta ti c void main (String [] args) {

Dispatch (new Requestor () I "tl" I 1000L);
Dispatch (new Requestor () I "t2" I 100L);
Dispatch (new Requestor () I "t3" I 10L);
Dispatch (new Requestor () I "t4" IlL) ;
Dispatch (new Requestor () I "t5" I 200L);

public static void Dispatch (
final Requestor r I final String request I

final long delay) {
Runnable task = new Runnable () {

public void run () {
Runnable actuaITask = new Runnable () {

public void run () {
String response = r. execute (request I delay);
r. ProcessResponse (response) ;

Thread innerThread = new Thread (actuaITask) ;
innerThread. start () ;
try {

Thread. sleep (τB在EOUT) ;
innerThread. interrupt () ;

} catch (InterruptedException e)
e. printStackTrace () ;

new Thread (task) . start () ;

Solution 7.4: There are two aspects to the design-firs仁 the data­
structures and second, the locking mechanism.

One solution is to use two data-structures. The first is a heap in which
we insert key-value pairs: the keys are runtimes and the values are the
thread to run at that time. A dispatch thread runs these threads; it sleeps
from call to call and may be woken up if a thread is added to or deleted
from the pool. If woken up, it advances or retards its remaining sleep
time based on the top of the heap. On waking up，让 looks for the thread

171

at the top of the heap-if its launch t让ne is the current time, the dispatch
thread deletes 让 from the heap md executes it It then sleeps till the
laURch time for the mxt thyead h the heap-(Because of deletiom+it mav
happen that the dispatch thread wakes叩 aMfiIIdsmthingtodoj J

U1e secOI1d data-structure is a hash table with thread ids as keys and
mtries hthehe?p as values Ifwemedto camel athreadFWe go tothe
heapmd delete 1t Each the a thread is addedr we hsert it hto the hm
if the insertion is to the top of the heap川气Te interrupt the dispa灿也JJ平
so that it can adjt:时 its wake up time.

shce the heap is shared by the update methods md the dispatch
thready we med to lock it The simplest solutioz1is to have a single lock
that is used for all read md writes hto the heap md tEMhash table.

Solution 75:We waIIt to kable to iRdicate whether the string is behg
ad as well as whether the s甘hg is being writteI1to.we achieve this

with a pair of locks-LR md Lw md a read Comter locked by LR
A reader proceeds as follows:it locks LRr hcremeRts the count

and 陀leases LR Afteritperfoms its mdsr itlocks LR deementstj
Comterr aMreleases LR A writer locks LWr hm itedtively performi
the followhg:it locks LR7checks to see if the read COIlIIter-is O;if so, it
performs its write, releases LW, and then releases LR. In code: I --- ---,
1 I import java. 时il.Date;

2 I import java. uti I .Random;
3 I

4 I class Reader extends Thread
5
6 I public void run () {
7 I while (true) {
8 synchronized (肌LR)

Y I 即忆 readCount++;
10
11
12
13
14
15
16
17
18
19
20 I class Writer extends Thread
21
22
23
24
25
26
27
28
29

System. out. println (即V. data);
synchronized (卧V.LR) {
团代T. readCount一一;

doSomeThingElse () ;

public void run () {
while (true) {

synchronized (刚1.LW) {
synchronized (RW. LR) {

if (即V. readCount == 0) {
}即V. data = new Date () . toString () ;

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

172 CHAPTER 7. PARALLEL COMPUTING
173

doSomeThingElse () ;}

sta tic String data = new Date () . toString () ;
s tat i c Random random = new Random () ;

static Object LR = new Object ();
static int readCount = 0;
static Object LW = new Object ();

Solution 7.9:A casual implemeI1tation is susceptible to races.For ex-
mPIer a IIew customer sees the barber cuttiIIg hair and goes to the waitw

ing room; befo年 ke gets to the chairr the bayber completes the ha挝i让r妃cu时t
checks the wa甜i让tin丑19 r‘O∞om工丑1， an丑ld g伊oe臼s back to his chair t怡os由lee叩p. This i
form of livelock-the barber md the customer are both idler waithg for
each other. As another ex缸nple， in the absence of appropriate locking
two customers may arrive sim吐t?mous135see the barber cutting ha?
nd a siIIglevacmt seat h the waitmg roomy az1d go to the waithg room

occupy the single chair.
ORe way to achieve correct operatioI1is to have a single mutexwhich

llows mly om persmto charIge state at a time.TKhyber-must acrmirp
the mutex before checkhg for customers;he must release it wrJ;Li
either beghs to sleep or begins to cut hair.A customer must acquire the
mutexbefore eI1terhg tke shop;he must release itwhm he sits h either
a waiting room chair or the barber chair.

For a complete solution, in additio日 to the mutex, we need event
semaphores to record the number of customers in t由:he 吵叫a剖甜i让tin口吨gro∞oman且1
ther丑nu孔旧urn宜m工丑lbe盯r‘ of印peop抖Ie getting their ha旧ai让r‘ cut. The event semaphore record­
hg the I1umber of customers h the waiting room is used to wake up the
barberwhemcustomerente?s;the eveI1t semaphore recordhgthemm­
bey of customers getting a ka1rcut is used to wake up waithg customers.

Solution 7.10:The I1atural SOIl1tiORis for each resource to have a lock.
The problem arises wheReach thread i requests lock i md thm t 十 1 mod
η. Since alllocks have already been acquired, the thread deadlocks

une approach isphave a mtral cOI1trolle乙 which knows exactly
which resources are in use and arbitrates co口flicting requests. If reω

ces are m t ayailaple for a thready the C∞or丑1吐巾削t仕rolle臼rca盯ej如如阳e仅创cth地i扫sr陀eq伊u阳le脱S挝t.
b AI则h阳e町rsωO与均lutio∞且 is t怡00ωrde臼叫I

e a缸cq伊ui凶red in increa臼sing order an丑ld released in d由ecre它ea臼sin口19 order. For
pIe, if all threads request simultaneously, resource η- 1 will be left

unrequested (since Thread η- 1 will request 0 first, a扭I口ld then η 一 1υ飞
T1且阳趾lrea

η 一 1 will block or口1 Resource O.

在lis solution is not star飞ration-free， e.g., T2 can wait forever while T1
and T3 alternate. To 伊arantee that no thread starves, one could keep
track of the I1umber of times a thread caIUIOt execute when his IIeighb

lease their locks. If this number ex

public static void main(String [] args) {
Thread rO = new Reader (); Thread rl = new Reader () ;
Thread wo = new Writer (); Thread wi = new Writer () ;
rO. start (); rl. start () ;
wO. s tar t (); w1. s tar t () ;
while (true);

Solution 7.6: We want to give writers the preference. We achieve this by
modifying the solution above to have a reader start by locking LW and
then immediately releasing LW. In this way, a writer who acquires the
LW lock is guaranteed to be 址lead of the subsequent readers.

Solution 7.7: We can achieve fairness between readers and writers by
having a bit which indicates whether a read or a write was the last oper­
ation performed. If the last operation performed was a read, a reader on
acquiring a lock must release the lock and retry-this gives writers pri­
ority in acquiring the lock; a similar operati∞ is performed by writers.

Solution 7.8: This problem can be solved for a single producer and a
single consumer with a pair of semaphores• llCount is incremented and
emptyCount is decremented whenever an item is added to the buffer. If
the producer wants to decrement emptyCount when its count is 0, the
producer sleeps. The next time an item is consumed, emptyCount is in­
cremented and the producer is woken up. The consumer operates analo­
gousl予 The Java methods, wait and notify, can be used to implement
the desired functionality.

If there are multiple producers and consumers, the solution above
has two races-two producers can try writing to the same slot and two
consumers can read from the same slot. These races can be removed by
adding mutexes around the putItemlntoBuffer and removeItemFromBu:刀切'

calls.

30
31
32
33
34
35
36 Ipublic class 阳{
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 8

Design Probletns

Many of the problemsh this chapter cm be the basis for phDmlevel re­
search.A comprehemive discussiOI1on the s0111tiOI1s available for such
problemsis ouisidethe scopeofthisbook IMUI阳view则tingwhen

ne asks such a questiOIL you should have a discussiOI1hwhich
you demonstrate m ability to think creatively}understmd desip1trade-

ffs
l
and attack unfamiliar problems. The answers in this chapter are p

sented in this context-出ey are meant to be examples of good responses
in an interview缸ld are not definitive state-of-the-art solutions.

Solution 8.1: As mentioned in the prologue to this book, one approach
is to do a coarse pixelization of the tiles and for each potential tile posi­
tiOIIfiM the tileJh the image that is closest to 让 in terms of a norm de­
fine江 over each pixel color. If the image collection is limi时， you would

ften end up w让h significa时 errors. Since the human eye perceives the
aze color of a regiOIL ithashen observed that if you a句ust the av­

e吨Jarget color of atilebased ommmmadebyitsmighborhg tiles,
it improves the 0飞rerall quality.

Often the target让mgemay have very similay color for a large I1umber-
of tiles h the backzround-If we pick the same image over md over for
a contiguous rego-r it stands out h the mosaic aIId does 口ot create very
good aesthetics.Hence the mosaic tools would usually allow the users
Lspecify constraints 。到 how often a tile can be repe挝ed or a minimum
separation betweeI1the WO Copies of m image.

-en a rectmgle h the target imagerhdhg tke best image that can
approx恒1ate it esser1tidly boils down to searchhg for the I1earest r1eighm
bor in some bdiIIlensiOI1alspace(where k is the RUmber-of color pixels
used to approx凶ate the 恒1age)·SiRcewe cm do some preprocessmg
omthe library of imagesy it makes sense to do some spatialhdexhg.A

ry s凶ple indexhg scheme for relatively low value of k would be to
just form a bdimeI1Sional grid md place the images to the closest poht

on the grid. A more
indexing.

Finding the overall best f让

age can be repeated is NP-hard.
so口ablywell.

Solution 8.2: The predominant way of doing this is to
indices. In an inverted index, for each word, we store a list
where the word occurs. Here location is defined to be the pair of
ment id and the offset in the document. The list is stored in sorted order
of locations (first ordered by document id, then by offset). When we are
looking for the documents that contain a set of words, what we need to
dois find 仕le intersection of lists for each word. Since the lists are already
sorted, the intersection can be done in linear-time (linear in the total size
of the lists). There are various optimizations that can be done to this basic
infrastructure. We list a few thoughts below.

- Compression-compressing the inverted index helps both with the
ability to index more documents as well as memory locality (fewer
cache misses). Since we are storing sorted lists, one way of com­
pressing is to use delta compressio且 wherewe only store the differ­
ence between the successive entries. The deltas can be represented
in fewer bits.

- Caching-the distribution queries is often fairly skewed and it
helps a great deal to cache the results of some of the most frequent
quenes.

- Frequency-based optimization-since search results often do not
need to return every document that matches (only top ten or so),
only a fractio日 of highest quality documents can be used to answer
most of the queries. This means that we can make two inverted in­
dices, one with the high quality documents that stays in the mem­
ory and one with the remaining documents that stays on the disk.
百lis way if we can keep the number of queries that require the sec­
ondary index to a small enough number, then we can still maintain
a reasonable throughput and latency.

- Intersection order-since the total intersection time depends 0口 the

total size of lists, it would make sense to intersect the words with
smaller sets firs t. For example, if we are looking for IIUSA GDP
200911, it would make sense to intersect the lists for GDP and 2009
before trying to intersect the list for USA.

We could also build a multilevel index to improve accuracy on doc­
uments. For high priority web pages, we can recursively from IIdoc­
umentll abstraction introduce a notion of Ilparagraphll and then '/sen­
tencell to index further down. That way the intersections for the words
might be within the same context. We can pick results with closer index

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

values from these lists.

Solution 8.3: This is a well studied problem because of its implications
for building a high speed Internet backbone. There are a number of ap­
proaches that have been proposed and used in IP routers. One simple
approach is to build a trie data-structure such that we can traverse the
t;i~ for an IP address till we hit a node that has a label. This essentially
requires one pointer indirection per bit of input. The lookup speed can
be-improved -a little at the cost of memory by making fatter nodes in the
trie that consume multiple bits at a time.

There are a number of approaches that have been tried in software
and hardware to speed the lookup process:

- Binary search on hash tables-we can have one hash table for each
possible length of prefix and then do a search for the longest match­
ing prefiX by looking through all the hash tables. However this
couid take 32 hash table lookups. One way of reducing this is to
do a binary search for the longest matching prefix. In order for bi­
nary search to work, we would have to insert additional prefixes in
the -hash tables to ensure that if a longer prefix exists, binary search
does not terminate early. This can be done by performing a binary
search for each prefix and insert additional dummy entries wher­
ever the binary search terminates early. This could inflate the size
of hash tables by at most log2 32 (in practice, it is much smaller).

- Ternary Content Addressable Memory (TCAM)-a TCAM is a spe­
cial piece of hardwar飞 where instead of storing Os 缸ld 1s, a single
unit of memory can also store a third state called the "don't care"
state. Also, the contents of memory can be addressed by partial
contents of the memory. TCAMs with 32 address bits are used to
store prdxes.Each prefix is padded witb Hdor1Ft cafeFF bits to make
it 32 bits. This way, when we use an IP address to address the
TCAM, we get all the matching prefixes. A priority logic gate then
selects the longest matching prefix.

Solution 8.4: The basic idea behind most spelling correction systems is
that the misspelled word's edit distance from the intended word tends to
be very small (one or two edits). Hence if we keep a hash table for all the
words in the dictionary缸ld look for all the words that are within two edit
distances of the text, most likely, the intended word will be found in this
set. If the alphabet has m characters and th~ search text has ηcharacters，

we would ;eed to perform roughly n . m2 hash table lookups. When
we intersect all the strings within two edit di

176 CHAPTER 8. DESIGN PROBLEMS 177

probabilistic models. There are various interesting ideas that can be used
to improve the spelling correction system:

- Typing errors model-often spelling mistakes are a result of typing
errors. Typing errors are easy to model based on keyboard layouts.

- Phonetic modeling-a big class of spelling errors happen when
the perso且 spelling it knows how the words sounds but does 口ot
know the exact spelli吨. In such cases, it helps to map the text to
phonemes and then f扛ld all the words that map to the same pho­
netic sequence.

- History of refinements-often users themselves provide a great
amount of data about the most likely misspellings by first enter­
ing a misspelled word and then correcting it. This kind of historic
data is often immensely valuable for spelling correction.

- Stemming-often the size of dictionary can be reduced by only
keeping the stemmed versi∞ of the words in it and stemming the
query text as well.

Solution 8.5: Stemming is a fairly large topic and different systems
have adopted different approaches. Porter stemmer developed by Mar­
tin Porter is considered one of the most authoritative algorithms for stem­
ming in the English language. Here we mention some basic ideas related
to stemming, however this is in no way a comprehensive discussion 0口

stemming approaches.
The basic idea in most stemming systems works based on some sim­

pIe rewrite rules, such as, if the word ends with "es" or "s" or "ation",
then we remove them. Sometimes, a simple termination may not wor丸
for example, wolves ~ wolf. In order to cover this case, we may have
a rule to replace a suffix "ves" to "f". In the end, most rules amount to
matching a set of suffixes and depending upo日 which one we end up
with, we may apply a certain transformation to the string. One way of
efficiently doing this could be to build a finite state machine based 0日 all

the rules.
A more sophisticated system might have several exceptions to the

broad rule based 0日 the stem matching some patterns. For example, the
Porter stemmer defines several rules based on a pattern of vowels and
consonants.

Other approaches include use of stochastic method to learn rewrite
rules and N-gram based approaches where we look at the surrounding
words to determine the correct stemming for a word.

Solution 8.6: This problem as posed, has some ambiguity:
- Since we usually download one file in one request, if a file is greater

than b bytes, there is no way we can meet the constraint of serv­
ing fewer than b bytes every m

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

lower layers of networking stack such as the transport layer or the
network layer. Often the system designer could look at the dis­
tribution of file sizes and conclude that this problem happens so
infrequently that we do not care. Alternately, we may choose to
serve no more than the first bbytes of any file.

- Given that the host's bandwidth is a resource for which there could
be contention, one important design choice to be made is how to
resolve a contention. Do we let requests get served in first-come
first-served order or is there a notion of priority? Often crawlers
have a built-in notion of priority based on how important the doc­
ument is to the users or how fresh the current copy is.

One way of doing this could be to maintain a server with which each
crawler checks to see if it is okay to hit a particular host. The server can
keep an accou时 of how many bytes have been downloaded from the
server in the last minute and not permit any crawler to hit the server if
we are already close to the quota. If we do not care about priority, then
we can keep the interface synchronous where a server requests for per­
mission to download a file and it immediately gets approved or denied.
If we care about priorities, then the server may enqueue the request缸ld

inform the crawler when it is alright to download the file. The queues at
the permission server may be based on priorities.

In case the single permissio口 server becomes a bottleneck for the sys­
tem, we can use multiple servers such that the responsibility of a given
host is decided by hashing the host name and assigning it to a particular
server based on the hash range.

Solution 8.7: Since the web graph can have billions of nodes and it is
mostly a sparse gr叩h， it is best to represe时 the graph as an adjacency
list. Building the adjacency list representation of the graph itself may
require significant amount of computatio凡 depending upon how the in­
formation is collected. Usually, the graph is constructed by downloading
the pages on the web and extracting the hyperlink information from the
pages. Since the URL of a page can be arbitrarily long and varies a lot in
size, it is often a good idea to represe口t the URL by a hash value.

The most expensive part of PageRank algorithm is the repeated ma­
trix multiplication. Usually，让 is not possible to keep the entire graph in­
formation in a single machine's RAM. There are usually two approaches
to solving this problem:

- Disk-based sorting-in this approach, we keep the column vector
Xinmem

178 CHAPTER 8. DESIGN PROBLEMS 179

can do the entire computation on a s扛19le machine. However this
approach can be fairly slow because di~k-based sorting is usually
SlOW.

- Partitioned graph-in this approach, we use ηmachinesand parti­
tion the vertices (web pages) into n sets. US1:时ly， the pa盯rt出i让tibOI丑1由in丑1
i臼s done曰ebypa缸r此叫‘t咀忧ti让tiOI丑叫1让ing the hash s叩pace such t由ha挝t i扰t i妇se臼as叮yt怡ode改te臼主r­-
m工丑lin丑le which vertex ma叩ps tωo which ma缸chin丑leo Gi忖飞ven口1 t白hi臼spa盯r忧iOI扣1卜E

i讪I丑19ιF each IIlackhe loads its vertices and their outgohg edges into
RAM-Each machine also loads the parts of the pageRmk vector
that correspOIIds to its vertices.TheIIeach machim does a local
matrix multiplication. Since some of the edges 0日 each machine
would correspor1d to the nodes that are OWIled by other machhesr
the result vector is going to contain nonzero entries for vertices that
aremt OWI1ed by the local machim-Sor at tke end of local multiplim
cation, we need to send updates to other hosts so 白at these values
ca口 be correctly added up. The advantage of this approach is that
we can process arbitrarily large graphs as long as we have sufficient
number of machines.

Solution 8.8: If we have sufficient RAM on a single machine, the most
simple solution would be to maintain a min幽heap where we maintain all
the events by their priority. Since we are interested in a scalable solu­
tion to this problem, we need to partition the problem across mult毕Ie
立men江les.

One way of doing this could be to hash the events and partiti∞ them

into ranges so that one hash range correspo且也 to one machine. This way,
the imert md delete operations cmbe donebyjust commuMeathgwith
one of the servers. However in order to do the extract-min operation, we
need to send a find-min message to all the machines, infer the min from
all their responses, and then try to delete it.

Since at a given time, all the clients would be interested in the same
event (the highest priority event)F it is hard to distribute this problem
well. If a large number of clients are trying to do this operatio口 at the
same tir丑e， we may run into a situation where most clients will find
that the absolute min event they were t甘r‘γyin口19 to extract has already been
q今妇ele剧 If t白h时叫e时t由hr甘lrol

C∞hine乓rWecankeepom semrthatis respomibleformpo毗吨to all the
machiRes-Thls server cm prefetch top h1mdred or so events from each
of the machines and keep them in a heap.

In many applications, we do not need strong consistency guarantees.
What we med is that overallr we spend most of our resources takhg care
of the highest prioyity jobs-h such casesr a clieIIt cm pick om of the
hash rmges rmdomly aM just request the highest pmrityjob from the
correspOIIdhg machhe.This would work great for distributed crawler

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

applicati∞ but it would be a bad idea for event driven simulation.

Solution 8.9: Often clients of a service care more about the 99-th or the
95-th nerceI1tiklateRcy for the server rather thm the mem Meney since
hey ￡antmost ofthe r叩es恒的e阳viced in a reasonable amount of

ccasional request takes very long. If our architecture is
such that at a time only a fixed I1umber of requests cm get served md
other pend坦g requests must wait for a slot to open up before getthg
ervedr it is importmt to desig1our queuing system h such a way that

the requests that take a very lOI1g time to serve doRot block mmy small
jobs behind them.

Consider the case where the time it takes for the server to process a
equest is a functiOI1of the request-Given the distributiORof requestsy the
sρrvice time follows a Pareto distribution.h such cases, it greatly helps
LLavetwo queues aMpicka goodthreshold suchthatthe requests that
take longer than the threshold tit盹 go to one queue and the requests
thattaKJless than or equaltothe t}msholdtimer go to the other queue­
we pickthe tkredo1d suchthatthe majority ofjobs go to the faster queue
md the jobs h this queue are never-blocked behiI1d abigjob-UIe larger
iobs do have to wait more behind the larger jobs but overall this strategy…1greatly reduce the 99-th perce旦tile late丑cy.

Often the system designer does 口ot know how long a given request is
going to takeh advmce h order to make the right queuhg decisiOIl-It
has been shown that even in suchαse鸟 it is advantageous to keep two
queues. When a request comes in, it is put in the fast queue, however
whenit takes 1onger than ace由in threshold time, we cancel the request
and put it at the back of the slow queue.

Solution 8.10: Reasonable goals for such a system could include:
-providingmerswiththemostrdevaIItds
-provide advertisers with the best POSSIble return OI1heir hvest-

ment
_ minimizing the cost of running such an operatio口

There are tMKey compomnts to building such a system:(1.)the
front-facing compo丑e时， by which advertisers cm add their advertise­
mmts , COI1trd when their ads get displayed, how much aM how th可
iiamt io mnd their adverti归gmomcaMreview the pedOmance of
theirads ind(2.)the admservingsystem时lich selects which ads to show
on the searches.

The fro卧facing system can be a fairly c∞on飞ve丑时州t柱io∞I口m飞al we由bs且it怡ed命es剖igr俨n
Users interact with the sy严st恒emuωsin口19abrows优eran芷丑ldo叩pen丑ling ac∞om丑lect缸lOr口1

tωothewe由bs剖it恒e. You will need to

180 CHAPTER 8. DESIGN PROBLEMS 181

一 User state-a set of forms to let advertisers specify things like their
advertising materials, their advertising budget etc. Also a way to
store this information persistentl予

- Performance reports-a way to generate reports on how and where
the advertiser's money is be扛19 spent.

- Human interactions-even the best of automated systems require
occasional human interaction and a way to interfere with the algo­
rithms. This may require an interface for advertisers to be able to
contact customer service representatives and an interface for those
represe时atives to interact with the system.

在le whole front-end system can be built using, for example, HTML
and JavaScript, with a LAMP stack (Linux as the operating system,
Apache as the HTTP se凹饵 MySQL as the database software, and PHP
for the application logic) responding to the user input.
亚le ad-serving system would probably be a less conventional web

service. It needs to choose ads based on their "relevance" to the search,
perhaps some knowledge of the user's search history, and how much the
advertiser is willing to pay. A number of strategies could be envisioned
here for estimating relevance, such as, using information retrieval or ma­
chine learning techniques that learn from past user interactions.

The ads can be added to the search results by embedding JavaScript
in the results that pulls in the ads from the ad-serving system directly.
This helps isolate the latency of serving search results from the latency of
serving ad results.

Solution 8.11: The key technical challenge in this problem is to come up
with the list of articles-the HTML code for adding these to a sidebar is
trivial.

One suggestion might be to add articles that have prove口 to be pop­
ular recently. Another is to have links to recent news articles. A human
reader at Jingle could tag articles which he believes to be significant. He
could also add tags such as finance, politics, etc. to the articles. These
tags could also come from the HTML meta-tags or the page title.

We could also sometimes provide articles at random and see how
popular they prove to be; the popular articles can then be shown more
frequently.

On a more sophisticated level, Jingle could use automatic textual
analysis, where a similarity is defined between pairs of articles-this sim­
ilarity is a real number and measures how many words are common to
the two. Several issues come up, such as the fact that frequently occur­
ring words such as "for" and "the" shoul

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

have the same spellhg but completeIy differerlt meanhgs(mtimVIrus
mems differez1t thhgs h the context of articles on AIDS md computer

:LEiZEE:气jHSHifi
teawhatLtLCfesiRdividual1mMavemd.Eweseem町 use飞dB

ad both A and B in a single session, we 中ight want to recom
to anyo日e readiIIg A.For collaborative filtermg to workr we Reed to have

a substantial number of users.

solution 812:An onlhe poker playing servicew0111d have a fror1tmend
system which users iIItemct with and a back-md system which mm the
g r gesmomulooks forka斗d， etc.

The fror1tmend system would mta1i a UI for acc011日t management­
this would cover first-time registratiORF loggingmhy mm a鸣gingo∞Iηnl让lin工丑lepe臼r-

叫 S叫enωnd伽何忡叩h问咿g俨伊O臼rr妃阳町叫叫e仅盯m叫Cα创阳ei由i忖V叫h问阳g伊m∞叫e

gamep抖la叮ying VI一t也hi臼s could be as s垃凶口P抖Ie as some
the州e of the game (cards in h叫 cards on tl时able， bets) and a 阳m
to enter a bet. A more sophi恒stica挝ted VI might use Ja盯vaScrip抖ttωoan口m丑­
cards b悦ein丑19 d缸ea甜l怔t， chang伊e the ex邓pres蚓S岳ωi讪O∞no∞丑 P抖la叮ye臼r'、S 扛恤I丑na旧ag伊es岛， s挝ta时tuωsmes萨

-

gJ尘二r;芷2口Lft骂:2:Z:t古:;忑ELLe"tωo form叩酬a

旦祟3丑:器击i峦:嚣嚣过正言::iZi击il罪i122
prog:tz:22;立ZiJZffzzi:7212:tfZLce Onh

S叮e臼trτ3古t白口;1尘:z古:旷旦出口古工工口口叮口S;卒￡芷♂iz芷r出;二立己:C古丁i立:zz口t扫出己览川芷口=阻;出$$Jι川::江;只;zz:Si抖332币2JZ
1or situatior1and claim that his htemet comectx

ZZZZ Mbyh叫 a rule that the s…will bid ∞ the
playeω斗吕the 抖amdoesMmpodq113即:叫h. Ano也曰

:ii监宝贵旦旦旦去古汪汪i汪古盟
内er's connec叫叫SMvaytMsfavorableTZ AgaiII 由e

Collusion betweeI1players is mothey serious pDg
er logs cm be mit d for examples of players working together to

share knowledge ofιr侃出 or 叩eeze 0加 playe川It Ihnf!:;
tωio∞n凡， p抖la叮ye凹rs c二L1 thhemm优础elv附e创sfl缸ag susp抖iωuωsp抖la叮y and cαu胳S阳ner s …
repz:112二?;23::f:thtmsely SMedproblmyis
stmeasy to get wrOI1g.A fairly frequent problem is ushg pro S 1G 丛U

182
CHAPTER 8. DESIGN PROBLEMS 183

a seed for a random number generator, which means that there are 0日ly

roughly 20,000 possible seque口ces of random日umbers. This means that,
ona口 average， knowing the first_4 cards is enough to predict the order of
the rest of the cards since log2 (节目 18.04 > log2 20000 =自 14.28.

Solution 8.13: At its core, a driving directions service needs to store the
map as a Graph, where each intersection and street address is a vertex
and the roads connecting them are edges. When a user enters a starting
address and an ending address, it finds the corresponding vertices and
finds the shortest path connecting the two vertices (for some definition
of shortest). There are several issues that come up:

- Address normalization一-a given address may be expressed by the
user in different ways, for example, 11飞's仗tr陀eet" may b悦e s由hoωr怡ne曰ed t怡O

H飞st俨H气， there may 丑∞O仗t be a city an丑ld state, just zip code or vice versa.
We need a way to normalize the addresses to a standard format.
Sometimes an underspecified address may need to be mapped to
some concrete address, for example, a city name to the city ceηter.

一 Definition of shortest-different users may have different prefer­
ences for routing, for example, shortest distance or fastest path
(co日sideringaverage speed on the road), avoiding use of freeways,
etc. Each of these preferences can be captured by some notion of
edge length.

- Approximate shortest distance-given the enormity of a graph rep­
resenting all the roads in a large country, it would be fairly dif­
ficult for a single server to compute the shortest path using stan­
dard shortest path algorithms and return in a reasonable amount
of time. However using the knowledge that most long paths go
through a standard system of highways and the fact that the nodes
and edges in the graph represe丑t points in euclidean space, we can
devise some clever approx垃丑atio口 algorithms that run much faster.

Solution 8.14: To quickly lookup an ISBN numbe乙 we would want a
hash table data-structure. However it would take O(η) time to find the
least-recently-used item in a hash table to discard. One way to improve
the performa口ce would be to be lazy about garbage collection such that
the cost of removal of least-recently-used ISBNs can be amortized over
severallookups. To be concrete, let's say we want the cache to be of size
η， then we do not delete any entries from the hash table till it grows to the
size of 2n. At this point, we go over the entire hash table, looking at the
number of t

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 8.15: Assume that the bandwidth from the lab machine is a
limiting factor. It is reasonable to first perform trivial optimizations, such
as combining the articles into a single file and compressing this file.

Opening 1000 connections each 且ve minutes from the lab server to
the 1000 machines in the datacenter and transferring the latest news arti­
cles is not feasible since the total data transferred will be approximately
5 terabytes (without compression) every five minutes.

Since the bandwidth between machines in a datacenter is very high,
we can copy the file from the lab machine to a single machine in the
datacenter and have the machines in the datacenter complete the copy.
Instead of having just one machine serve 出e file to the remaini吨 999

machines, we can have each machine that has received the file initiate
copies to the machines that have not yet received the file. In theory, this
leads to an exponential reduction in the time taken to perform the copy.

There are several issues which have to be dealt with: should a ma­
chine initiate further copies before it has received the entire file? (古lis is
tricky because of link or server failures.) How should the knowledge of
machines which do not yet have copies of the file be shared? (There can
be a central repository or servers can simply check others by random se­
lection.) If the bandwidth between machines in a datacenter is not a con­
stant, how should the selections be made? (Servers close to each other,
e.g., in the same rack, should prefer communicating with each other.)

Finally, it should be mentioned that there are open source solutions
to this problem, e.g., Unison, which would be a good place to start.

Solution 8.16:τhinkof the hosts as being vertices in a directed graph
with an edge from A to B , if A initially know B's IP address.

We will study variants of this problem-synchronized or unsynchro­
nized hosts and known or unknown bounds on the network; compare
them with respect to convergence time, message size, and the number
of messages. We assume the graph is strongly connected (。由erwise， the
problem is unsolvable).

First, assume that the hosts are all synchronized to a common clock
(there are standard protocols which can allow computers to synchronize
within a few tens of milliseconds; alternately, GPS signals can be used to
achieve even tighter synchronization).

We will consider the case where the number of hosts N and the di­
ameter D of the network is known to all the hosts. Our algorithm will
e

184 CHAPTER 8. DESIGN PROBLEMS
185

址::杰出口233口rhighestIPaddress ad山hωhos旧lOSω创叫S时tkn丑lOWS飞P叭W附"矿何飞V叼7咱S

丑mum的b;:::3;S飞Jιe:古:古a:tJm呻provem叫
hi庐伊阳e臼S时tIP a仙e」S￡牛乙ιt♂:汇7;芷二立:江2;立:::ffu时tan川u叩pd创挝脱e 叫呻1 W咐h叫le

It takes D romds.tO CORverge and lEl·D messages are communi­
cated 7EhemI1be町r of阳ations内 C∞onverg-e阳 C 吕
P阳V吨吨叫ho叫叫e盯ωS优e叫ho创S挝tJhλ?erzti;尘区
t1OI1t?mdhostitblowsaboutThisle础 ;;fJJrnvp

:zfz::triemfrdi…ed hosts叫eJt:ez
involves N hosts叫i中vmessre C∞om飞u吃It工:;P:?口←一阳 fi仕inal
hosts. Fu叫rt仕阳t

a::立:::ge臼st怡op严O?γt刨y仕阳averse叫S优创e longer routes (in the吨in…gO灿叽

;2:tplS:;1:;王三fzttzi口;33阻止
When lv md D are completely uIIKZIOWIL leader electiomcm be pera

::m刨出roψa dis吟叫盹 Each ho叩a川y叫ing out a
mceiJirss鸣eJoaM1tsoutgo吨吨hbors. In any round, if a h创

二arcn r…ssager it chooses ORe of the hosts from which it re-
zztczZJS的are卫t a毗nforms its怡sp归a时 a站咖机b协阳O饥叫1
its均ctm back rz22fw咣 ac峭 C缸m叫1叫dire蚓叫e仅创刨ctl川mmu叫I

:咔;幸击J峦i蓝5击引古ii白;旦时?古:丑i;引;芷飞号丑:1i:i;古盟旦熙盹旦拮i吉古拮;古击4f:
;尘?1;2且工止飞t:2巳口27?咋出!t芷:且;e:泣J二♂乓;z芷;￡2r俨;2「俨俨:γ??hωhosω叫S

e 1JJ;ζ;;二;;二二可」J;rO:2;:r:t::?!!? the amCdd由h趾祉lror丑lOUS C耐 The叫旦flo叫h峙gρa剖咿l
hosts because th .?CaI口IT丑1Ot be directly generalized to aSyI丑lchror丑10US

:nere IS no notion of a rou日d. However 'W

zz江ZJavmgtmtψheir messages wi出 theroJ工:口气
performhgj;:;2:飞zfTme叫叫om all its怡S吨hbors时before

21545桂$7155:记黯5苦苦出
Solution847:DiscoveryaM leader d也e巾n are ider毗at s臼o the solu­
hon to Problem 8.16 works here too.

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 9

Discrete Mathem.atics

Solution 9.1:It is tempthg to try md pair up terms h the I111merator
and denominator for the expressi∞ for (~) that have comm∞ faωrs
二;d trv to somehow cancel阳n out. This approach is unsatisfactory
because of the need to have factorizations.

The bimmial coefficierlts satisfy several iderltitiesr the most basic of

which is the addition formula:
\1112//

寸
i

咆
i

一
一

μ
υ

十

\111l/11--kn/tall\

一
一

\
飞

l
l
j
/

η
k

/IlI-\

.讪ouωsp严ro∞ofs of t白hi坦siden丑1t出i让ty予~ ran工丑19in丑19 from the combinatorial
in工丑1t怡er叩pret圳a挝tiωO口 t切o inducti世io∞I丑1 and finally, direct man丑1i毕pl叫1过la甜t柱io∞I口1 of the e以xp严re臼s-

飞i恒s i战d岱缸伽e缸m刨n
e (;)and (;), both of which areL me idividualresults from

the subcali; are int~gers and if (~) can be represe时ed by an int, they
can too; so, overflow is not a concern.

The r卢rsion can lead to repeated subcalls and con叫uently expo-
n可MlmMes.There is measyfix--mheintermediate results as h

d号yI口1amic p严ro咿g伊rar宜m工
canb悦e combined i坦I丑10叫(ο1) t甘ime鸟， yi恒eldir吨 anO(仰7ηZ♂2) C∞om丑1p抖lex灿i让tyb切ound.

Solution 9.2: Let F(叫 be the number of ways of climbing n stairs
through a combimtion of ORe or WO Steps-We∞te that F(I) = 1 and
F(0)=1.Now, allpaths that lead us to cross ηsteps either start with a

记了1:;22?;:2212::2311:eizyt:二:2351

187

ways of completing the path. Hence

F(叫 =F(η- 1) + F(η- 2).

This leads to a simple dynamic programming algorithm that can com­
pute F(n) in O(n) time. An interesting thing to note here is that F(n) has
the same rec旧rence relationship as the Fibonacci numbers and F(n) is
actually the (η+ 1)-th Fibonacci丑山nber.

Solution 9.3: This problem can be modeled using undirected graphs
where vertices correspond to guests. There is a pair of edges between
every pair of guests. Color an edge between a pair of guest "blue" if they
are friends, otherwise, color it "red".

Then the theorem is equivale时 to the claim that in any clique on six
vertices, where the edges are either blue or red, there is a subset of three
vertices, all connected by edges of the same color.

Choose any vertex v. Examine the five edges with an endpoint in 1毡，

There must be at least three edges which are of the same color c (this
follows from the pigeo扣hole principle). Let (飞 α) ， (υ ，~)， (飞 γ) be three
such edges. Now, either there is an edge colored c between one of Q ,~
andγ， in which case υand the vertices in 风~ andγare connected by
edges colored c or there is no such edge, in which case 风~ andγare

themselves connected by edges that are of the same color.

Solution 9.4: Number the doors from 1 to 500. Let's start with some
ex缸丑pIes-door12 is toggled on days I, 2, 3, 4, 6, 12; door 3 is toggled
O口 days 1 and 3; door 1 is toggled on day 1; door 500 is toggled on days
1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500.
吐1e patter且 that emerges is the following: a door is toggled as many

times as its id has divisors. Divisors come in pairs: 12 = 1 x 12 = 2 x 6 =
3 x 4. So, the total number of divisors is even, except when the number is
a perfect square. For the perfect square case, the total number of divisors
is odd. Therefore the doors that are open at the end of the process are
those with ids 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256,
289, 324, 361, 400, 441, 484-these are 22 doors altogether. In the general
case, it would be lYI瓦J ， where ηis the number of doors.

Solution 9丘 Let F(k , l) be the maximum number of floors that can be
tested by k identical balls and at most l drops. We know that F(I , l) = l.
If we are given an additional ball to drop, we can drop the first ball at
F(k , l 一 1) 旺。or. If it breaks, then we can use the remaining balls and l - 1
drops to determine the floor exactly; if it does not break, then we could
drop the first ball at F(k ,l - 1) + F(k ,l - 2) floor. If it breaks, we can
use the remaining k balls 缸1d l - 2 drops to narrow down the exact floor
between F(k ,l

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

哑le maximum we can make by betting on black cards is

F(k+川工艺F(k ， l - i)

QB(C,r,t) = ,_ rP}~X , min (Q(c + b ， 飞 t-1) ， Q(c- b,r-1 ,t)).
bε{O ， 1 ， 2 ，...， c}

double blackLowerBound = Math.min(
computeBestPayoff (c - b I r - 11 t - 1) I

computeBestPayoff (c + b I r I t - 1));

double betterMove =

if ((r == t) I I (r ==0))
return c * Math. pow(2 It);

double best;
if ((best = cacheLookup(c l r

l
t)) != -1. 0) {

return best;
else {
for (int b = 0 ; b <= c; b++) {

double redLowerBound = Math.min(
computeBestPayoff (c + b I r - 11 t - 1) I

computeBestPayoff (c - b I r I t - 1));

189

HhOW附eve臼rifw附e di让眈r

ru主ns讪臼 for an UI丑1a缸cc臼epta抽bl与Y lor丑飞g time. This is because we will be explori丑g

paths for which C grows very large.shce we are give口 the maxi
payoff 0口 a dollar when fractional amounts can be bet is less than 9.09.
we can prune compl归tions for Q(c ,r,t) when c 兰 90ω9. 丁h挝e followinη1

?ωod句e i讪mp卢lemen附t妇s the dynamic p严rog伊ram红mm宜I丑1i吨丑吨g algorithm with 由i扫s prUl♂:
mg; 1址tc∞om丑1pl时1垃te臼s the maximum payof任f， 80ω8， in two minutes.A

1 limport java.lang.Math;
; , import java. util .H叫ap;

4 I public class CardSelect {
5 I
6 I private static int numCards = 52:
7 I p ri vatest a ti c in t nur由d = 26:
8 I private static int 叩perBound 二 909 ;
9 private static HashMap<Integer I double 川> cache;

10 ,
li public static void main(St归g [] args) {
~: I cache = ~ew _HashMap<Integer I ~ d~~ble '-' [] [] ; () ;
13 I computeBestPayoff(100);
14 I }
15

;~ I priv阳 s t a ti c double cacheLook叩 (int c
l

int r
l

int t) {
17|return cache mMmkey(c)?cache gu(c)[r][t]: 一1. 0;
18 I }
19

:? I p巾ate s ta ti c void computeBestPayoff (int cash) {
:~ System. out. ~rintln ("Optimumwpay;fCis w" +
2刀: I 、 corr叩npu甲职lpU扣归uteBe比阳e臼创S时tPayof丘削f盯(ωhI 阳ω I nu阳1m盯m心n
23 I
24

25 public static double comp附BestPayoff(
26 int c l int r

l
int t~) {

27 I if (c >= upperBound)
28 I return c;
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

CHAPTER 9. DISCRETE MATHEMATICS

Hence Q(c,r,t) = max(QR(c,r.t) ,QB(c,r,t)) which yields a dynamic
programming algorithm for computing the maximum payoff-base
cases are of the form Q(c,0,t) and Q(c,t ,t) , both of which are c x 2t .

Given the above recurrence relatio口ship it is straightforward to ob­
阳ve that月十 1 ， l) = (k+k- 1

) since it follows exact悖 the same recur­
rence relationship. (One easy way to notice this is to tabulate some con­
crete values for F(k ,l).) Now, since F(k ,l) monotonically increases in k
and l, we can easily invert it to determine the number of drops needed,
given the number of balls and the number of drops.

Solution 9.6: A good way to begin this problem is to come up with some
strategy that guarantees a positive return. It is possible to guarantee a 2x
return by waiting till the last card and betting the entire 缸nount on the
last card whose color is unique与 determined by the the 51 cards that
have already been seen.

To do better than a 2x return, consider the case of a deck of 4 cards
with 2 red cards and 2 black cards. If we do not bet on the first card,
there will be three remaining cards. Assume, without loss of generality,
that two cards are black and one is red. If we bet 吨。丑 the next card
being black and are succe时时， then we have $~ which we can double on
the last card for a i > 2 return. If we 10盹 then tl时wo remaining cards
are black, in which case we can double our remaining money twice, i.e.,
achieve a ~ x 2 x 2 = i > 2 retur孔 Note that this analy臼 assumes we
can bet arbitrary fractions of the money we possess.

Now, we consider the case where we can 0口ly bet in penny incre­
ments. Let Q(c，价) be the most we can guarantee, when we have c cents
to g缸口ble with 缸ld there are r red cards remaining out of a total of t
cards. We can bet b cents, 0 ~ b ~ c on the next card. Since we have
to design a strategy that maximizes the worst-case payoff, the maximum
缸丑ountwe can make on betting on red cards is given by

QR(C,r,t) ，~11?-~x 时n (Q(c 十 b， r - 1,t - 1),Q(c - b,r,t)).
bE{O,1 ,2,...,c}

a粤lment till k -1 drops of tl时irst ball,we can test叩 t02;二i F(k ,l-i)
floors. Hence

188

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

190 CHAPTER 9. DISCRETE MATHEMATICS

、
，
，
，
，

、
t
'
'

寸
J

民
U
Q
J
n
u
1
4
呵
'
'
-
q
u
A
哇
"
。

f
0
7
'
'民
U
Q
J
n
u
唱i

叫
4

4445555555555666Math.max(blackLowerBound / redLowerBound);
best = Math. max(best / betterMove);

double [] [] tmp;
if (! cache. containsKey (c)) {

tmp = new double [numRed+1][nur丑Cards+1];

for (int i = 0 ; i <= nm口Red; i++)
for (int j = 0 ; j <= numCards; j++)
恼p[i][j] = -1. 0;

cache. put (c/恤p) ;

cache.get(c)[r][t] = best;
return best;

Solution 9.7: The process will converge since at each step川何 reducethe

number of integers in A by one. The number of odd integers removed
in each step is even since we either remove two odd 让ltegers or none.
Therefore if there were an even number of odd integers to begin with, the
last integer must be eve刊 if there were an odd number of odd numbers
to begin with, it must be odd.

Solution 9.8: Consider the thought experiment of starting at an arbi­
trary city 飞Nith sufficiently large amount of gas so that we can complete
the loop. In this experiment, we note the 缸丑ou丑t of gas in the tank as
the vehicle goes through the loop at each city before loadiI1g the gas kept
k1that city for the vehicle.If we start at a different city with a differ­
ent amount of gas, the amount of gas in the tank at each city should still
vary h the same fashioz1with a constmt offset.If we pick the city where
the amount of gas in the tank is minimum as the starting point/ clearly
we will never run out of gas. This computation can be easily done in
linear-time with a single pass over all the cities.

Solution 9.9: Consider the case where exactly one person has green
eyes.τhe statement from the explorer would make it clear to the per­
son with gree口 eyes that he has green eyes since nobody else that he sees
has green eyes.

Now, s~ppose there are two inhabitants with green eyes. The first
dav, each of these two inhabitants would see exactly one other person
with green eyes Each would see the other person OI1the second day
toor from which they could hfer that there must bewo hhabitmts with
gree口 eyes， the second one being themsel飞res. Hence both of them would
leave the second day.

UsiI1g iIIductiozu we can demoIIStrate that if there are k inhabitmts
with green eyes, all the green-eyed inhabitants would leave after the k-th

191

assembly. We already saw the base case, k 二1. Suppose the induction
hypo出esis holds for k - 1. If there are k inhabitants with green eyes,
each 让由abit缸lt with green eyes would see k - 1 other inhabitants with
gree口 eyes. If at the k-th assembly, they see that nobody has departed,
it would indicate that they themselves have green eyes and hence all the
green-eyed inhabitants would leave on the k-th day.

As for the second part of the questio且/ for k = 1/ it is fairly obvious
that the explorer gave new knowledge to the person with green eyes. For
other cases, the new information is a bit subtle. For k = 2/ the green-eyed
inhabitants would be able to infer the color of their eyes on the second
day based on the information that e飞Teryone on the island knows that
there are green-eyed inhabitants and yet no one left. For k = 3/ they are
able to infer because everyone knows that everyone knows that there are
green-eyed inhabitants and yet∞ the second day no one left.

Suppose x is some fact and E (x) represents the fact t由ha挝t ev飞ve町ryo丑

kn旧ows x to be true. In this case, let g represent the fact that there are
some green-eyed inhabitants on the island. Then on the k-th day, all the
gree开eyed inhabitants would use the fact EK (g) to infer that they have
green-eyes. Essentially, what the explorer did by announcing the fact in
the assembly is that it became "common knowledge", i.e., E∞ (g) became
true.

Solution 9.10: If the assumptio丑 is that once you have broken the bar
into two pieces, they become separate problems, then it does not matter
what order you do it-you will require 15 total breaks in any scenario.

If, on the other hand, the assumption is that the whole bar stays to­
gether (as 让 would if you were breaking it inside its wrapper, for in­
stance), then you can do a little better. You could simply break it along
all axes (say, first the vertical and then the horizontal) for a total of 6
breaks.

Solution 9.11: Player 1 can always win. The key obse凹ation in this
game is that we want to force the play to be symmetrical around the
diagonal, i.e., (0,0) , (1 ,1),…, (η?η) with our opponent forced to move
first in terms of breaking the symmetry. If that is the case, we can follow
each of his moves by a matching move reflected in this diagonal which
will eventually force him to select the (0 ,0) space.
百le way to force this type of play is to be the first perso口 to select

(1 , I)-this causes the play area to be just the colum工1 (0, [0 一叫) and the
row ([0 一 η] ， 0) (i.e., an "L" shape). At that poinιwe can successfully
mirror any move that Player 2 makes, forcing him to eventually choose
(0/0).

2l Choose(1J)i
1 IVVilllααnp() :

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

3 I Until you win:
4 I Wait for Player 2 to choose square (i I j)
5 I Choose square (j Ii)

Solution 9.15: The problem can be solved using dynamic progr缸归丑ing.

Let P(m ,n) be the largest margin of victory that a player can achieve
when the coins remaining are indexed by m to 凡 inclusive.

The function P satisfies the following:

Solution 9.12: Suppose the set of remaining squares are of the form of
a rectangle and one additional square (which must be 0丑 the lower row)
and Player 2 is to move. The remaining set of squares will be of the form
of a rectangle (if Player 2 plays the lower row) or a rectangle with a set of
additional squares on the lower row. In either case, Player 1 can recreate
the state to be a rectangle and one additional square, i.e., Player 1 can
force a win. By playing (1 ,n - 1) as his initial mo飞吼 Player 1 can create
this situation and therefore force a move.

In the general case, we can compute P for ηcoins by dynamic
programmi鸣一there are n(η+ 1)/2 possible arguments for- P ~d the
work required to compute p from previously computed values is COIl­
stant. Hence P can be computed in O(η2) time.

Solution 9.16:The easiest way to prove this is to imagiI四旧lather
(call him Bob)descendiRg the mountain ORSaturday>h exactly the same
fashiOI1as Adam did OR SUI1day-When aseerlding OIISaturday> Adam
will pass Bob at some time md place-tkis is the time md place which
Adam will be at on Sunday.

193
CHAPTER 9. DISCRETE MATHEMATICS

m以 (C[n] - P(η+川， C[m] -P(川一吵 ifn > m

C[m] ifn = m.

P(叽 η)

P(m,m)

Solution 9.14: Number the coins from 1-50. Player F can choose all the
even-numbered coins by first picking Coin 50 and then always picking
the odd number coin at one of the two ends. For example, if Player G
chooses Coin I, then in the next turn, Player F chooses Coin 2. If Player G
chooses Coin 49, then F chooses Coin 48 in the next turn. In t也hi妇s£缸'ashion凡1,y
F can always leave an a盯r口.τ'fang伊em丑leI时1让t 飞w咿vh怡ere G can 0∞nl悖ycho∞ose f仕rom丑lod创d­

I丑nl孔um工丑lbered c∞oin口lS.

If the value of the coins at even indices is larger that of the coins at
odd indices, F can win by selecting the even indices and vice versa. If
the values are the same, he can simply choose either and in each case, he
cannot lose.

Solution 9.13: Suppose Player 2 has a winning strategy. Suppose
Player 1 chose (η- 1,m - 1) as his initial choice and Player 2 countered
with position (i, j) , leaving the set S of squares. Now, it is Player 1、

tum and from this set, by hypothesis, Player 2 can force a win. However
Player 1 could have chosen (i, j) as his initial move and the set of remain­
ing squares would be S (since the square (η- 1,m - 1) is above and to
the right of all other squares) with Player 2'sturn.

This contradicts the hypothesis that Player 2 has a winning strategy;
therefore Player 1 must have a winning strategy.

Note that this does not give an explicit strategy as we did for Prob­
lem 9.11 and Problem 9.12.

192

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Chapter 10

Probability

Solution 10.1: It is easy to solve this problem when k = I-we simply
make one call to the random number generator, take the returned r value
mod η. Wecansw叩 A[n - 1] with A[r].

For k > 1/ we start by choosing one element at random as above 年ld

we now repe挝 the same process with the η-lelementsubarray AP:
η_ 2]. Eventually, the random subset occupies the slots A [n -1- k :η-1]

and the remaining elements are 坦 the first n - k slots.
The algorit~ clearly is in-place. To show that all the subsets are

equally lik句 we prove something stronger, namely that all permuta­
tions of size k are equally likely.

Formally}m mmpermutation of a set S of cardimlitynis a seque口ce

of m elements of S with no repet让ions. Note that there are (n~均1 比

permutations.
The induction hypothesis now is that after iteration m/ the subarray

A[n-m-k:η-1] contains each possible m-permutation with probability
坠二旦卫

n击or m = 1/ any 由nent is 叩均 lik啡时e s由cted， so tl的ase
case holds.

suppose the hductive hypothesis holds for m =l.Consider m =l +
1. Co~sider a particular (l + 1)-permutation, say (αb … 7αZ+l). This con­
sists of a si吨Ie elementα1 followed by the l-permutation (α2，… ， a l+1)'
Let E1 be the event thatα1 is selected in iteration l 十 1 缸ld E2 be the
eventthatthe 亘古st l iterations produced (α2，… ， az十1)' The probability
of (α1 ，… ， az札)resulting after iteratioIIJ+l is simply PT(E1n E2)z
Pr(E1IE2) . P叫E2). By the inductive hypothesis, the probability of per-
m时ation (的尸.. ， αl十1) is 鱼在21. The probability Pr(E1IE2) = n~Z since
the algorithm selects from elements in 0 :η - l - 1 with equal probability.
τ'herefore:

195

1 (η -l)! 1
Pr(E1 n E2) 工 Pr(E2 IE1) . Pγ(E1) = n -l . 一石! -豆豆二旦·

n!

The algorithm generates all random k-permutations with equal prob­
ability, from which it follows that all subsets of size k are equally likely.

We make k calls to the random number generator. When k is bigger
tha口号/ we can optimize by computing a subset of η - k elements to
remove from the set. When k η- 1/ this replaces n - 2 calls to the
random number generator with a single call.

Solution 10.2: We store the first k packets. Consequently, we select the
忏th packet to add to our subset with probability ~. If we do choose itt
we select an element uniformly at random to eject from the subset.

To prove correctness, we use induction on the number of packets that
have been read. Specifically, the inductive hypothesis is that all k-sized
subsets are equally likely after η 二~ k.

The number of k-size subset is (~) / so the probabili可 of any k-size
subset is 市

For the base case n = k, there is exactly one subset of size k which is
what the algorithm has computed.

Assume the inductive hypothesis holds for n > k. Suppose we have
processed the n十 1-th packet. The probability of a k-size subset that does
not include the η+ 1-th packet is the probability that we had selected
that subset after reading the η-th iteratioηanddid not select the n + 1-th
packet which is

1 (才 k \ k!(η - k)! /η -k+l \ k! . (η - k)! . (η - k + 1)
(~)\4η 十 1) n! \η+ 1)η! . (η 十 1)

T咀Thi盯seq仰帆ua叫1血圳als 飞T俨讨市干玄→+韦z÷+朽?卡封τ寸).5旬0/ω口M灿d出出u伽巾eh均协1可lypO仙t仕白ωt挝lesis员臼灿i坦shold出创sf…

让1丐gthe η 十 Ieιleme!时1让t..
τ'he probability of a ιsize subset H that includes the η+ 1-th packet

Pn札 can be computed as follows: let G be a k-size subset of the first n
packets. The only way we can get from G to H is if G cor归insH一 {Pn+1}'

Let G* be such a subset; let {q} = H 一 {Pn+d·

白le probability of going from G to H is the probability of selecting
Pn+1and dropping q白白叩al to 击. t. There are n十 1 - k candidate
subsets f叫

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

which means that the probability of H is given by

k 1 , _, 1 (n + 1- k)(η - k)!k! /η+1\
一一·一. (η +1-k)· f~\ = 一(.U 7~ -)n + 1 k \'U I - 'UJ G) (η 十 l)n! 一\ k)'

so induction goes through for subsets including the η+ l-th element.

Solution 10.3: We can make use of the algori仕lID for problem 10.1 with
the array A initialized by A[i] = ιWe do not actually need to store the
elements in A, all we need to do is store the elements as we select them,
so the storage requirement is met.

Solution 10.4: The process does not yield all permutations with equal
probability. One way to see this is to consider the case η= 3. There are
3! = 6 permutations possible. There are a total of 33 = 27 ways in which
we can choose the elements to swap and they are all equally likely. Since
27 is not divisible by 6, some permutations correspond to more ways
than others, ergo not all permutations are equally likely.

τhe process can be fixed by selecting elements at random and moving
them to the end, similar to how we proceeded in Problems 10.1 and 10.3.

Solution 10.5: Our solution to Problem 10.1 can be used with k = n.
Although the subset that is returned is unique (it will be {0 ， 1 ，… 7η­

I}), all n! possible orderings of the elements in the set occur with equal
probability. (Note that we cannot use the trick to reduce the number of
calls to the random number generator at the end of Solution 10.1.)

Solution 10.6: The first thing to note is that three segments can make a
triangle iff no one segment is longer than the sum of the other two: the
"only if" follows from the triangle inequality and the "if" follows from
a construction-take a segment and draw circles at the endpoints with
radius equal to the lengths of the other circles.

Since the three segment lengths add up to I, there is a segment that is
longer than the sum of the other two iff there is a segment that is longer
tkm i

Let l 工 min(ul ， u2)， m = max(ul ,u2) - min(ul ,u2) , and u ­
1 - max (ul ,u2); these are the Ie丑gths of the first, second, and third seg­
ments, from left to right. If one segment is longer than 0.5, then none of
the others can be longer than 0.5; so, the events l > 0.5, m > 0.5, and
u> 0.5 are di司oint.

Observe that l > 川证both ul and u2 are greater than 0.5; the proba­
bility of this event is 言×言 becauseul and u2 are chosen independently.
Simila句 m > 0.5 iffbothul and u2 are less than 0.5, which is ~ x ~.

To compute the probability of m > 0.5, first we consider the case that
ul < u2. For m > 0.5, we need ul to be between 0 缸ld 1 缸ld u2 to be

197

between 0.5 + ul and 1. This probability can be expressed by the integral

public static void uniform ()
int overHalf = 0;
for (int i = 0 ; i < numTrials; i++)

double u1 = Math. random () ;
double u2 = Math.random();
double min = Math.min(u1 , u2);

public class triangle {
static final int numTrials = 1000000;
publ~~ static void main(String [] args) {

uniform () ;
inOrder () ;

17OILul十051 削向2

COILUI叩 (1 二1)ω 仇1

which evaluates to ~.

By symmetry, the probability of m > 0.5 when ul > u2 is also i.
HmeetheprobabilityofasegmeI1tbehgl0吨erthm j is 3+; 十 i=~

?OF t号?e P咛:O伪ba抽剧圳bil让均l

- 4 一 4'

For the second case, we fail to be able to make a triangle in case ul >
0.5, u2 - ul > O.瓦 or 1 - u2 > 0.5. The first probability is simply ~

The second probability is given by the integral ~ . '"

Note thattheprobabilitydm均functi∞ for u2 is different from the pre
V lOUS cas尹e SmCαe u2 i妇sun丑li证fo臼r口rm宜m丑lin口1 [忡ul ， I], not [0,1]. This integral evaluates

to 与手立 The thir句robability can also be computed usi口g ani附g时
but by symmetry> it must be the same as the secOI1d probability.Hmce
the final probability is ~ + 2.旦手立自 0.807

Intuiti飞rely， the second formufation leads to a higher probability of a
10吨 line segme于t because there is less diversity in the poin怡. For the
first case, the points are spread randomly; for the seco日d， there is a 0.5
chmce that the arst poht itself precludes us from buildhg the trimgle­
AI1other-way to tMIlk of it is tAat if we put dOWI1a lot of pohtsr the first
method will lead to short segmmts with littlevariatiOIIh ieI19hs but
the second method will give us a skewed distribution and the first few
segments will be considerably longer.

ηlese computations can be verified by a numerical simulation. Here
is an example code to perform this:

2
3
4
5
6
7
8
9

10
11
12
13
14

CHAPTER 10. PROBABILITY196

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

198

妇
v
m刀
四
凹
汩
汩n
n
M
A
E
盯m
g
n
m
u
m
贝
坦
白
川
拇
指
M
g
刊
拇
指
川
剧
组
位
。

CHAPTER 10. PROBABILITY

double max = Math .max(ul , u2); 、
if(miE1 > O.5!lmax < 0.5i!max-min >0.5)

overHalf++;

; vstem out 川1川"川"uni、、'uni山m削1江皿川E旦旧nif吐旧巾巾巾ifo阳f臼阳阳O旧盯r叽'r吭I盯I
J 十 overHa1f +川" + numTrials);

public sta tic void inOrder () {
in t overHalf = 0;
iLr(int i=0;i < numTrials;i++)

double x , Y I z;
if «x = Math. random ()) > 0.5)

overHalf++;
lse {

if((yz(Math.random()*(1.o-x)))>0.5)
overHalf十+;

else {
if «z = (1. 0 一 (χ+y))»0.5)

overHalf ++;

; vstem ou t pωIn叫町川1叫町旷(，γ(" i仙
J 十 overHa1f + ":" + numTrials);

Solution 10.7:The probability that a given ball does not laIId up iRa
given bin~s 但-ON·TheprobabilitythatmmoftheballslaM叩 inthe

is (号主)如 -HencetheexpectedI111II1berofemptybimca 由e given as
η(平)m. Note th削吐smbecloselyapproximatedb377zem/n.Hence
as 10口g as on an aver吨e， each server is handling significantly more than
one client, there should be very few idle servers.

Solution 10.8: Let Xi be the ran丑ld白am varia必ble，川兀w竹咄hichi恒s 1 i迁f σ(i价i) = i an口1
0otherwise.(Such a rmdomvariable is ofteRreferred to as m uhdiCator
random variableHj TKe I1umber of fixed pohts is equal to X1+X2十...+
Xn-EyneddoI1islinearr i-ev the expected value of a sum of random

abl4is叩al to the sum of the expected values. of the 年dividual
bles. The expected value of Xi is 。旦二十 1· 去(归 ean

element is equally likely to be mapped to 吨yother elemer毗 Therefore
the expected number of fixed points is n . 言=1.

mpute the expected length of μby defining in~icator ran-
am variables 凡..， }年， where}气 =liffYj<i(σ(j) < σ(i)). Observ~

that the length of μis simply the sum of the ¥is. 在le expech~dvalue of
¥i is t , since Yj < i (σ (j) < σ(i)) iff the largest of t1时irst i elements is at

199

P归osit让tio川， whichha臼sp严ro伪ba油bi出l且it吵yt 归ce all t由:he pe臼rrr口m工

likely. The时are the expected value for the Ie吨thofμis1+i+i十·十ir

which tends to loge 凡
Note that for both parts of the problem, we used the linearity of ex­

pectation which does not require the individual random variables to be
independent. This is crucial since the XiS and 1js are not independent­
for example, if the firstη 一 1 elements get mapped to themselves, then
the η-th element must also map to itself.

Solution 10.9: Basically, we want to produce a random number between
oand b 一 α， inclusive.

We can produce a random 日umber from 0 to l - 1 as follows: let j be
the least integer such that l 三 2J .

If l is a power of 2, say l = 2j , then all we need are j calls to the 0-1
valued random number generator-the j bits from the calls encode a j
bit integer from 0 to l - I , inclusive and all such numbers are equally
likely; so, we can use this integer.

If l is not a power of 2, the j calls mayor may not encode an integer
in the range 0 to l - 1. If the number is in the range, we return it; since all
the numbers are equally likely, the result is correct.

If the number is not in the range, we try again. The probability of
having to try again is less than ~ since l > 2j -1. The p时ability that we

take exact与 k steps before succeeding is at least (1 - ~)k-1 . ~工 f me
expected number of trials before we converge to a solution is bounded
byl.~+2.(~)2十 (~)3 十… whose limit is 2.

Solution 10.10: Let Fx(x) be the cumulative distrib时ion function for
X , i.e., Fx(x) = probability that X ~二 ι

To generate X , we perform the following operation: we select a num­
ber r uniformly at random in the unit interval. We then project back from
Fx to obtain a value for X , i.e., we return s = Fx1 (r).

By construction, the probability that the value we return is less than
or equal toαis Fx(α)， so the cumulative distribution function of the
random variable we created is exactly that of X.

Solution 10.11: First we prove that if (X1 ,X 2 ,…) is a seque口ce of
Bernoulli IID random variables, with p(Xi = 1) 二 p) ， then the expect怡ed

time时to附 the f缸i让r时st 1 i坦s ~. The rωoningμis a臼sf刨allows缸:d出创创efi直fineF贝Fitμtω灿ob快e 白

e飞vel时1让tt出h旧a挝t the first 1 comes on the i-th trial. Then Pr(Fi) = (1 - p)• 1. p.
Hence the expected time is S = 乙=1 i . (1 - p)i-l .p. This sum simplifies
to ~ (multiply both sid的y p, S1:加act， and s阳urn口工丑1 t出he曰叫ein丑nf诬曲fi缸inite怡问eg伊eome仕

series or丑1 the ri‘·ight).
Now, we consider the problem of dice rolls. The key is to determine

the expected time

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

x ·120 十 y. 20 ~ 0

x·70 > 0

x . 100 + y . f < 0

A fair price for the option is one in which no arbitrage exists.
If f is less than 0, an arbitrage exists-we are paid to buy options, lose

nothing if the price goes down, and make $20 per option if the price goes
up. Therefore f ~ 0, so we can write the third ineq叫ity as y 三一半ι

The first equatio口 can be rewritten as y 三 -6·x.

Combining these two inequal让邸， we see that an arbitrage does not
创st if 一半三 -6， i.e., f 三乎 Outside of the ir阳val [0，孚]， we do
have an arbitrage.

For example, if f = 19 >芋， then the option is overpriced and we
should sell (气IVrite") options. If we write b options and buy one share,
we will start with a portfolio that is worth 100 十 19 . b. If the stock goes
down, the options are worthless; so, our portfolio is worth $70. If the
stock goes up, we lose $20 on each option we wrote but see a gain on the
stock we bought. We want the net gain to be nonnegative缸1d the initial

t怡a see the f缸i让rs挝t new value i妇s i讪us时t 1. The time to see the sec∞or丑1dnewvalue

fωrorr川时ir时归newva叫alue is妇S5市?括百 sincαethep严ro伪bci动bi丑li均t句守yofs优ee归i扛in口吨19a阳IVvalue肥e

gi扣yen丑 t也ha挝t one value has already been seen, is 5/6. In this way, the time
taken to see the third new value, given that two values have already
been seen, is 在. Generalizing this id帆也e 恤e 蚀en to 附 the k-th

new value, given that k - 1 values have already been seen, is T6一 (KL))/6·

Hence the expected time to see the创hmwvalueis3+3+2+3十

3+? 但 14.7

Solution 10.12: Let f be the price for the option. A fair price is deter­
mined by the no-arbitrage requireme时. Suppose we start with a port­
folio of x shares and y options in S-x and y may be negative (which
indicates that we sell stocks or sell options).

The initial value of our par旺olio is x . 100 十 y . f. On Day 100, two
things may have happened:

- The stock went up and the portfolio is worth x . 120 + y . 20.
- The stock went down and the portfolio is worth x . 70.

If we could choose x an丑1d y in such a way t也ha挝t our initial po臼r甘olio has
a negative value·一一一幽-一-甲甲-

g伊ar叫dIes臼s of t也hem丑lOV飞vemer时1让tin丑lt血he s时tack， our portfolio takes a nonnegative
value, then we will have created an arbitrage.

Therefore the conditions for an arbitrage to exist are:

120 十 20· b > 0

100 + 19· b < 0

:二:Et::;::;::2:2?:zz;Ei:2:;rJJf丑m叫1曰叫e吨叩q

:2;2::出:古:?2」33巳艺t巳:〉b:2:z::f悦se our ω1 portfolio consists of们Z均O 挝归叫O创ωc1咆k
Pro创ce倪edir口19 as abo飞，ve乓， we see the c∞ondi让tior口1 for a缸n arbitrage to exist i扫s:

100 . Xo + f . Xl 十 X2 < 0
120· Xo 十 20 . Xl + 1.02 . X2 ~三 0

70· Xo 十1.02 . X2 ~己。

Writi吨 the linear-terms ?S AZr we see that if det(A) 并 0， then we can
always fiI1d m arbItrage SIRee we caI1solve A2 工 b. We will denote row i
of A by Ai.

E苟且tzjltml二71;1:七月;41:;2244
exists if the optIOIIPI-ICe is ROt equal to f\

COI1versely}if the optiOI1is priced at f飞 det(A) 二 o and in particul
Ao = 0.6275 斗1+03583A2·sinceAoisalineammbindORofAl and
A 2 with posit巾 weights， then if A 1 x ~ 0 and A2x 主 0， Aox must also民
主 0， so no arbitrage can exist.一

Solution 10.14:Let Z be the price of the stock OI1day 100.The opti0日 is
worthless if Z < 300.If the price iS Z 主 30Or the optiOI1·y
dollars.The expected value of Z is given by the htegralIs worth Z-300

portfolio to have a negative value, i.e.,

fa∞ u 元二二dy

f∞ n一号黯三
I (x - 300) .b 二ζ二dx.
J300 飞/2作 (20)2

leJ:立江U:二1i;俨:σin口1S挝te臼ad of 20. The expressio日 above simplifies to

The indefinite怡ein时t怡egra剖If‘ ωεf一'uρ句j

so the deBηite int咿al equals σ飞/去用。蜘. Therefore the 叫一ed
payoH on the option on day 100 i~ 0~'39 . 20 = $7.8.

CHAPTER 10. PROBABILITY200

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Solution 10.15: The first thing to ask is what are you trying to op位工lize?

There are various 。同ec世ves， all of which are reasonable-maximize ex­
pected pro直t， minimize loss, maximize ratio of expected prof让 to vari­
ance, etc.

Let's say we want to max让工lize profit. The expected prof技 is
J::~00(1.8X - B) . 460dB. This simplifies to 0.9.400

2

-但B+0.IB
2

• The
derivative is 0.2B - 400.

The expected profit has a negative derivative in the range of interest­
B E [0,400]. This means that as we increase B , we get less and less prof技r

so we should keep B = O.
In retrospect, this result makes sense since if we win the auction, we

are paying twice of X in expectati∞ and getting∞ly 1.8X in return.

Solution 10.16: If the probability of winning is P, then the expected gain
is -1 十 p' ω. Hence for a fair game， ω = l/p.

The face value of the card can be any number between 1 and 13. For
the dealer, all values are equally likely. Hence if the player's card has a
face value i, then the probabili可 of winning for the player is (i - 1)/13.
If the player always takes only one random card, his probability of win-
ning is (1/13) 2::i:l (i - 1)/13 = 6/13. Hence it makes sense to ask for
the next card ∞ly if the first card yields a probability less than 6/13,
i.e., the face value of the first card is 7. If we are given that the face
value of the first card is 7 or more, then the chances of winning are
(1/7) 2::;:7 (i - 1)/13 = 9/13; otherwise, it is 6/13. Hence the overall
probability of winni吨 is 忐·击十击·击=99/169. Thus the fair value
would be 169/99 自1.707.

Solution 10.17: We ca川由ially achieve a probability of success of ~ by
always choosing the first card.

A natural way to proceed is to consider the probability Pk (f) of win­
ning for the opt垃lum strategy after k cards remain, of which! are red
cards. Thenpk(!) = max (i ,i .Pk-l(! -1) + (1- i) .Pk-l(!))'

The base cases for the recurrence are PI (1) = 1 and PI (0) = O. Ap­
plying the rec旧rence， we obtain P2(2) = 1,P2(1) = ~， P2(0) = 0, and
P3(3) = 1,P3(2) = ~， P3(1) = !, p3(0) = O. This suggests that Pk(!) = i ,
which can directly be verified from the recurrence. Therefore the best we
ca口 do， P52(26) = ~~ = ~， is no better than simply selecting tl时irst card.

An alternate view of this is that since the cards in the deck are ran­
domly ordered, the odds of the top card we select being red is the same
as the card at the bo加n of the deck being叫 whichhas a i chance of
being red when there are ! red cards and k cards in total.

Solution 10.18: If we always select the 自时 sec时ary， we have a 去

chance of selecting the best secretary.

202 CHAPTER 10. PROBABILITY 203

One"叫T to do better is to skip the first 呈阳出taries and then choos f1

the first one in 也e remaining set 出at is SUperior t切O 白阳eb悦es时t 阳J;a士z
:艺拮tt:::;:2:气俨俨d白intl

互 since the p严ro伪ba劫hi出l且it守yt由ha挝t the sec∞or丑ld best secretary 1且ie臼s in the
f曲irs时t half and the best seer?tary is h the second half is at least j Note
that the probability of thism actually more thaZIi siRce the SeC∞ond b快es时t

;江::;古古::二二乓::;trr:z: :旦巳巳;;3;t骂;;l;γj…ahigher tha阳a缸川I
I扯t is kr丑lowr丑1 t白ha挝t i迁f we follow a strategy of skippin丑19 the f直irst s s

and selectiI!gthe first secretarywho is superior to all oth
far, the probabil均 IS 中aximized for s closest toη/e and the maximum
probability tends to 1/e.

Solution 1019:Let L be the event that the selected coh is tail-Uiasedr U
be the ever1t that the selected coh is head-biasedr md3H5be the eveI1t
thatMOhchosemtrmdomfrOIMhebagcomesupheads3times outof
5 tOSS f1S

We want to compute Pγ(LI3H5). By Bayes' rule, this is Pr(Ln3H5)

Applyhg Bayedrule agaiIU this pyobability equals PT(3H5)·

Pr(3H5 IL) . Pr(L)

Pr(3H5 n (L U U))

Pr(3H5IL) . Pr(L)
Pr(3H5 n L) 十 Pr(3H5 n U)

Pr(3H5IL) . Pγ(L)

Pr(3H5 IL) . Pr(L) 十 Pr(3H5 IH) . Pr(H)

(~) . 0.43 . 0.62 . 0.5

(~) . 0.43
. 0.62 • 0.5 + (~) .0.42 . 0.63 . 0.5

0.4

For the seco叫 parιwecan use the Chebyshev in叩ality to compute
the number of tnals we need for a majority of ηtosses of the tail-biased
coin tobe heads with probability ziELet Lbe the eWIlt 出at the i-th
toss of the tail-biased coh comes up heads.It will be cOI1venieI1t tonpn
a BernOl归宿咖川ariable Xi to encode this eve风 wih1MCqah
head句s at口ld 0 indica时ting ta剖ils.

Themeanμ 卢 the sum X of n Bernoulli random variables whichare
IID with probability P isη . P; the standard deviati∞ σis \/叩(1 →的.In
our context， μ 工 0.4ηand (J' =而石/25. v

re ch向阳T inequa均 gives us a bo叫 on the prob制l均们
;12?叫b向阳 from

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

205

we retum true;whm Y is queriedr we return false In this way>the value
ofX 吧 Y is determined 0吨T after both the variabl二s are内o

Tη刊Thi臼sg伊er甲曰町leraliz垃ze勾s wi让恤t仕也hit缸n叫ld由u旧ct巾t

L k expressior贝1 requl町res all the variables to have beer丑1 read before its value
i妇s determined an丑ld its final value is the value of the las时t 飞varia拍b剖3垃Ie read. For
a 由xpressio日 of the form们 ψr陆m归毗b are L~ …ressie … ?1

引 jf击蓝J盐11阳市:汪古
S叩posewe evaluate an expression by choosi吨 one of its two s由ex­

rtJIZZZeval毗曲们e evaluate the 仙er s由叩
we evaluated first-ORFs value is 且ot forced by the subexpression that

dtft吮时)如:r工ZEZ卢s;。:trrtZT
:ZZZTJ;27削y choose one of (cPo /\ cP l) 削 (ψ0/\ψ1) to ev飞v

'st e仪xp严r它'es臼ss民ior丑1 evaluated is true, we can i与gr丑lOre the sec­
O丑叫dι; 0白阳町‘wis吨e， we evaluate the sec。此 If the 与时 exoress;on i 气 • A

we reduced tl阳1

仪press目sio∞口川i妇sf臼al快臼盹， a挝tIe臼邸a创耐S时to∞丑ne oft由:h叫e

eJ♂且;立乱江且1;;t:z::2;t:E:7立S2e;:;;立;:立;:::zfgrrtt::1ORmdfT主
pect to avoid one of the four sub叩'essions cPo,cP l' 1/J川JETmj;二斗士

Q(k + 1) 三 3·Q(k).

1:ZJhisr Q(k)=3KM阳制orward to use i灿ction to show
η1ouf:11号fto国 ofη 二 4

k
vari由les in an Lk 叫ression， so Q (k) =

For the majority of ηtosses to not be tails, it is necessar严hatthe sum
of the n coin tosses is greater than or equal to 0.5n. We want to bound this
p协abili可 by 160' so we take k = 10. We want to solve for n such that
0.5n 一。但主 10· 而可25， i.e., O.ln 三 4.9.jn which is satisfied for n 三
2400. Note that the analysis is not tight-the Chebyshev inequality refers
to the p灿ability of IX 一 μ! 三加butwe are ∞ly looking atX一陀 σ.

The Chebyshev inequality holds for all random variables if they have
a variance. We can obtain a tighterbound by applying a Chernoffbound,
which is specific to the sums of Bernoulli random variables. Specifically,

Chernoff bounds tell us that Pγ(X 三 (1 + 8)μ) 三 e二号EE We wmt to
bound Pr(X 三 0.5n = (1 十 0.25)(0.4n)) ， so 8 = 0.25. Thus we want

i04nj0时< 0.01; taki吨 naturallogs we obtain一叫(;25)2<1丑 100 =
-4.6, which holds for η> 552.
哑巴 Chernoffbound is also pessimistic-through simulation code at­

tached below, we determined that whenη= 553, only 17 times in 107

trials did we see a majority of tails; whenη= 148, tails was not a major­
ity in 0.88% of the trials.

PROBABILITYCHAPTER10.204

public class TailCoin {
public static void maine String [] args) {

int numFails = 0;
int numTrials =new Integer(args[O]);

import java. util. Random;吨
i

呵
4

叫
3
A

哇

'
b
r
o

。

double bias = 0.4;
in t N = new Integer (args [1]);
Random r = new Random () ;
for (int i = 0 ; i < numTrials; i++) {

int sum = 0;
for (int j = 0 ; j < N; j++) {

SUI丑十= (r. nextDouble () < bias) ? 1

if (s山丑>= N/2) numFa i1s++;

叮
J
Q
U
Q
J
n
u
1
i

呵
/
阳
巧3
A
t

萨D

吨
i

咱
i
4
i
4
i

吁
i

咱
i

System. out. println (" fails: trials \t=\t 11
+ numFa i1s
十 11 : 11 + numTrials
+ 11\n\tratio \t=\t 11
十((double) numFa i1s / (double) numTrials));

/
O

哼
J

民
U
Q
J
n
u
τ
i

句
牛

q
M

吨
i
t
i
1
i

唁
i

叮
ι

呵
'
'
』
叫
/
但
呵
/
归

Solution 10.20: First, we show that any deterministic algorithm must
examine all Boolean variables. The idea is that an adversary can force
the value of any subexpression to be unknown till all the variables in
the subexpression have been read. For ex缸nple， suppose variable X is
ANDed with variable Y. If the algorithm reads the value of X before Y ,

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

207

P陀computed_p αγity [i). This array can either be constr山tedd旧ing static
initialization or dynamically-a flag bit can be used to indicate if the en­
try at a location is uninitialized. Once you have this array, you can im­
pIement the parity function as follows:

1 'short parity3 (long a) {
2 I short result = precomputed_parity[a »16];
3 I result /\= precomputed_parity[a & OxFFFF];
4 I return result;
5 I}

Solution 11.2: Similar to computing parity (d. Problem 11.1)/ the
fastest way to reverse bits would be to build a precomputed ar­
ray precomputed_reverse such that for every 16-bit number i,
precomputed…reverse [i] holds the bit-reversed i. Then you can do
something like this:

long reverse_bits (long l) {
return (precomputed_reverse [l & OxFFFF] « 16)

precomputed_reverse [l » 16]

Solution 11.3: Again, here precomputed arrays can speed things signif­
icantly. For all possible 256 values of a byte, we can store the correspond­
ingru扣length encoded values. One tricky thing here is that a particular
sequence of identical consecutive bits may cross the byte boundary and
you may need to combine the results across the byte boundaries. This
just requires some additior叫 logic to see if the last bit of the previous
byte matches the first bit of the current byte or not and accordingly ei­
ther simply concatenate the encoded sequence or add the first number
for the current byte to the last number for the previous byte.

Solution 11.4: We can use the fact that every permutation can be ex­
pressed as a composition of di司oint cycles, with the decomposition being
u口ique up to ordering.

For example, the permutation (3 ,1,2,4) can be represe口ted as
(1 ,3,2)(4)/ i.e., we can achieve the permutation (3,1,2,4) by these two
moves: 1 •• 3,3 •• 2,2 •• 1 and4 •• 4.

If the permutati∞ was given to us as a set of disjoint cycles, we could
easily apply the permutatio日 in constant amount of additional storage
since we just need to perform rotation by one elemer时1让t. S旬0/ what remain丑1
i妇s a way to identify the disjoint cycles t也ha挝t constitute the pe臼rm丑1U时1过ta甜t柱io∞I口1.

Again, it is fairly easy to identify the set of cycles if you have an addi­
tional N bits: you start from any positio口 and keep going forward (from
ito A[i]) till you hit the initial index, at which point you have found 0丑

of the cycles.τhenyou can go to another positio口 that is not already a

Chapter 11

才
i

吓
4

巧
气U
A
哇

Program.m.ing

Solution 11.1: The fastest algorithm for manipulating bits can vary
based on the underlying hardware.

The time taken to directly compute the parity of a single number is
proportional to the number of bits:

short parity(long a) {
short result = 0;
for (; a != 0; a = a » 1) {

result = result /\ (a & 1);

return result;

1234567

A neat trick that erases the least significant bit of a number in a single
operatio口 can be used to 凶prove performance in the best and average
cases:

short parity2(long a) {
short result = 0;
while (a) {

res u lt /\= 1;
a = a & (a - 1);

return result;

12345678

But whm you have to pefform a lafge I1umber of parity operations
md more generally;, my khd of bit fiddling operationy the best way
to do this is to precompute the answer md store it in m array.Dea
pending upORhow much memory is at your disposal (md how much
fits efficieI1tly h cache)r you cm vary the size of the lookup table.Be­
low is an example 出pleme口tation where you build a lookup table
"precomputed_parity" that stores the pari可 of any 16-bit number i as

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

209

int j = i;
int tmp = A[i];
do {

in t k = permutation [
int swap_var = A[k];
A[k] =恤p;

位np = swap_var;
j = k;

} while (j .,、
‘
B
，
，
，

·
τ
i

456789012345
吁
i

唔
i

咱
i

咱
i

吁
i

吁
i
n
L

叫
/
-
叫J
h
叫
/
-
叫4
7

』

Solution 115:The so111tiORis very similar to the previous problem.All
you med to do is decompose the permutatiORhto a set of cyclesmd
inv臼t each cycle one step back. For example, the per红lutation 3,1,2,4
can be r叩rese口ted as (1 ,3,2)(4). Hence the inverse can be represented
as (2,3,1)(4) which amounts to 2,3,1,4.

h order to save additional spacer we cm use exactly the same set of
tricks as in the above problem.

Solution 11.6: If you try to figure out the position for each characω
ter h a siI1gle passr it becomes fairly complex-If you do this h two
stages, it becomes fairly eas予In the first step, invert the entire string
mdiMKsecoMsteprinmtmchword-FormmPIermm tsmtJU J
yltsoc si m旷问 costly is γαm. Here is an example code that achieves
this:

void InvertString (chau input , size一 t length) {
for (int i = 0; i < leng-th /2; 十+i) {
}swap(1nput+i r iRput+iength-i 一 1) ;

void ReverseWords (char* input) {
size_ t length = strlen (input) ;
InvertString (i旦put ， length);
int start = 0;
while(start < length) {

int end - start;
whil~ (end < length 他 input [end]

end.++;
',-"') {

Solution 11.7: Here is an example code that reverses a linked list and
ret旧ns the head pointer for the reversed list. The only important thin

InvertString (inpu t+ start , end-start);
s tar t = end + 1;

1234567890123456789

1
4
4
3
在

4
3
A
q
i
1
4
1
A
τ
i
1

本
咱
i

咱
i

PROG见生品α1ING

part of any cycle. Finding a positi∞ that is not already a part of a cycle is
easy if you have a bit-vector that could indicate whe也er we have already
included a given position in a cycle or not.

One way to do this without using additional O(N) storage could be
to use the sign bit in the integers that constitute the permutation:

CHAPTERll.208

void ApplyPermutation(int * permutation , inh A, int n) {
for (int i = 0; i < n; ++i) {

if (permutation[i] > 0) {
/ / S tar t sea rchi ng for a cy cl e from i.
in t j = i;
in t tmp = A [i] ;
do {

int k = permutation[j];
int swap_var = A[k];
A[k] = tmp;
tmp = swap_var;
/ I Mark j as vis it ed .
permutation [j] *= -1; I I sets the sign
j = k;

} while (j != i);

bit

吁
i
q
'
-
q
u
A

吐

F
3
f
O

哼
'
只

U
Q
J
n
u
1
A

句
牛
肉
3
A

吐
田
3

-
A
1

牛

1

本
咱
1
4
i
4
i

I I Restore the sign for permutation.
for (in t i = 0; i < n; ++ i) {

permutatio口 [i] *= -1;

f
O

叮
/
采

U
Q
J
n
u
-
-
&

呵
ι

-
E
A
-
-
4
1
i
1
牛
肉

4

。
』
句
中

The above code will apply the permutation in O(N) time but implic­
itly we are usi吨 additional O(N) storage (even if we are borrowing it
from the sign bit of permutation matrix). We need O(N) storage to re­
member all the visited cycles.

We can avoid this by just going from left to right and applying the
cycle∞ly if the c旧rent position is the leftmost position in the cycle. In
order to test whether the current position is the leftmost position or not,
you will have to traverse the cycle once more. This boosts the runtime to
8(N2).

void ApplyPermutation2 (int * permutation , inh A , int n) {
for (int i = 0; i <丑;十+i) {

II Traverse the cycle to see if i is the min element
bool min_element = true;
int j = permutation[i];
while(j != i) {

if (j < i) {
min_element = false;
break;

、...
J

T
E
E
-
h

，
，
、k

n
。
飞

I

f
-
-
-
ι
i

t
T
·
·

内
川

aeum
、
-
4
0

』

F
L

唱
z
i

ree-pmzm

'
'
1
、

rTA

、
s
，
，
.
‘
a

1234567890123

咱
i
4
i

咱
i

咱
i

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

here is that you save the pointer to the next node before overwriting让­

1 INode* ReverseLinkedList (Node* head) {
2 I Node* prey = NL且;

3 I Node* current = head;
4 I while (current != NULL) {
5 I Node* 恼p = cu口ent 一>next;

6 I current 一>next = prev;
7 I prey = current;
8 I current = tmp;
9 I }

10 I return prev;
11

Solution 11.9: This is more of a trick questio口 than a conceptual one.
Given the pointer to a node, it is impossible to delete it from the list
without modifying its predecessor's next pointer and the only way to
get to the predecessor is to traverse the list from head. However it is easy
to delete the next node since it just requires modifying the next pointer
of the current node. Now if we copy the value part of the next node to
the current node, this would be equivale时 to deleting the current丑ode.

(This questio口 used to be commonly asked but it would be poor prac­
tice to use this solution in reallife-for example, a reference to the suc­
cessor of the node that was just deleted is now corrupted.)

Solution 11.10: At first glance, it would appear that the search function
does a constant amount of work and then recurses∞ a subarray that is
less than half as big as the array passed in-a classic O(log n) algorithm.

Solution 11.8:τhere are two elegant solutions to this problem. One
solution is that you try to reverse the linked list 缸ld one of the two things
canhappen:

1. You reach the null pointer at the end of the list-this indicates that
this was a correctly constructed linked list.

2. You reach the head pointer of the list which indicates that the linked
list has a loop.

Of course this operation is destructive, i.e., you modi句T your input
but you can restore the 扛lput by reversing it again.

Another interesting approach is to have two pointers traverse the
linked list and in every step, you advance the pointers. The first pointer
is ad飞lanced by one positio口 and the second one is advanced by two
positions. If you have a correctly constructed linked list, then both the
pointers will end up at the tail of the list. However if you have a circular
linked list then you would be in an infinite loop. Since the second pointer
is traversing the loop twice as fast as the fir吮 it will often intersect with
the first pointer in the loop. If you find the two p。如ters intersect, this
would indicate the list is circular.

However the array slicing-the COIlstruetiORof the subarray-is po­
tential1y expensive, depending on how it is 扛丑pleme口ted. Diffe主ent lan­
guages implement array slicing in different ways: the elements may be
aliased to elements h the original array or they may be copied-If a copy
isbei吨 made， this copy takes 8(l) time to compute, where l is the Ie吨th

of the array slide. Therefore the rec旧rence is T(n) = 8(η)+T(号)， which
solves to T(η) = 8(η) .

The right way to perform binary search, which avoids the copy,
passes integer indexes denoting the range to perform search on (a1ter­
nately, a while loop can be used to avoid recursion). See Problem 1.2 for
more details.

211CHAPTER 11. PROGRAMMING210

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

Index of Problem.s

k-clustering, 38
mxηChomp， 74

ηx 2 Chomp, 74
η × ηChomp ， 74

0-1 险lapsack ， 55

2-SAT, 49
500 doors, 71

Anagrams, 17
Anonymous letter, 18
Approximate sort, 27
Arbitrage, 47
Assigning radio frequencies, 44
Asynchronous callbacks, 61

Balls and bins, 78
Barber shop, 63
Betting on card colors, 71
Binary search, 88
Birkhoff-von Neumann decom­

position, 47

Channel capacity, 48
Checking for cyclicity, 87
Checking simplicity, 22
Circuit simulation, 28
Climbing stair飞 71

CNF-SAT, 57
Collatz conjecture, 58
Common knowledge, 73
Completion search, 21
Computing xn , 57
Computing square roots, 15

Computing the binomial coeffi­
cients, 70

Computing the parity of a long,
85

Connectedness, 42
Contained 坦tervals ， 21

Counting shortest paths, 46
Cutting paper, 32

Dancing with the stars, 48
Deletion from a singly linked

list, 87
Differentiating biases, 82
Dining philosophers, 63
Distributed throttling, 66
Distributing large files, 68
Driving directions, 68

Edit distances, 52
Efficient trials, 24
Efficient user interface, 37
Ephemeral state in a finite state

machine, 43
Euler tour, 43
Even or odd, 73
Expected number of dice rolls,

80
Extended contacts, 42

Facility location problem, 56
Find all occurrences of a sub­

string, 50
Finding the min and max simul­

taneously, 24

INDEX OF PROBLEMS

Finding the winner and run工ler­

up, 24
Forming a triangle from random

lengths, 78
Frog crossing, 31

Gassing up, 73
Good sorting algorithms, 23

Ha均-Ramanujan number, 57
Height determination, 71
Hershey bar, 74
Host discover予 69

Huffman coding, 36

Implement PageRank, 66
Intersect two sorted arrays, 16
Intersecting lines, 20
Invert a permutatio矶 86

IP forwarding, 65
ISBN cache, 68

Latency reductio口， 67

Leader electio日， 68

Least distance sorting, 25
Load balancing, 33
Longest nondecreasing subse­

que口ce， 30

Longest palindrome subseω

que口ce， 52

Matrix search, 21
Maximizing expressions, 34
Merging sorted arrays, 27
Minimize waiting time, 36
Missing element, 18
Missing element, limited re­

sources, 16
Mosaic, 64

Nearest points in the pI缸le， 58

Nonuniform random number
generation, 79

Normalize URLs, 51

213

Offline sampling, 77
0日ce or twice, 82
Online advertising system, 67
Online poker, 67
Online sampling, 78
Optir丑um bidding, 81
Optimum buffer insertion, 34
Option pricing with interest, 81
Option pricing一-continuous

case, 81
Optio口 pricing-discrete case,

81
Order nodes in a binary tree by

depth, 42

Packing for USPS priority mail,
37

Pairing users by attributes, 18
Party planning, 39
PCB wiring, 42
Permuting the elements of an ar-

ray, 86
Picking up coins-I, 75
Picking up coins-II, 75
Points covering intervals, 37
Pretty printing, 52
Primality checking, 58
Privacy and anonymization, 25
Producer-consumer queue, 62

Ramsey theory, 71
Random directed acyclic graph,

46
Random permutations, 79
Random permutations-l, 78
Random permutatio口s-2， 78

Rays covering arcs, 38
Readers-writers, 62
Readers-writers with fairness,

62
Readers-writers with write pref­

erence, 62
Recommendation system, 67
Red or blue house majority, 33

If
yo

u
fin

d
th

e
bo

ok
 h

el
pf

ul
, p

le
as

e
pu

rc
ha

se
 a

 c
op

y
to

 s
up

po
rt

th
e

au
th

or
s!

214

Re伊lar expression matching,
53

Reservoir sampling, 77
Reverse all the words in a sen-

tence, 86
Reversing a singly linked list, 87
Reversing the bits in a long, 85
Road network, 47
Robot battery capacity, 18
Rotate a string, 51
Run-length encoding, 85
Running averages, 27

Scalable priority system, 66
Scheduling, 57
Scheduling tutors, 35
Search a sorted array for A问=

i, 16
Search a sorted array for k, 16
Search a sorted array for the first

element larger than k,
16

Search an array of unknown
length, 16

Search BST for x > k, 20
Search BST for a key, 20
Search engine, 65
Search for a pair which sums to

8 , 17
Search for frequent items, 19
Search for majority, 19
Searching a maze, 41
Searching two sorted arrays, 20
Selecting a red card, 82
Selecting the best secretary, 82
Servlet with caching, 60
Shortest path with fewest edges,

45
Shortest paths in the presence of

randomization, 46
Space-time intersections, 75
Spell checker, 65
Stable assignment, 47
Stemr卫社19， 65

INDEX OF PROBLEMS

String matching with unique
characters, 51

Te缸工1 photo day-I, 44
τe缸丑 photo day一一2， 48

TeraSort, 24
Test rotation, 51
τ'he complexity of AND-OR for-

mulas, 83
τ'heory of equality, 49
白uead pools, 61
Ties in a preside时ial election, 32
Timer, 61
Timing analysis, 44
Traveling salesman in the plane,

56
Traveling salesman with a

choice, 46
Tree diameter, 43
Triangulation, 34

Uniform random number gen-
eration, 79

Unique elemen怡， 26

Variable length sort, 26
View from the top, 21
Voltage selection, 34

Word breaking, 32
If

yo
u

fin
d

th
e

bo
ok

 h
el

pf
ul

, p
le

as
e

pu
rc

ha
se

 a
 c

op
y

to
 s

up
po

rt
th

e
au

th
or

s!

	01
	02
	03
	04
	05
	06
	Introduction to credit risk modeling - 2nd ed - Bluhm.pdf
	01
	02
	03
	04
	05

